Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (8): 1-13.doi: 10.11707/j.1001-7488.LYKX20240048
• Technology and application of smart forestry and grassland • Previous Articles Next Articles
Yutian Zhang1,2,3,Junnan Shi2,Huaiqing Zhang1,3,*,Binglun Wu4
Received:
2024-02-18
Online:
2024-08-25
Published:
2024-09-03
Contact:
Huaiqing Zhang
CLC Number:
Yutian Zhang,Junnan Shi,Huaiqing Zhang,Binglun Wu. Spatiotemporal Patterns and Driving Forces of Vegetation Restoration and Degradation in Dongting Lake Wetland[J]. Scientia Silvae Sinicae, 2024, 60(8): 1-13.
Table 1
The definition of relative contribution proportion of each factor to vegetation restoration and degradation"
植被变化Vegetation cover change | CCC | CHA | 气候贡献CCC (%) | 人为贡献CHA (%) |
恢复Restoration (i.e., S > 0) | > 0 | > 0 | ||
> 0 | < 0 | 100 | 0 | |
< 0 | > 0 | 0 | 100 | |
退化Degradation (i.e., S < 0) | < 0 | < 0 | ||
< 0 | > 0 | 100 | 0 | |
> 0 | < 0 | 0 | 100 |
Table 2
Restoration and degradation ratios of different wetland vegetation types in the study area"
湿地植被类型 Wetland vegetation type | 植被变化 Vegetation cover change | 趋势尺度 Trend scale (%) | 季节尺度 Seasonal scale (%) |
芦苇Phragmites communis | 恢复Restoration | 82 | 73 |
退化Degradation | 18 | 27 | |
苔草Cyperus rotundus | 恢复Restoration | 46 | 66 |
退化Degradation | 54 | 34 | |
水稻Oryza sativa | 恢复Restoration | 63 | 61 |
退化Degradation | 37 | 39 | |
森林Forest | 恢复Restoration | 72 | 77 |
退化Degradation | 28 | 23 |
Table 3
Partial correlation coefficients between wetland vegetation types and climatic factors in the study area"
湿地植被类型 Wetland vegetation type | 气候因子 Climatic factors | 趋势尺度 Trend scale | 季节尺度 Seasonal scale |
芦苇Phragmites communis | 温度Temperature | 0.75 | 0.84 |
降水量Precipitation | 0.23 | 0.48 | |
太阳辐射Solar radiation | 0.81 | 0.73 | |
苔草Cyperus rotundus | 温度Temperature | 0.65 | 0.72 |
降水量Precipitation | 0.64 | 0.83 | |
太阳辐射Solar radiation | 0.54 | 0.63 | |
水稻Oryza sativa | 温度Temperature | 0.68 | 0.81 |
降水量Precipitation | ?0.27 | ?0.42 | |
太阳辐射Solar radiation | 0.63 | 0.72 | |
森林Forest | 温度Temperature | 0.78 | 0.80 |
降水量Precipitation | 0.52 | 0.13 | |
太阳辐射Solar radiation | 0.51 | 0.62 |
Table 4
The impact of different climate factors on different wetland vegetation types"
湿地植被类型 Wetland vegetation type | 气候因子 Climatic factors | 趋势尺度 Trend scale/a?1 | 季节尺度 Seasonal scale/a?1 |
芦苇Phragmites communis | 温度Temperature | ||
降水量Precipitation | ? | ? | |
太阳辐射Solar radiation | ? | ||
苔草Cyperus rotundus | 温度Temperature | ||
降水量Precipitation | ? | ? | |
太阳辐射Solar radiation | |||
水稻Oryza sativa | 温度Temperature | ||
降水量Precipitation | ? | ? | |
太阳辐射Solar radiation | ? | ||
森林Forest | 温度Temperature | ||
降水量Precipitation | ? | ? | |
太阳辐射Solar radiation | ? |
Table 5
Relative contribution of climate change and human activities to the restoration of wetland vegetation %"
湿地植被类型 Wetland vegetation type | 影响因Influencing factor | 趋势 尺度 Trend scale | 季节 尺度 Seasonal scale |
芦苇 Phragmites communis | 气候变化Climate change | 42 | 47 |
人类活动Human activities | 58 | 53 | |
苔草Cyperus rotundus | 气候变化Climate change | 44 | 53 |
人类活动Human activities | 56 | 47 | |
水稻Oryza sativa | 气候变化Climate change | 37 | 45 |
人类活动Human activities | 63 | 55 | |
森林Forest | 气候变化Climate change | 46 | 49 |
人类活动Human activities | 54 | 51 | |
平均值(按像元平均) Mean (by pixel) | 气候变化Climate change | 45 | 38 |
人类活动Human activities | 55 | 62 |
Table 6
Relative contribution of climate change and human activities to the degradation of wetland vegetation %"
湿地植被类型 Wetland vegetation type | 影响因Influencing factor | 趋势 尺度 Trend scale | 季节 尺度 Seasonal scale |
芦苇Phragmites communis | 气候变化Climate change | 53 | 59 |
人类活动Human activities | 47 | 41 | |
苔草Cyperus rotundus | 气候变化Climate change | 56 | 77 |
人类活动Human activities | 44 | 23 | |
水稻Oryza sativa | 气候变化Climate change | 62 | 58 |
人类活动Human activities | 38 | 42 | |
森林Forest | 气候变化Climate change | 55 | 52 |
人类活动Human activities | 45 | 48 | |
平均值(按像元平均) Mean (by pixel) | 气候变化Climate change | 53 | 56 |
人类活动Human activities | 47 | 44 |
蔡耀通. 2021. 洞庭湖湿地植被时空变化研究. 长沙: 中南林业科技大学. | |
Cai Y T. 2021. Research on spatiotemporal variation of vegetation in the Dongting Lake wetland. Changsha: Central South University of Forestry & Technology. [in Chinese] | |
江 来, 任树鹏, 郭 欣, 等. 生物炭基人工湿地的水体净化作用及其机制. 环境科学与技术, 2021, 44 (8): 47- 54. | |
Jiang L, Ren S P, Guo X, et al. Efficiency and mechanism of water purification in biochar-based constructed wetland: a review. Environmental Science & Technology, 2021, 44 (8): 47- 54. | |
刘惠良, 刘红峰. 洞庭湖湿地生物多样性保护的价值评估. 中南林业科技大学学报, 2021, 41 (10): 140- 147. | |
Liu H L, Liu H F. Value evaluation of biodiversity conservation in Dongting Lake wetland. Journal of Central South University of Forestry & Technology, 2021, 41 (10): 140- 147. | |
马 莉, 牟长城, 王 彪, 等. 排水造林对温带小兴安岭沼泽湿地碳源/汇的影响. 林业科学, 2017, 53 (10): 1- 12. | |
Ma L, Mu C C, Wang B, et al. Effects of wetland drainage for forestation on carbon source or sink of temperate marshes wetlands in Xiaoxing’an Mountains of China. Scientia Silvae Sinicae, 2017, 53 (10): 1- 12. | |
毛德华, 王宗明, 宋开山, 等. 东北多年冻土区植被NDVI变化及其对气候变化和土地覆被变化的响应. 中国环境科学, 2011, 31 (2): 283- 292. | |
Mao D H, Wang Z M, Song K S, et al. The vegetation NDVI variation and its responses to climate change and LUCC from 1982 to 2006 year in northeast permafrost region. China Environmental Science, 2011, 31 (2): 283- 292. | |
沈圣齐, 李贵波. 探究湿地在生态系统中的作用. 农业与技术, 2019, 39 (23): 124- 126. | |
Shen S Q, Li G B. Explore the role of wetlands in the ecosystem. Agriculture and Technology, 2019, 39 (23): 124- 126. | |
汪学华, 田 昆. 若尔盖湿地研究进展. 西南林业大学学报, 2015, 35 (6): 104- 110. | |
Wang X H, Tian K. Research progress on zoige wetland. Journal of Southwest Forestry University, 2015, 35 (6): 104- 110. | |
韦红波, 李 锐, 杨勤科. 我国植被水土保持功能研究进展. 植物生态学报, 2002, 26 (4): 489- 496. | |
Wei H B, Li R, Yang Q K. Research advances of vegetation effect on soil and water conservation in China. Acta Phytoecologica Sinica, 2002, 26 (4): 489- 496. | |
Cai Y T, Liu S T, Lin H. Monitoring the vegetation dynamics in the Dongting Lake wetland from 2000 to 2019 using the BEAST algorithm based on dense landsat time series. Applied Sciences, 2020, 10 (12): 4209.
doi: 10.3390/app10124209 |
|
Cai Y T, Lin H, Zhang M. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 2019, 64 (11): 2233- 2244.
doi: 10.1016/j.asr.2019.08.042 |
|
Chen C, Park T, Wang X H, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019, 2, 122- 129.
doi: 10.1038/s41893-019-0220-7 |
|
Du X D, Jin X B, Yang X L, et al. Spatial pattern of land use change and its driving force in Jiangsu Province. International Journal of Environmental Research and Public Health, 2014, 11 (3): 3215- 3232.
doi: 10.3390/ijerph110303215 |
|
Gao F, Masek J, Schwaller M, et al. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44 (8): 2207- 2218.
doi: 10.1109/TGRS.2006.872081 |
|
Gong Z N, Zhao S Y, Gu J Z. Correlation analysis between vegetation coverage and climate drought conditions in north China during 2001—2013. Journal of Geographical Sciences, 2017, 27 (2): 143- 160.
doi: 10.1007/s11442-017-1369-5 |
|
Huang S Z, Zheng X D, Ma L, et al. Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM model. Journal of Hydrology, 2020, 584, 124687.
doi: 10.1016/j.jhydrol.2020.124687 |
|
Jiang L L, Jiapaer G, Bao A M, et al. Vegetation dynamics and responses to climate change and human activities in central Asia. The Science of the Total Environment, 2017, 599/600, 967- 980.
doi: 10.1016/j.scitotenv.2017.05.012 |
|
Li X Y, Li X, Fan Z Y, et al. Civil war hinders crop production and threatens food security in Syria. Nature Food, 2022, 3, 38- 46.
doi: 10.1038/s43016-021-00432-4 |
|
Liu W B, Sun F B. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research: Atmospheres, 2016, 121 (14): 8329- 8349.
doi: 10.1002/2016JD025166 |
|
Meng D J, Mo X G. Assessing the effect of climate change on mean annual runoff in the Songhua River Basin, China. Hydrological Processes, 2012, 26 (7): 1050- 1061.
doi: 10.1002/hyp.8180 |
|
Myers-Smith I H, Kerby J T, Phoenix G K, et al. Complexity revealed in the greening of the Arctic. Nature Climate Change, 2020, 10 (2): 106- 117.
doi: 10.1038/s41558-019-0688-1 |
|
Newman M E, McLaren K P, Wilson B S. 2014. Long-term socio-economic and spatial pattern drivers of land cover change in a Caribbean tropical moist forest, the Cockpit Country, Jamaica. Agriculture, Ecosystems & Environment, 186: 185−200. | |
Roderick M L, Rotstayn L D, Farquhar G D, et al. On the attribution of changing pan evaporation. Geophysical Research Letters, 2007, 34 (17): 17403. | |
Schweizer P E, Matlack G R. Factors driving land use change and forest distribution on the coastal plain of Mississippi, USA. Landscape and Urban Planning, 2014, 121, 55- 64.
doi: 10.1016/j.landurbplan.2013.09.003 |
|
Wang S H, Zhang Y G, Ju W M, et al. Temporally corrected long-term satellite solar-induced fluorescence leads to improved estimation of global trends in vegetation photosynthesis during 1995—2018. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 194, 222- 234.
doi: 10.1016/j.isprsjprs.2022.10.018 |
|
Xi Y, Peng S S, Liu G, et al. Trade-off between tree planting and wetland conservation in China. Nature Communications, 2022, 13, 1967.
doi: 10.1038/s41467-022-29616-7 |
|
Yan Y C, Liu X P, Wen Y Y, et al. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecological Indicators, 2019, 103, 542- 553.
doi: 10.1016/j.ecolind.2019.04.020 |
|
Yang H B, Yang D W. Climatic factors influencing changing pan evaporation across China from 1961 to 2001. Journal of Hydrology, 2012, 414/415, 184- 193.
doi: 10.1016/j.jhydrol.2011.10.043 |
|
You G Y, Zhang Y P, Liu Y H, et al. On the attribution of changing pan evaporation in a nature reserve in SW China. Hydrological Processes, 2013, 27 (18): 2676- 2682.
doi: 10.1002/hyp.9394 |
|
Zhang M, Lin H, Long X R, et al. Analyzing the spatiotemporal pattern and driving factors of wetland vegetation changes using 2000—2019 time-series Landsat data. The Science of the Total Environment, 2021, 780, 146615.
doi: 10.1016/j.scitotenv.2021.146615 |
|
Zhao J, Huang S Z, Huang Q, et al. Copula-based abrupt variations detection in the relationship of seasonal vegetation-climate in the Jing River Basin, China. Remote Sensing, 2019, 11 (13): 1628.
doi: 10.3390/rs11131628 |
|
Zhou W, Gang C C, Zhou L, et al. Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecologica, 2014, 55, 86- 96.
doi: 10.1016/j.actao.2013.12.006 |
|
Zhu X L, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 2010, 114 (11): 2610- 2623.
doi: 10.1016/j.rse.2010.05.032 |
|
Zhu X L, Helmer E H, Gao F, et al. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sensing of Environment, 2016, 172, 165- 177.
doi: 10.1016/j.rse.2015.11.016 |
[1] | Jiaojun Zhu,G. Geoff Wang,Huaiqing Zhang,Tian Gao. On the Research of Climate-Smart Forestry [J]. Scientia Silvae Sinicae, 2024, 60(7): 1-7. |
[2] | Zhao Zhuqi, Hu Zhenhong, He Xian, Huang Zhiqun. Research Progresses on the Dynamics of Microbial Community Establishment in Woody Debris [J]. Scientia Silvae Sinicae, 2024, 60(2): 106-117. |
[3] | Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau [J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77. |
[4] | Xuelei Wei,Guogang Zhang,Ru Jia,Yunrui Ji,Hongying Xu,Zeyu Yang,Huajin Liu,Yulin Liu,Peiyu Yang. Variation of Waterbird Diversity and Its Affecting Factors in Xingkai Lake, Heilongjiang Province [J]. Scientia Silvae Sinicae, 2023, 59(6): 118-129. |
[5] | Ya Wang,Junhui Wang,Fude Wang,Yifu Liu,Cancan Tan,Yanchao Yuan,Wen Nie,Jianfeng Liu,Ermei Chang,Zirui Jia. Simulation of Suitable Distribution Areas of Picea koraiensis in China Since the Last Interglacial and Under Future Climate Scenarios [J]. Scientia Silvae Sinicae, 2023, 59(12): 1-12. |
[6] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[7] | Liqing Si,Mingyu Wang,Feng Chen,Lifu Shu,Fengjun Zhao,Weike Li. Distribution Characteristics of Lightning and the Warning of Lightning-Caused Forest Fires [J]. Scientia Silvae Sinicae, 2023, 59(10): 1-8. |
[8] | Aijun Wang,Dongye Lu,Guosheng Zhang,Haiguang Huang,Ying Wang,Sileng Hu,Min Ao. Potential Distribution of Juniperus sabina under Climate Change in Eurasia Continent Based on MaxEnt Model [J]. Scientia Silvae Sinicae, 2021, 57(8): 43-55. |
[9] | Rui Bai,Ning Li,Shaojun Liu,Xiaomin Chen,Haiping Zou,Run Lü. Risk Analysis of White Root Disease on Rubber Trees in China under the Background of Future Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 37-45. |
[10] | Guanghua Zhao,Xinyue Cui,Zhi Wang,Hongli Jing,Baoguo Fan. Prediction of Potential Distribution of Ziziphus jujuba var. spinosa in China under Context of Climate Change [J]. Scientia Silvae Sinicae, 2021, 57(6): 158-168. |
[11] | Hongqun Li,Peishi Han,Changhui Niu,Xiaoqing Yuan,Ligang Xing. Impact of Climate Change on the Potential Habitat of Brown-Eared Pheasant (Crossoptilon mantchuricum), An Endemic and Endangered Animals to China [J]. Scientia Silvae Sinicae, 2021, 57(10): 102-110. |
[12] | Jinying Xie,Lixia Ding,Zhihui Wang,Lijuan Liu. Classification of Coastal Wetland Vegetation Utilizing FCN and Object-Oriented Methods [J]. Scientia Silvae Sinicae, 2020, 56(8): 98-106. |
[13] | Jian Yu,Jiajia Chen,Guang Zhou,Guohua Liu,Yongping Wang,Junqing Li,Qijing Liu. Response of Radial Growth of Abies forrestii and Picea likiangensis to Climate Factors in the Central Hengduan Mountains, Southwest China [J]. Scientia Silvae Sinicae, 2020, 56(12): 28-38. |
[14] | Tiantian Pan,Yan Li,Zhongyuan Wang,Shitong Lu,Linfeng Ye,Sen Chen,Jiangbo Xie. Relationship between the Hydraulic Function and the Anatomical Structure of Branch and Root Xylem in Three Taxodiaceae Species in Humid Area [J]. Scientia Silvae Sinicae, 2020, 56(12): 49-59. |
[15] | Li Yacang, Feng Zhongke. Developing a System Climate Sensitive Biomass Compatible Equations for Masson Pine [J]. Scientia Silvae Sinicae, 2019, 55(5): 65-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||