Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 57-69.doi: 10.11707/j.1001-7488.LYKX20230562
• Research papers • Previous Articles Next Articles
Cong Zhang,Qi Liu,Haikui Li*(),Pengju Liu,Siying Zhan
Received:
2023-11-22
Online:
2025-01-25
Published:
2025-02-09
Contact:
Haikui Li
E-mail:lihk@ifrit.ac.cn
CLC Number:
Cong Zhang,Qi Liu,Haikui Li,Pengju Liu,Siying Zhan. Scale-Compatible and Tree Species-Classified Forest Carbon Storage Model of Volume-Derived in China[J]. Scientia Silvae Sinicae, 2025, 61(1): 57-69.
Table 1
Statistical table of modeling variables in administrative region (mean ± SD)"
行政大区 Administrative region | 森林蓄积量 Forest volume/(m3?hm?2) | 森林碳储量 Forest carbon storage/(t?hm?2) |
东北 Northeast | 119.33±82.28 | 52.67±36.27 |
华北 North China | 77.50±66.43 | 33.04±26.24 |
华东 East China | 72.00±66.86 | 30.05±27.67 |
华南 South China | 64.33±61.22 | 29.08±28.78 |
西北 Northwest | 118.31±121.28 | 49.14±41.53 |
西南 Southwest | 120.15±141.21 | 46.17±47.78 |
Table 2
Statistical table of modeling variables in forest class (mean ± SD)"
森林类 Forest class | 森林蓄积量 Forest volume/ (m3?hm?2) | 森林碳储量 Forest carbon storage/ (t?hm?2) |
阔叶纯林Pure broad-leaved forest | 79.63±75.71 | 38.21±36.06 |
阔叶混交林 Mixed broad-leaved forest | 99.95±80.92 | 50.03±38.84 |
针阔混交林 Mixed broad-leaf and coniferous forest | 93.44±85.59 | 38.66±32.90 |
针叶纯林 Pure coniferous forest | 105.21±120.78 | 36.10±36.64 |
针叶混交林 Mixed coniferous forest | 103.21±103.05 | 36.43±33.48 |
Table 3
Administrative regional scale division of China"
尺度Scale | 具体尺度Specific scale |
国家 Nation | 全国 Nationwide |
区域 Region | 北方、南方Northern and southern |
行政大区 Administrative region | 东北、华北、西北、华南、华东、西南Northeast, north China, northwest, south China, east China, southwest |
省份 Province | 黑龙江、吉林、辽宁、北京、天津、河北、山西、内蒙古、陕西、宁夏、甘肃、青海、新疆、山东、江苏、上海、安徽、浙江、江西、福建、河南、湖北、湖南、广西、广东、海南、重庆、贵州、四川、云南、西藏Heilongjiang, Jilin, Liaoning, Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Shaanxi, Ningxia, Gansu, Qinghai, Xinjiang, Shandong, Jiangsu, Shanghai, Anhui, Zhejiang, Jiangxi, Fujian, Henan, Hubei, Hunan, Guangxi, Guangdong, Hainan, Chongqing, Guizhou, Sichuan, Yunnan, Xizang |
副总体Subpopulation | 甘肃、吉林、黑龙江、新疆和内蒙古划分为2~4个副总体 Gansu, Jilin, Heilongjiang, Xinjiang and Inner Mongolia were divided into 2?4 subpopulations |
Table 4
Climate regional scale division of China"
尺度Scale | 具体尺度Specific scale |
国家 Nation | 全国 Nationwide |
气温区 Temperature region | 北温带、中温带、南温带、北亚热带、中亚热带、南亚热带、北热带、中热带、高原气候区 North temperate zone, middle temperate zone, south temperate zone, north subtropical zone, middle subtropical zone, south subtropical zone, north tropical zone, middle tropical zone, plateau climate zone |
气候区 Climatic region | 滇南河谷区、雷琼区、琼西区、元江区、根河区、江北区、秦巴区、波密_川西区、藏南区、柴达木区、昌都区、达旺_察隅区、祁连_青海湖区、青南区、河北区、晋陕甘区、辽东_胶东半岛区、鲁淮区、南疆区、渭河区、滇南区、闽南_珠江区、琼南_西沙区、北疆区、大兴安岭区、富蕴区、蒙东区、蒙甘区、蒙中区、三江_长白区、松辽区、塔城区、小兴安岭区、伊宁区、滇北区、贵州区、江南区、金沙江_楚雄_玉溪区、瓯江_闽江_南岭区、四川区 Yunnan river valley, Leiqiong district, Qiongxi district, Yuanjiang district, Genhe district, Jiangbei district, Qinba district, Bomi_western Sichuan district, southern Xizang district, Qaidam district, Changdu district, Dawang_Chayu district, Qilian_Qinghai Lake district, southern Qinghai district, Hebei district, Shanxi_Shaanxi_Gansu district, Liaodong_Jiaodong Peninsula district, Luhuai district, southern Xinjiang district, Weihe district, southern Yunnan district, southern Fujian_Pearl River district, southern Fujian_Xisha district, northern Xinjiang district, Daxing’anling district, Fuyun district, eastern Inner Mongolia district, Inner Mongolia_Gansu district, central Mongolia district, Sanjiang_Changbai district, Songliao district, Tacheng district, Xiaoxing’anling district, Yining district, northern Yunnan district, Guizhou district, Jiangnan district, Jinsha River_Chuxiong_Yuxi district, Oujiang River_Minjiang River_Nanling district, Sichuan district |
Table 5
Forest type level division of China"
森林类型层级 Forest type level | 具体树种(组)Specific tree species (group) |
全部森林 Whole forest | 全部树种 All tree species |
森林类 Forest type | 阔叶纯林、阔叶混交林、针阔混交林、针叶纯林、针叶混交林 Pure broad-leaved forest, mixed broad-leaved forest, mixed broad-leaf and coniferous forest, pure coniferous forest, mixed coniferous forest |
森林亚类 Forest subclass | 桉树、白桦、柏木、赤松、刺槐、椴树、枫桦、枫香、高山松、国外松、黑松、红松、华山松、桦木、黄山松、阔叶混交林、冷杉、栎类、楝树、柳杉、柳树、落叶松、马尾松、木荷、木麻黄、楠木、泡桐、其他软阔类、其他松类、其他硬阔类、杉木、水胡黄、水杉、思茅松、铁杉、相思、杨树、油杉、油松、榆树、云南松、云杉、樟木、樟子松、针阔混交林、针叶混交林 Eucalyptus spp., Betula platyphylla, Cupressus spp., Pinus densiflora, Robinia spp., Tilia spp., Betula costata, Liquidambar spp., Pinus densata, foreign pine, Pinus thunbergii, Pinus koraiensis, Pinus armandii, Betula spp., Pinus taiwanensis, mixed broad-leaved forest, Abies spp., Quercus spp., Melia spp., Cryptomeria spp., Salix spp., Larix spp., Pinus massoniana, Schima spp., Casuarina equisetifolia, Phoebe spp., Paulownia spp., other soft-and-broad trees, other pine trees, other hard-and-broad trees, Cunninghamia spp., Fraxinus mandshurica, Juglans mandshurica, Phellodendron, Metasequoia spp., Pinus kesiya var. langbianensis, Tsuga spp., Abrus spp., Populus spp., Keteleeria spp., Pinus tabuliformis, Ulmus spp., Pinus yunnanensis, Picea spp., Cinnamomum spp., Pinus sylvestris var. mongolica, mixed broad-leaf and coniferous forest, mixed coniferous forest |
Table 6
Model parameter a of the province at the whole forest level without considering stand characteristics variables (estimated value ± SD)"
省份 Province | 样本量 Sample size | 独立模型 Independent model | 联立方程组模型 Simultaneous equations model | 省份 Province | 样本量 Sample size | 独立模型 Independent model | 联立方程组模型 Simultaneous equations model | |
北京 Beijing | 2 803 | 0.753 2±0.004 4 | 0.794 3±0.004 3 | 湖北 Hubei | 6 064 | 0.681 7±0.003 1 | 0.718 7±0.002 8 | |
天津 Tianjin | 501 | 0.651 2±0.008 5 | 0.686 4±0.009 2 | 湖南 Hunan | 8 175 | 0.597 5±0.002 6 | 0.629 6±0.002 3 | |
河北 Hebei | 4 999 | 0.694 3±0.003 4 | 0.731 3±0.003 1 | 广东 Guangdong | 5 124 | 0.674 3±0.003 2 | 0.709 8±0.003 0 | |
山西 Shanxi | 4 503 | 0.803 3±0.003 8 | 0.847 6±0.003 5 | 广西 Guangxi | 5 193 | 0.647 1±0.003 0 | 0.683 2±0.002 8 | |
内蒙古 Inner Mongolia | 9 442 | 0.585 4±0.002 4 | 0.620 9±0.001 8 | 海南 Hainan | 2 539 | 0.844 7±0.004 3 | 0.895 8±0.003 8 | |
辽宁 Liaoning | 3 785 | 0.733 6±0.003 6 | 0.776 4±0.003 2 | 重庆 Chongqing | 4 489 | 0.612 0±0.003 0 | 0.647 4±0.002 7 | |
吉林 Jilin | 13 176 | 0.734 2±0.002 8 | 0.781 4±0.001 8 | 四川 Sichuan | 7 567 | 0.597 0±0.002 6 | 0.637 0±0.001 9 | |
黑龙江 Heilongjiang | 13 293 | 0.655 0±0.002 5 | 0.694 1±0.001 7 | 贵州 Guizhou | 5 117 | 0.606 5±0.002 9 | 0.641 0±0.002 7 | |
上海 Shanghai | 647 | 0.681 6±0.007 8 | 0.718 1±0.008 7 | 云南 Yunnan | 12 548 | 0.674 5±0.002 7 | 0.716 5±0.001 8 | |
江苏 Jiangsu | 2 775 | 0.602 4±0.003 7 | 0.635 2±0.003 7 | 西藏 Xizang | 2 991 | 0.570 8±0.002 8 | 0.614 1±0.002 2 | |
浙江 Zhejiang | 6 213 | 0.644 4±0.003 0 | 0.678 9±0.002 7 | 陕西 Shaanxi | 6 221 | 0.852 1±0.003 6 | 0.899 4±0.003 0 | |
安徽 Anhui | 8 682 | 0.644 9±0.002 7 | 0.680 2±0.002 3 | 甘肃 Gansu | 7 210 | 0.686 0±0.002 9 | 0.731 9±0.002 2 | |
福建 Fujian | 9 579 | 0.637 2±0.002 6 | 0.675 7±0.001 9 | 青海 Qinghai | 3 401 | 0.676 7±0.003 3 | 0.719 8±0.002 9 | |
江西 Jiangxi | 4 409 | 0.640 3±0.003 3 | 0.674 8±0.003 1 | 宁夏 Ningxia | 1 105 | 0.675 5±0.005 8 | 0.712 9±0.006 2 | |
山东 Shandong | 2 977 | 0.654 7±0.004 0 | 0.688 9±0.004 1 | 新疆 Xinjiang | 4 062 | 0.545 0±0.002 5 | 0.583 1±0.002 0 | |
河南 Henan | 6 281 | 0.744 9±0.003 3 | 0.785 0±0.002 9 |
Table 7
Evaluation indexes of scale compatible model evaluation at the whole forest level considering stand origin variables"
尺度 Scale | 独立模型 Independent model | 联立方程组模型 Simultaneous equations model | |||||||
R2 | SEE/(t?hm?2) | MPE(%) | TRE(%) | R2 | SEE/(t?hm?2) | MPE(%) | TRE(%) | ||
国家 Nation | 0.889 8 | 12.25 | 0.14 | 0.00 | 0.888 0 | 12.35 | 0.15 | 0.00 | |
区域 Region | 0.890 3 | 12.22 | 0.14 | 0.00 | 0.888 2 | 12.34 | 0.15 | 0.00 | |
行政大区 Administrative region | 0.896 9 | 11.85 | 0.14 | 0.00 | 0.897 0 | 11.84 | 0.14 | 0.00 | |
省份 Province | 0.917 5 | 10.60 | 0.13 | ?0.00 | 0.918 5 | 10.53 | 0.12 | 0.00 | |
国家 Nation | 0.889 8 | 12.25 | 0.14 | 0.00 | 0.884 2 | 12.55 | 0.15 | 0.00 | |
气温区 Temperature region | 0.913 9 | 10.83 | 0.13 | 0.00 | 0.914 5 | 10.79 | 0.13 | 0.00 | |
气候区 Climatic region | 0.928 9 | 9.84 | 0.12 | 0.00 | 0.929 5 | 9.80 | 0.12 | 0.00 |
Table 8
Model parameter a of the forest subclass at the national scale without considering stand characteristics variables (estimated value± SD)"
森林亚类 Forest subclass | 样本量 Sample size | 独立模型 Independent model | 联立方程组模型 Simultaneous equations model |
冷杉 Abies spp. | 2 525 | 0.449 6±0.001 4 | 0.488 2±0.001 5 |
云杉 Picea spp. | 5 673 | 0.517 7±0.001 5 | 0.559 2±0.001 5 |
铁杉 Tsuga spp. | 78 | 0.460 5±0.004 7 | 0.500 0±0.007 0 |
油杉 Keteleeria spp. | 215 | 0.600 5±0.007 3 | 0.636 2±0.010 7 |
落叶松 Larix spp. | 9 215 | 0.476 3±0.001 3 | 0.510 3±0.001 3 |
红松 Pinus koraiensis | 333 | 0.573 1±0.003 9 | 0.614 9±0.005 6 |
樟子松 Pinus sylvestris var. mongolica | 583 | 0.471 2±0.003 0 | 0.504 1±0.004 3 |
赤松 Pinus densiflora | 282 | 0.753 2±0.008 3 | 0.797 4±0.012 1 |
黑松 Pinus thunbergii | 354 | 0.771 0±0.007 5 | 0.814 1±0.010 9 |
油松 Pinus tabuliformis | 4 445 | 0.654 9±0.002 0 | 0.695 6±0.002 6 |
华山松 Pinus armandii | 1 192 | 0.567 2±0.002 8 | 0.604 6±0.003 9 |
马尾松 Pinus massoniana | 14 350 | 0.503 9±0.001 2 | 0.535 8±0.001 4 |
云南松 Pinus yunnanensis | 3 508 | 0.469 4±0.001 6 | 0.500 4±0.002 1 |
思茅松 Pinus kesiya var. langbianensis | 483 | 0.614 2±0.003 8 | 0.655 6±0.005 5 |
高山松 Pinus densata | 787 | 0.556 4±0.002 5 | 0.598 4±0.003 4 |
国外松 Foreign pine | 1 139 | 0.613 1±0.007 6 | 0.653 6±0.011 1 |
黄山松 Pinus taiwanensis | 99 | 0.593 6±0.011 2 | 0.630 3±0.016 5 |
其他松类 Other pine trees | 249 | 0.824 7±0.008 4 | 0.874 4±0.012 3 |
杉木 Cunninghamia spp. | 13 516 | 0.454 3±0.001 2 | 0.484 2±0.001 3 |
柳杉 Cryptomeria spp. | 386 | 0.482 5±0.003 6 | 0.517 1±0.005 3 |
水杉 Metasequoia spp. | 220 | 0.427 1±0.005 3 | 0.454 8±0.007 8 |
柏木 Cupressus spp. | 4 970 | 0.678 3±0.002 1 | 0.719 6±0.002 7 |
栎类 Quercus spp. | 18 379 | 0.786 2±0.001 8 | 0.840 6±0.001 7 |
桦木 Betula spp. | 4 079 | 0.609 4±0.001 8 | 0.649 6±0.002 2 |
白桦 Betula platyphylla | 4 866 | 0.554 2±0.001 6 | 0.591 2±0.001 9 |
枫桦 Betula Costata | 218 | 0.635 1±0.005 8 | 0.677 4±0.008 4 |
水胡黄 Fraxinus mandshurica, Juglans mandshurica, Phellodendron | 622 | 0.838 0±0.008 1 | 0.889 5±0.011 9 |
樟木 Cinnamomum spp. | 383 | 0.732 4±0.006 8 | 0.774 1±0.009 9 |
楠木 Phoebe spp. | 89 | 0.667 5±0.009 5 | 0.714 1±0.014 1 |
榆树 Ulmus spp. | 1 100 | 0.669 0±0.004 2 | 0.706 5±0.006 0 |
刺槐 Robinia spp. | 852 | 0.638 2±0.005 2 | 0.671 1±0.007 5 |
木荷 Schima spp. | 356 | 0.709 9±0.005 7 | 0.756 1±0.008 3 |
枫香 Liquidambar spp. | 244 | 0.670 8±0.007 3 | 0.711 6±0.010 6 |
其他硬阔类 Other hard-and-broad trees | 8 192 | 0.807 2±0.002 1 | 0.860 1±0.002 2 |
椴树 Tilia spp. | 684 | 0.621 5±0.003 1 | 0.665 4±0.004 4 |
杨树 Populus spp. | 13 878 | 0.541 1±0.001 3 | 0.575 5±0.001 4 |
柳树 Salix spp. | 419 | 0.651 3±0.006 1 | 0.689 1±0.008 9 |
泡桐 Paulownia spp. | 333 | 0.706 0±0.007 1 | 0.745 2±0.010 3 |
桉树 Eucalyptus spp. | 2 556 | 0.633 3±0.002 6 | 0.669 2±0.003 6 |
相思 Abrus spp. | 221 | 0.573 8±0.006 3 | 0.610 0±0.009 3 |
木麻黄 Casuarina equisetifolia | 134 | 0.506 1±0.008 3 | 0.537 1±0.012 3 |
楝树 Melia spp. | 30 | 0.613 6±0.025 6 | 0.645 6±0.037 3 |
其他软阔类 Other soft-and-broad trees | 5 174 | 0.657 7±0.002 0 | 0.699 7±0.002 4 |
针叶混交林 Mixed coniferous forest | 4 871 | 0.514 0±0.001 5 | 0.549 8±0.001 8 |
阔叶混交林 Mixed broad-leaved forest | 32 545 | 0.723 5±0.001 6 | 0.773 0±0.001 4 |
针阔混交林 Mixed broad-leaf and coniferous forest | 10 978 | 0.596 8±0.001 5 | 0.637 3±0.001 6 |
Table 9
Evaluation indexes of tree species-classified model evaluation at the national scale considering stand age group variables"
森林类型层级 Forest type level | 独立模型 Independent model | 联立方程组模型 Simultaneous equations model | |||||||
R2 | SEE/(t?hm?2) | MPE(%) | TRE(%) | R2 | SEE/(t?hm?2) | MPE(%) | TRE(%) | ||
全部森林 Whole forest | 0.885 0 | 12.51 | 0.15 | 0.00 | 0.880 5 | 12.76 | 0.15 | 0.00 | |
森林类 Forest class | 0.941 8 | 8.90 | 0.11 | 0.00 | 0.941 7 | 8.90 | 0.11 | 0.00 | |
森林亚类 Forest subclass | 0.963 8 | 7.02 | 0.08 | 0.00 | 0.963 4 | 7.06 | 0.08 | 0.00 |
Table 10
Code table of model parameters"
建模方式 Modeling mode | 参数a Parameter a | 参数b Parameter b |
独立-尺度 Independent-scale | 具体尺度_具体树种_D_林分特征 Specific scale_specific tree species_D_stand characteristics | 具体尺度_森林类型层级_D_林分特征 Specific scale_forest type level_D_stand characteristics |
独立-树种 Independent-species | 具体树种_具体尺度_D_林分特征 Specific tree species_specific scale_D_stand characteristics | 具体树种_尺度_D_林分特征 Specific tree species_scale_D_stand characteristics |
联立-尺度 Simultaneous-scale | 具体尺度_具体树种_L_林分特征 Specific scale_specific tree species_L_stand characteristics | 具体尺度_森林类型层级_L_林分特征 Specific scale_forest type level_L_stand characteristics |
联立-树种 Simultaneous-species | 具体树种_具体尺度_C_L_林分特征 Specific tree species_specific scale_C_L_stand characteristics 具体树种_具体尺度_X_L_林分特征 Specific tree species_specific scale_X_L_stand characteristics | 具体树种_尺度_C_L_林分特征 Specific tree species_scale _C _ L_stand characteristics 具体树种_尺度_X_L_林分特征 Specific tree species_scale_X_L_stand characteristics |
Table 11
Code table of model parameters of natural broad-leaved mixed forest in Guangdong Province"
建模方式 Modeling mode | 参数a Parameter a | 参数b Parameter b |
独立-尺度 Independent-scale | 广东_阔叶混交林_D_1 Guangdong_mixed broad-leaved forest_D_1 | 广东_2_D_A1 Guangdong_2_D_A1 |
独立-树种 Independent-species | 阔叶混交林_广东_D_1 Mixed broad-leaved forest_Guangdong_D_1 | 阔叶混交林_省份_D_A1 Mixed broad-leaved forest_province_D_A1 |
联立-尺度 Simultaneous-scale | 广东_阔叶混交林_L_1 Guangdong_mixed broad-leaved forest_L_1 | 广东_2_L_A1 Guangdong_2_L_A1 |
联立-树种 Simultaneous- species | 阔叶混交林_广东_X_L_1 Guangdong_mixed broad-leaved forest_X_L_1 | 阔叶混交林_省份_X_L_A1 Mixed broad-leaved forest_province_X_L_A1 |
付 晓, 张煜星, 王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学, 2022, 58 (2): 32- 41. | |
Fu X, Zhang Y X, Wang X J. Prediction of forest biomass carbon pool and carbon sink potential in China before 2060. Scientia Silvae Sinicae, 2022, 58 (2): 32- 41. | |
国家林业和草原局. 2022. 2021中国林草资源及生态状况. 北京: 中国林业出版社. | |
National Forestry and Grassland Administration. 2022. Forest and grassland resources and ecological status in China in 2021. Beijing: China Forestry Publishing House.[in Chinese] | |
郭 焱, 周旺明, 于大炮, 等. 长江上游天然林资源保护工程区森林植被碳储量研究. 长江流域资源与环境, 2015, 24 (S1): 221- 228. | |
Guo Y, Zhou W M, Yu D P, et al. Research on forest vegetation carbon storage under the national natural forest protection project in the upper reaches of Yangtze River. Resources and Environment in the Yangtze Basin, 2015, 24 (S1): 221- 228. | |
郭兆迪, 胡会峰, 李 品, 等. 1977—2008年中国森林生物量碳汇的时空变化. 中国科学: 生命科学, 2013, 43 (5): 421- 431.
doi: 10.1360/zc2013-43-5-421 |
|
Guo Z D, Hu H F, Li P, et al. Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Scientia Sinica (Vitae), 2013, 43 (5): 421- 431.
doi: 10.1360/zc2013-43-5-421 |
|
洪奕丰, 张守攻, 陈 伟, 等. 基于机载激光雷达的落叶松组分生物量反演. 林业科学研究, 2019, 32 (5): 83- 90. | |
Hong Y F, Zhang S G, Chen W, et al. Inversion of biomass components for Larix olgensis plantation using airborne LiDAR. Forest Research, 2019, 32 (5): 83- 90. | |
李海奎, 法 蕾. 基于分级的全国主要树种树高-胸径曲线模型. 林业科学, 2011, 47 (10): 83- 90. | |
Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method. Scientia Silvae Sinicae, 2011, 47 (10): 83- 90. | |
李海奎, 赵鹏祥, 雷渊才, 等. 基于森林清查资料的乔木林生物量估算方法的比较. 林业科学, 2012, 48 (5): 44- 52.
doi: 10.11707/j.1001-7488.20120507 |
|
Li H K, Zhao P X, Lei Y C, et al. Comparison on estimation of wood biomass using forest inventory data. Scientia Silvae Sinicae, 2012, 48 (5): 44- 52.
doi: 10.11707/j.1001-7488.20120507 |
|
李 妍, 徐新良, 张 超. 中国乔木林碳储量变化研究. 森林工程, 2015, 31 (4): 50- 55.
doi: 10.3969/j.issn.1001-005X.2015.04.011 |
|
Li Y, Xu X L, Zhang C. Study on dynamics of arboreal forest carbon storage in China. Forest Engineering, 2015, 31 (4): 50- 55.
doi: 10.3969/j.issn.1001-005X.2015.04.011 |
|
刘 领, 王艳芳, 悦飞雪, 等. 基于森林清查资料的河南省森林植被碳储量动态变化. 生态学报, 2019, 39 (3): 864- 873. | |
Liu L, Wang Y F, Yue F X, et al. Dynamic of forest vegetation carbon storage in Henan Province based on forest inventory data. Acta Ecologica Sinica, 2019, 39 (3): 864- 873. | |
刘秀红, 姜春前, 徐 睿, 等. 相容性单木生物量模型估计方法的比较——以青冈栎为例. 林业科学, 2020, 56 (9): 164- 173.
doi: 10.11707/j.1001-7488.20200918 |
|
Liu X H, Jiang C Q, Xu R, et al. Comparison of methods to construct compatible individual tree biomass models: a case study of Cyclobalanopsis glauca. Scientia Silvae Sinicae, 2020, 56 (9): 164- 173.
doi: 10.11707/j.1001-7488.20200918 |
|
彭龙康, 刘励聪, 陈学泓, 等. 遥感影像云检测网络泛化性能研究: 以DeepLabv3+为例. 遥感学报, 2021, 25 (5): 1169- 1186.
doi: 10.11834/jrs.20210061 |
|
Peng L K, Liu L C, Chen X H, et al. Generalization ability of cloud detection network for satellite imagery based on DeepLabv3+. National Remote Sensing Bulletin, 2021, 25 (5): 1169- 1186.
doi: 10.11834/jrs.20210061 |
|
王 姮, 李明诗. 气候变化对森林生态系统的主要影响述评. 南京林业大学学报(自然科学版), 2016, 40 (6): 167- 173. | |
Wang H, Li M S. A review of the major impacts of climate change on forest ecosystems. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40 (6): 167- 173. | |
徐凯健, 曾宏达, 朱小波, 等. 基于五种大气校正的多时相森林碳储量遥感反演研究. 光谱学与光谱分析, 2017, 37 (11): 3493- 3498. | |
Xu K J, Zeng H D, Zhu X B, et al. Evaluation of five commonly used atmospheric correction algorithms for multi-temporal aboveground forest carbon storage estimation. Spectroscopy and Spectral Analysis, 2017, 37 (11): 3493- 3498. | |
薛春泉, 徐期瑚, 林丽平, 等. 广东主要乡土阔叶树种含年龄和胸径的单木生物量模型. 林业科学, 2019, 55 (2): 97- 108.
doi: 10.11707/j.1001-7488.20190210 |
|
Xue C Q, Xu Q H, Lin L P, et al. Biomass models with breast height diameter and age for main native tree species in Guangdong Province. Scientia Silvae Sinicae, 2019, 55 (2): 97- 108.
doi: 10.11707/j.1001-7488.20190210 |
|
曾伟生, 陈新云, 杨学云. 我国人工杨树生物量建模和生产力分析. 林业科学, 2019, 55 (11): 1- 8.
doi: 10.11707/j.1001-7488.20191101 |
|
Zeng W S, Chen X Y, Yang X Y. Biomass modeling and productivity analysis of planted Populus spp. in China. Scientia Silvae Sinicae, 2019, 55 (11): 1- 8.
doi: 10.11707/j.1001-7488.20191101 |
|
曾伟生, 蒲 莹, 杨学云, 等. 我国5种主要人工林乔木层碳储量生长模型及其气候驱动分析. 林业科学, 2023, 59 (3): 21- 30.
doi: 10.11707/j.1001-7488.LYKX20220033 |
|
Zeng W S, Pu Y, Yang X Y, et al. Growth models and its climate-driven analysis of carbon storage in tree layers of five major plantation types in China. Scientia Silvae Sinicae, 2023, 59 (3): 21- 30.
doi: 10.11707/j.1001-7488.LYKX20220033 |
|
曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析. 林业科学研究, 2011, 24 (2): 137- 143. | |
Zeng W S, Tang S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models. Forest Research, 2011, 24 (2): 137- 143. | |
张煜星, 王雪军, 蒲 莹, 等. 1949—2018年中国森林资源碳储量变化研究. 北京林业大学学报, 2021, 43 (5): 1- 14.
doi: 10.12171/j.1000-1522.20200237 |
|
Zhang Y X, Wang X J, Pu Y, et al. Changes in forest resource carbon storage in China between 1949 and 2018. Journal of Beijing Forestry University, 2021, 43 (5): 1- 14.
doi: 10.12171/j.1000-1522.20200237 |
|
赵嘉诚, 李海奎. 杉木单木和林分水平地下生物量模型的构建. 林业科学, 2018, 54 (2): 81- 89.
doi: 10.11707/j.1001-7488.20180209 |
|
Zhao J C, Li H K. Establishment of below-ground biomass equations for Chinese fir at tree and stand level. Scientia Silvae Sinicae, 2018, 54 (2): 81- 89.
doi: 10.11707/j.1001-7488.20180209 |
|
周玉荣, 于振良, 赵士洞. 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 2000, 24 (5): 518- 522.
doi: 10.3321/j.issn:1005-264X.2000.05.002 |
|
Zhou Y R, Yu Z L, Zhao S D. Carbon storage and budget of major Chinese forest types. Acta Phytoecologica Sinica, 2000, 24 (5): 518- 522.
doi: 10.3321/j.issn:1005-264X.2000.05.002 |
|
朱永杰. 2012. 中国省域森林资源碳汇贡献及其补偿问题研究. 北京: 中国林业出版社. | |
Zhu Y J. 2012. The contribution of China’s forest land carrying capacity to the land occupation from fossil energy consumption an provincial level with related ecological composition measures. Beijing: China Forestry Publishing House. [in Chinese] | |
邹 琪, 孙 华, 王广兴, 等. 基于Landsat 8的深圳市森林碳储量遥感反演研究. 西北林学院学报, 2017, 32 (4): 164- 171.
doi: 10.3969/j.issn.1001-7461.2017.04.29 |
|
Zou Q, Sun H, Wang G X, et al. Remote sensing retrieval of forest carbon storage in Shenzhen based on Landsat 8 images. Journal of Northwest Forestry University, 2017, 32 (4): 164- 171.
doi: 10.3969/j.issn.1001-7461.2017.04.29 |
|
Asner G P. Cloud cover in Landsat observations of the Brazilian Amazon. International Journal of Remote Sensing, 2001, 22 (18): 3855- 3862.
doi: 10.1080/01431160010006926 |
|
Avitabile V, Camia A. An assessment of forest biomass maps in Europe using harmonized national statistics and inventory plots. Forest Ecology and Management, 2018, 409, 489- 498.
doi: 10.1016/j.foreco.2017.11.047 |
|
Bi H Q, Turner J, Lambert M J. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees, 2004, 18 (4): 467- 479. | |
Brown S, Swingland I R, Hanbury-Tenison R, et al. 2002. Changes in the use and management of forests for abating carbon emissions: issues and challenges under the Kyoto protocol. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 360(1797): 1593−1605. | |
Chave J, Coomes D, Jansen S, et al. Towards a worldwide wood economics spectrum. Ecology Letters, 2009, 12 (4): 351- 366.
doi: 10.1111/j.1461-0248.2009.01285.x |
|
Daba D E, Soromessa T. The accuracy of species-specific allometric equations for estimating aboveground biomass in tropical moist montane forests: case study of Albizia grandibracteata and Trichilia dregeana. Carbon Balance and Management, 2019, 14 (1): 18.
doi: 10.1186/s13021-019-0134-8 |
|
Dixon R K, Solomon A M, Brown S, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263 (5144): 185- 190.
doi: 10.1126/science.263.5144.185 |
|
Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629 |
|
Hu H F, Wang G G. Changes in forest biomass carbon storage in the south Carolina piedmont between 1936 and 2005. Forest Ecology and Management, 2008, 255 (5/6): 1400- 1408. | |
IPCC. 2003. Good practice guidance for land use, land-use change and forestry /the intergovernmental panel on climate change. IPCC National Greenhouse Gas Inventories Programme Technical Support Unit, Institute for Global Environmental Strategies. | |
Jenkins J C, Birdsey R A, Pan Y D. Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecological Applications, 2001, 11 (4): 1174- 1193.
doi: 10.1890/1051-0761(2001)011[1174:BANEFT]2.0.CO;2 |
|
Jenkins J C, Chojnacky D C, Heath L S, et al. 2004. Comprehensive database of diameter-based biomass regressions for north American tree species. General Technical Report NE-319, U. S. Department of Agriculture Forest Service. | |
Liu J X, Liu S G, Loveland T R. Temporal evolution of carbon budgets of the Appalachian forests in the U. S. from 1972 to 2000. Forest Ecology and Management, 2006, 222 (1/2/3): 191- 201. | |
Liu Q, Gao X B, He L H, et al. Haze removal for a single visible remote sensing image. Signal Processing, 2017, 137, 33- 43.
doi: 10.1016/j.sigpro.2017.01.036 |
|
Lu D S, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 2016, 9 (1): 63- 105.
doi: 10.1080/17538947.2014.990526 |
|
Malhi Y, Meir P, Brown S. 2002. Forests, carbon and global climate. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 360(1797): 1567−1591. | |
Mascaro J, Litton C M, Hughes R F, et al. Minimizing bias in biomass allometry: model selection and log-transformation of data. Biotropica, 2011, 43 (6): 649- 653.
doi: 10.1111/j.1744-7429.2011.00798.x |
|
Parresol B R. Additivity of nonlinear biomass equations. Canadian Journal of Forest Research, 2001, 31 (5): 865- 878.
doi: 10.1139/x00-202 |
|
Pastor J, Post W M. Response of northern forests to CO2-induced climate change. Nature, 1988, 334, 55- 58.
doi: 10.1038/334055a0 |
|
Ploton P, Mortier F, Barbier N, et al. A map of African humid tropical forest aboveground biomass derived from management inventories. Scientific Data, 2020, 7 (1): 221.
doi: 10.1038/s41597-020-0561-0 |
|
Réjou-Méchain M, Tanguy A, Piponiot C, et al. Biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 2017, 8 (9): 1163- 1167.
doi: 10.1111/2041-210X.12753 |
|
Ren H, Chen H, Li Z A, et al. Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in southern China. Plant and Soil, 2010, 327 (1): 279- 291. | |
Repo A, Rajala T, Henttonen H M, et al. Age-dependence of stand biomass in managed boreal forests based on the finnish national forest inventory data. Forest Ecology and Management, 2021, 498, 119507.
doi: 10.1016/j.foreco.2021.119507 |
|
Saint-André L, M’Bou A T, Mabiala A, et al. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. Forest Ecology and Management, 2005, 205 (1/2/3): 199- 214. | |
Soenen S A, Peddle D R, Hall R J, et al. Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain. Remote Sensing of Environment, 2010, 114 (7): 1325- 1337.
doi: 10.1016/j.rse.2009.12.012 |
|
Tang X, Fehrmann L, Guan F, et al. Inventory-based estimation of forest biomass in Shitai County, China: a comparison of five methods. Annals of Forest Research, 2016, 59 (2): 574. | |
Zeng W S, Chen X Y, Yang X Y. Estimating changes of forest carbon storage in China for 70 years (1949—2018). Scientific Reports, 2023, 13 (1): 16864.
doi: 10.1038/s41598-023-44097-4 |
|
Zhang C H, Ju W M, Chen J M, et al. China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Climatic Change, 2013, 118 (3): 933- 948. | |
Zhang Q Z, Wang C K, Wang X C, et al. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management, 2009, 258 (5): 722- 727.
doi: 10.1016/j.foreco.2009.05.009 |
|
Zianis D, Muukkonen P, Mäkipää R, et al. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs, 2005, 4, 1- 63. |
[1] | Meiqi Li,Meiling Liu,Xuan Wang,Xiangnan Liu,Ling Wu,Junji Li. Remote Sensing Recognition Model of Illicium verum Forest Pests and Diseases [J]. Scientia Silvae Sinicae, 2024, 60(11): 128-138. |
[2] | Yuanhao Qi,Zhengyang Hou,Taixun Liu,Qing Xu. Effects of Modeling Assumptions on the Estimation of Stem Volume with Model-Based Inference [J]. Scientia Silvae Sinicae, 2024, 60(9): 111-123. |
[3] | Anqi Mei,Zhengyang Hou,Qing Xu,Fangting Chen,Yuanhao Qi,Dongjin Jia. Rejuvenating the Shelf-Life of Outdated Model and Auxiliary Data for Remote Sensing-Assisted Forest Inventory:Taking Forest Volume as an Example [J]. Scientia Silvae Sinicae, 2024, 60(8): 79-94. |
[4] | Zhongyang Hu,Liang Shan,Xiangyu Chen,Kunyong Yu,Jian Liu. Individual Tree Segmentation of UAV-LiDAR Based on the Combination of CHM and DSM [J]. Scientia Silvae Sinicae, 2024, 60(8): 14-24. |
[5] | Runlu Yang,Juan Wang,Chunyu Zhang. Response of Carbon Storage to Logging Disturbance in Canopy Layer of Natural Secondary Coniferous-Broadleaved Mixed Forest in Northeast China [J]. Scientia Silvae Sinicae, 2024, 60(7): 17-27. |
[6] | Dan Kong,Yong Pang,Xiaojun Liang,Liming Du,Yu Bai. Individual Tree Segmentation from ALS Point Clouds Based on Layers Stacking Algorithm [J]. Scientia Silvae Sinicae, 2024, 60(3): 87-99. |
[7] | Yalin Xie,Xiangdong Lei,Weisheng Zeng. Compilation of Growth and Yield Table for Larch Plantations Based on 3-PGmix Model [J]. Scientia Silvae Sinicae, 2023, 59(12): 87-104. |
[8] | Meng Zhang,Xiuhua Fan,Qingmin Yue,Zhuoxiu Han,Yixin Huang. Effects of Biotic and Abiotic Factors on Productivity of Coniferous and Broad-LeavedMixed Forest in Jiaohe, Jilin Province [J]. Scientia Silvae Sinicae, 2023, 59(12): 71-77. |
[9] | Zexin Guo,Zhongyue Hu,Cong Cao,Ping Liu. Stand-Level Models of Biomass and Carbon Stock for Major Forest Types in Guangdong [J]. Scientia Silvae Sinicae, 2023, 59(12): 37-50. |
[10] | Peidong Yan,Peng Li,Zhangqi Yang,Suili Huang,Yongbin Zhou,Tianwang Ling. Differentiation Characteristics and Their Effects on Productivity with Different Planting Densities of Pinus massoniana Plantations [J]. Scientia Silvae Sinicae, 2023, 59(10): 66-75. |
[11] | Qigang Xu,Xiangdong Lei,Yu Zheng,Xingguo Hu,Yuancai Lei,xiao He. A New Activation Function Based on Richards Equation for Tree Height-Diameter Deep Neural Network Model of Abies nephrolepis [J]. Scientia Silvae Sinicae, 2023, 59(10): 50-56. |
[12] | Long Shisheng, Zeng Siqi, Yang Shengyang. Maximum Density-Size Line for Oak Natural Forest Based on Improved Stand Density Index [J]. Scientia Silvae Sinicae, 2023, 59(9): 13-22. |
[13] | Zhou Xiangbei, Li Chungan, Dai Huabing, Yu Zhu, Li Zhen, Su Kai. Effects of Point Cloud Density on the Estimation Accuracy of Large-Area Subtropical Forest Inventory Attributes Using Airborne LiDAR Data [J]. Scientia Silvae Sinicae, 2023, 59(9): 23-33. |
[14] | Zhang Xin, Zhang Qiuliang, Sun Shoujia, Wang Bing. CO2 Concentration and the δ13C Dynamics in Larix gmelinii Ecosystem in Response to Environmental Factors [J]. Scientia Silvae Sinicae, 2023, 59(9): 55-65. |
[15] | Minghai Yan,Jinchi Wang,Qinglin Huang,Chongyang Zhuang,Qunrui Zheng,Mingxiu Zhuo,Xiaohui Guan. Distribution Law of Tree Height-to-Diameter Ratio in Each Stratum of Typical Natural Broad-Leaved Forest in Mid-Subtropical Zone [J]. Scientia Silvae Sinicae, 2023, 59(4): 149-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||