Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (6): 36-47.doi: 10.11707/j.1001-7488.LYKX20220701
Previous Articles Next Articles
Wanqin Shu1,3(),Guangcai Chen1,Jiwu Cao3,Shufeng Wang1,2,*(
)
Received:
2022-10-19
Online:
2023-06-25
Published:
2023-08-08
Contact:
Shufeng Wang
E-mail:shuwanqin2022@163.com;wangshufeng6609@163.com
CLC Number:
Wanqin Shu,Guangcai Chen,Jiwu Cao,Shufeng Wang. Cadmium Stress-Induced Variation in Ionome in Different Tissues of Salix integra and Its Impact on Cadmium Transport[J]. Scientia Silvae Sinicae, 2023, 59(6): 36-47.
Fig.5
Correlation analysis of 12 elements in different tissues of S.integra A: Leaf; B: New branch; C: Cutting; D: Root. Red solid line: positive correlation (P<0.05); Green dashed line: significant negative correlation(P<0.05); Solid line: positive correlation; Dashed line: negative correlation."
Fig.7
Effect of nutrient transport capacity of different tissues on Cd transport in S.interga TF represents translocation factor; cutting, new branch and leaf represent the translocation from root to these diffenent aboveground tissues; the positive values in X-axis respresents positive impact on TF of Cd, and the negative values in X-axis respresents negative impact on TF of Cd. "***", "**", and "*" indicate P<0.001, P<0.01, and P<0.05, respectively."
安婷婷, 黄 帝, 王 浩, 等. 植物响应镉胁迫的生理生化机制研究进展. 植物学报, 2021, 56 (3): 347- 362. | |
An T T, Huang D, Wang H, et al. Research advances in plant physiological and biochemical mechanisms in response to cadmium stress. Chinese Bulletin of Botany, 2021, 56 (3): 347- 362. | |
陈久耿, 晁代印. 2014. 矿质元素互作及重金属污染的研究进展. 植物生理学报, 50(5): 585–590. | |
Chen J G, Chao D Y. 2014. Advances in mineral element interactions and heavy metal pollution, Plant Physiology Journal, 50(5): 585–590.[in Chinese] | |
杜文琪. 2018. 外源镁对镉在稻田系统中生物有效性与转运累积的影响. 长沙: 中南林业科技大学. | |
Du W Q. 2018. Effects exogenous magnesium on bioavailability, transportation and accumulation of cadmium in rice-soil systems. Changsha: Central South University of Forestry and Technology.[in Chinese] | |
顾天宇, 龚韵秋, 张国斌, 等. 2020. 植被宏离子组分析方法的建立及重金属污染的监测应用. 植物生理学报, 56(3): 583–589. | |
Gu T Y, Gong Y Q, Zhang G B, et al, 2020. Development and application of the meta-ionomic assay to identify heavy metal pollution. Plant Physiology Journal, 56(3): 583–589.[in Chinese] | |
何小林, 关美艳, 范士凯, 等. 矿质营养元素阻控植物镉积累: 从机制到应用. 浙江大学学报(农业与生命科学版), 2017, 43 (6): 747- 756. | |
He X L, Guan M Y, Fan S K, et al. Prevention of cadmium accumulation in plants by mineral nutrients: from mechanisms to applications. Journal of Zhejiang University (Agric. & Life Sci. ), 2017, 43 (6): 747- 756. | |
赖金龙. 2021. 甘薯块根对铀/镉吸收、转运、微区分布及逆境生理响应机制. 绵阳: 西南科技大学. | |
Lai J L. 2021. Uptake, transport, distribution and physiological response mechanism of sweet potato to U & Cd contamination. Mianyang: Southwest University of Science and Technology.[in Chinese] | |
刘 畅, 徐应明, 黄青青, 等. 不同冬小麦品种镉富集转运及离子组特征差异. 环境科学, 2022, 43 (3): 1596- 1605.
doi: 10.13227/j.hjkx.202107062 |
|
Liu C, Xu Y M, Huang Q Q, et al. Variations in cadmium accumulation and transport and ionomic traits among different winter wheat varieties. Environmental Science, 2022, 43 (3): 1596- 1605.
doi: 10.13227/j.hjkx.202107062 |
|
尚二萍, 许尔琪, 张红旗, 等. 中国粮食主产区耕地土壤重金属时空变化与污染源分析. 环境科学, 2018, 39 (10): 4670- 4683.
doi: 10.13227/j.hjkx.201802139 |
|
Shang E P, Xu E Q, Zhang H Q, et al. Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China. Environmental Science, 2018, 39 (10): 4670- 4683.
doi: 10.13227/j.hjkx.201802139 |
|
沙之敏, 赵 峥, 卢琳芳, 等. 2017. 植物离子组学研究进展. 植物营养与肥料学报, 23(5): 1370–1377. | |
Sha Z M, Zhao Z, Lu L F, et al. Research progress on ionomics of plants. Journal of Plant Nutrition and Fertilizer, 23(5): 1370–1377.[in Chinese] | |
舒婉钦, 陈光才, 王树凤, 等. 杞柳4个品种Cd的亚细胞分布、化学形态及其对Cd转运的影响. 植物生理学报, 2022, 58 (9): 1766- 1778. | |
Shu W Q, Chen G C, Wang S F, et al. Subcellular distribution, chemical forms of cadmium and the effects on cadmium transportation in four cultivars of Salix integra . Plant Physiology Journal, 2022, 58 (9): 1766- 1778. | |
唐铎腾, 周 荣, 张 胜. 2017. 雌雄青杨幼苗对磷缺乏差异响应的离子组学研究. 山地学报, 35(5): 669–676. | |
Tang Y T, Zhou R, Zhang S, et al. 2017. Ionomic study on Populus Cathayana males and females responding to phosphorus deficiency. Mountain Reseaech, 35(5): 669–676.[in Chinese] | |
万雪琴, 张 帆, 夏新莉, 等. 镉胁迫对杨树矿质营养吸收和分配的影响. 林业科学, 2009, 45 (7): 45- 51.
doi: 10.3321/j.issn:1001-7488.2009.07.008 |
|
Wan X Q, Zhang F, Xia X L, et al. Effects of cadmium stress on absorption and distribution of mineral nutrients in poplar plants. Scientia Silvae Sinicaes, 2009, 45 (7): 45- 51.
doi: 10.3321/j.issn:1001-7488.2009.07.008 |
|
王雯雯, 叶如梦. 2020. 磷对旱柳生长特性及富集重金属Cd能力的影响. 环境科学与技术, 43(S2): 79-86. | |
Wang W W, Ye R M. 2020. The Effects of Phosphorus on the growth characteristics and Cd accumulation of Salix matsudana under Cd stress, Environmental Science & Technology, 43(S2): 79-86.[in Chinese] | |
杨卫东, 陈益泰, 王树凤. 2009. 镉胁迫对旱柳矿质营养吸收的影响. 林业科学研究, 22(4): 618–623. | |
Yang W D, Chen Y T, Wang S F. 2009. Effects of cadmium stree on mineral nutrient uptake of Salix matsudana. Forest Research, 22(4): 618–623.[in Chinese] | |
杨晓荣, 黄永春, 刘仲齐, 等. 2019. 叶面喷施二巯基丁二酸对晚稻籽粒镉及矿质元素含量的影响. 农业环境科学学报, 38(8): 1802–1808. | |
Yang X R, Huang Y C, Liu Z Q, et al. Foliar application of DMSA: Effects on Cd and other mineral elements in rice grains. Journal of Agro-Environment Science, 38(8): 1802-1808.[in Chinese] | |
张然然, 张 鹏, 都韶婷. 2016. 镉毒害下植物氧化胁迫发生及其信号调控机制的研究进展. 应用生态学报, 27(3): 981–992. | |
Zhang R R, Zhang P, Du S T, et al. 2016. Oxidative stress-related signals and their regulation under Cd stress: a review. Chinese Journal of Applied Ecology, 27( 3) : 981-992.[in Chinese] | |
Baxter I. 2015. Should we treat the ionome as a combination of individual elements, or should we be deriving novel combined traits? Journal of Experimental Botany 66(8): 2127–2131. | |
Baxter I, Dilkes B P. 2012a. Elemental profiles reflect plant adaptations to the environment. Science, 336: 1661–1663. | |
Baxter I, Hermans C, Lahner B, et al. 2012b. Biodiversity of mineral nutrient and trace element accumulation in Arabidopsis thaliana. PLoS ONE, 7(4): e35121. | |
Borišev M, Pajević S, Nikolić N, et al. 2016. Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. International Journal of Phytoremediation. 18(2): 164–170. | |
Brown S L, Chaney R L, Angle J S, et al. Phytoremediation potential of Thlaspi Caerulescens and Bladder Campion for Zinc- and Cadmium-contaminated soil. Journal of Environmental Quality, 1994, 23 (6): 1151- 1157. | |
Cao Y Q, Ye S C, Yao X H, et al. 2019. Leaf ionome to predict the physiological status of nitrogen, phosphorous, and potassium in Camellia oleifera. Pakistan Journal of Botany, 51(4): 1349-1355. | |
Chen Z, Watanabe T, Shinano T, et al. Element interconnections in Lotus japonicus: a systematic study of the effects of element additions on different natural variants . Soil Science and Plant Nutrition, 2009, 55 (1): 91- 101.
doi: 10.1111/j.1747-0765.2008.00311.x |
|
Chu Q N, Watanabe T, Sha Z, et al. 2015. Interactions between Cs, Sr and other nutrient and trace element accumulation in Amaranthus shoot in response to variety effect. Journal of Agricultural and Food Chemistry, 2355-2363. | |
De Maria S, Rivelli A R, Kuffner M, et al. Interactions between accumulation of trace elements and macronutrients in Salix caprea after inoculation with rhizosphere microorganisms . Chemosphere, 2011, 84 (9): 1256- 1261.
doi: 10.1016/j.chemosphere.2011.05.002 |
|
Fan T T, Yang L B, Wu X, et al. 2016. The PSE1 gene modulates lead tolerance in Arabidopsis. Journal of Experimental Botany, 67(15): 4685–4695. | |
Feng X M, Han L, Chao D Y, et al. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. Journal of Hazardous Materials, 2017, 331, 246- 256.
doi: 10.1016/j.jhazmat.2017.02.041 |
|
Han X J, Zhang Y X, Yu M, et al. Transporters and ascorbate–glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes. Tree Physiology, 2020, 40 (8): 1126- 1142.
doi: 10.1093/treephys/tpaa029 |
|
Hoefer C, Santner J, Puschenreiter M, et al. Localized metal solubilization in the rhizosphere of Salix smithiana upon sulfur application . Environmental Science & Technology, 2015, 49 (7): 4522- 4529. | |
Kong X S, Zhao Y X, Tian K, et al. Insight into nitrogen and phosphorus enrichment on cadmium phytoextraction of hydroponically grown Salix matsudana Koidz cuttings . Environmental Science and Pollution Research, 2020, 27 (8): 8406- 8417.
doi: 10.1007/s11356-019-07499-4 |
|
Lahner B, Gong J, Mahmoudian M, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana . Nat Biotechnol, 2003, 21 (10): 1215- 1221.
doi: 10.1038/nbt865 |
|
Leitenmaier B, Küpper H. 2013. Compartmentation and complexation of metals in hyperaccumulator plants. Frontiers in Plant Science, https://doi.org/10.3389/fpls.2013.00374 | |
Li J J, Zhao X Q, Wang J L, et al. Strategies of cadmium and copper uptake and translocation in different plant species growing near an E-waste dismantling site at Wenling, China. Environmental Science and Pollution Research, 2021, 28 (44): 62562- 62571.
doi: 10.1007/s11356-021-15072-1 |
|
Liu J G, Liang J S, Li K Q, et al. 2003. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, Environmental and Public Health Management, 52(9): 1467–1473. | |
Lowry D B, Sheng C C, Zhu Z, et al. Mapping of ionomic traits in mimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PLoS ONE, 2012, 7 (1): e30730.
doi: 10.1371/journal.pone.0030730 |
|
Maestri M, Pietrini F, Maestri E, et al. 2011. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiology, 31(12): 1319-1934 | |
Mleczek M, Kozłowska M, Kaczmarek Z, et al. Cadmium and lead uptake by Salix viminalis under modified Ca/Mg ratio . Ecotoxicology, 2011, 20 (1): 158- 165.
doi: 10.1007/s10646-010-0567-z |
|
Niron H, Barlas N, Salih B, et al. 2020. Comparative transcriptome, metabolome, and ionome analysis of two contrasting common bean genotypes in saline conditions. Frontiers in Plant Science, 11: 599501. | |
Oropeza-Aburto A, Cruz-Ramírez A, Acevedo-Hernández G J, et al. 2012. Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element. Journal of Experimental Botany, 63(5): 2189–2202. | |
Przedpełska-Wąsowicz E, Polatajko A, Wierzbicka M. 2012. The influence of Cadmium stress on the content of mineral nutrients and metal-binding proteins in Arabidopsis halleri. Water Air Soil Pollut, 223(8): 5445–5458. | |
Qin S Y, Liu H G, Nie Z J, et al. Toxicity of cadmium and its competition with mineral nutrients for uptake by plants: a review. Pedosphere, 2020, 30 (2): 168- 180.
doi: 10.1016/S1002-0160(20)60002-9 |
|
Qin X M, Xia Y T, Hu C X, et al. Ionomics analysis provides new insights into the co-enrichment of cadmium and zinc in wheat grains. Ecotoxicology and Environmental Safety, 2021, 223, 112623.
doi: 10.1016/j.ecoenv.2021.112623 |
|
Riaz M, Kamran M, Rizwan M, et al. Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere, 2021, 273, 129690.
doi: 10.1016/j.chemosphere.2021.129690 |
|
Salt D E, Baxter I, Lahner B. 2008. Ionomics and the study of the plantionome. Annual Review of Plant Biology, 59(1): 709–733. | |
Seshadri B, Bolan N S, Wijesekara H, et al. Phosphorus–cadmium interactions in paddy soils. Geoderma, 2016, 270, 43- 59.
doi: 10.1016/j.geoderma.2015.11.029 |
|
Singh U M, Sareen P, Sengar R S, et al. Plant ionomics: a newer approach to study mineral transport and its regulation. Acta Physiologiae Plantarum, 2013, 35 (9): 2641- 2653.
doi: 10.1007/s11738-013-1316-8 |
|
Teles V L G, Sousa G V, Modolo L V, et al. 2022. Ionomic responses of hydroponic-grown basil ( Ocimum basilicum L. ) to cadmium long-time exposure. Metallomics, 14(5): 23. | |
Wang L, Ji B, Hu Y H, et al. 2017. A review on in situ phytoremediation of mine tailings. Chemosphere, 184: 594–600. | |
Wang S F, Shi X, Salam M M A, et al. Integrated study on subcellular localization and chemical speciation of Pb reveals root strategies for Pb sequestration and detoxification in Salix integra . Plant and Soil, 2021, 467 (1/2): 197- 211.
doi: 10.1007/s11104-021-05045-1 |
|
Wang S F, Shi X, Sun H J, et al. 2014. Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with Lead. PLoS ONE, 9(9): e108568. | |
Xia Z H, Zhang S, Cao Y, et al. 2019. Remediation of cadmium, lead and zinc in contaminated soil with CETSA and MA/AA. Journal of Hazardous Materials, 366, 177–183. | |
Yamashita H, Fukuda Y, Yonezawa S, et al. 2020. Tissue ionome response to rhizosphere pH and aluminum in tea plants (Camellia sinensis L.), a species adapted to acidic soils. Plant-Environment Interactions, 1(2): 152–164. | |
Zhang Y F, Wang Y, Ding Z T, et al. 2017. Zinc stress affects ionome and metabolome in tea plants. Plant Physiology and Biochemistry, 111: 318–328. | |
Zeng P, Guo Z H, Xiao X Y, et al. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L . in cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 2020, 189, 109973.
doi: 10.1016/j.ecoenv.2019.109973 |
[1] | Yijun Yin,Yunfei Mao,Lu Yang,Lulu Zhang,Yanli Hu,Zhiquan Mao,Xuesen Chen,Xiang Shen. Effects of Aerated Irrigation on the Growth and Rhizosphere Soil of Malus hupehensis [J]. Scientia Silvae Sinicae, 2021, 57(10): 59-70. |
[2] | Jihai Zhou,Kun Cheng,Ruru Gao,Honglang Duan,Haiyan Pu,Zhinong Jin. Photosynthesis and Other Physiological Characteristics of Cinnamomum camphora Seedlings under Cadmium Stress [J]. Scientia Silvae Sinicae, 2020, 56(6): 193-201. |
[3] | Liu Xiumei, Zhang Zhihao, Wang Qian, Ling Chunhui, Wei Ye, Yan Pan, Meng Shiyuan, Zhu Hong, Wang Huatian. Effect of Magnetic Treatment on Ascorbate-glutathione cycle and the Level of Endogenous Hormone in Populus×euramericana ‘Neva’ under Cadmium Stress [J]. Scientia Silvae Sinicae, 2019, 55(9): 81-91. |
[4] | Aiyun Song,Linshui Dong,Jixiang Chen,Ling Peng,Jingtao Liu,Jiangbao Xia,Yinping Chen. Comparation of Seasonal Dynamics of Mineral Elements Contents in Different Organs of Male and Female Plants of Fraxinus velutina [J]. Scientia Silvae Sinicae, 2019, 55(10): 162-170. |
[5] | Yang Sheng, Hao Guowei, Zhang Xiaowei, Bai Mudan, Li Kai, Shi Meijuan, Cheng Peihong, Guo Huangping, Li Liulin. Effects of Mineral Nutrition on Formation of Wizened Bud in ‘Yuluxiangli’ Pear [J]. Scientia Silvae Sinicae, 2016, 52(2): 127-133. |
[6] | Ouyang Fangqun, Wang Junhui, Jia Zirui, Li Yue, Zhong Yongfang, Qi Shengxiu. Effects of Supplemental Light on Biomass and Mineral Element Content of Seedlings From Nine Families in Picea crassifolia [J]. Scientia Silvae Sinicae, 2014, 50(11): 188-196. |
[7] | Ren Yanjun;Ma Jianjun;Zhang Libin;Du Bin;Yu Fengming. Relationship between Leaf Epidermal Micro-Morphology and Stomata Indices and Mineral Elements Content Variations in Leaves and Fruits of Cerasus humilis [J]. Scientia Silvae Sinicae, 2012, 48(4): 133-137. |
[8] | Hu Zhiwei;Li Baoguo;Qi Guohui;Guo Suping;Zhang Xuemei;Dong Lixin;Li Jie. Changes of Main Mineral Elements Content in Leaves and Fruits During the Kernel-Filling Period of "Lüling"Walnut [J]. Scientia Silvae Sinicae, 2011, 47(8): 82-87. |
[9] | Wan Xueqin;Zhang Fan;Xia Xinli;Yin Weilun. Effects of Cadmium Stress on Absorption and Distribution of Mineral Nutrients in Poplar Plants [J]. Scientia Silvae Sinicae, 2009, 12(7): 45-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||