Scientia Silvae Sinicae ›› 2023, Vol. 59 ›› Issue (2): 10-21.doi: 10.11707/j.1001-7488.LYKX20210639
• • Previous Articles Next Articles
Shikui Zhao1,2,Jinping Guo1,*,Yunxiang Zhang1
Received:
2020-08-24
Online:
2023-02-25
Published:
2023-04-27
Contact:
Jinping Guo
CLC Number:
Shikui Zhao,Jinping Guo,Yunxiang Zhang. Responses of Root Respiration to Woodland Warming during Growing Season in Succession Series of Natural Secondary Forest in Warm-Temperate Mountain[J]. Scientia Silvae Sinicae, 2023, 59(2): 10-21.
Table 1
Site conditions and tree growth characters of the sample plots"
林型 Forest type | 地点 Location | 海拔 Altitude/m | 坡向 Slope aspect | 土壤 类型 Soil type | 郁闭度 Canopy closure (%) | 枯落物 干质量 Dried litter weight/ (t·hm ?2) | 平均胸径 Mean DBH/cm | 林龄 Stand age/a | 林分密度 Stand density/ hm?2 | 平均树高 Mean tree height/m | 草本盖度 Herb coverage (%) |
PM | 神尾沟Shenweigou +柴禄沟Chailugou | 2 130.1±290.2 | 阴坡Shady slope | 棕壤Brown loam | 74.4±8.2a | 28.80±9.09a | 29.56±17.05a | 61±1a | 648±78b | 16.3±4.8a | 19.7±9.2b |
LP | 神尾沟Shenweigou +柴禄沟Chailugou | 2 001.2±34.3 | 阴坡Shady slope | 棕壤 Brown loam | 67.2±15.5a | 30.10±8.37a | 26.78±18.58b | 56±9b | 657±69b | 155±5.9b | 21.4±8.4b |
PT | 神尾沟Shenweigou | 1 900.8±48.9 | 阴坡 Shady slope | 棕壤 Brown loam | 65.3±9.1a | 33.93±10.20a | 26.22±18.89b | 58±4b | 681±74b | 17.7±6.3a | 20.4±9.3b |
PB | 八道沟Badaogou | 1 800.5±57.1 | 阴坡 Shady slope | 棕壤Brown loam | 66.3±9.1a | 32.60±7.90a | 25.28±14.45b | 52±4b | 721±80a | 17.5±3.9a | 29.4±8.2a |
Table 2
Experimental design of root respiration"
处理Treatment | 去根处理方法Method of root removal | 土壤呼吸含义Meaning of soil respiration | 增温处理Warming treatment |
A | 保留乔木、灌木和草本根系With all plant roots | 对照 CK | 搭拱棚/露地Arched shed/open ground |
B | 去除乔木根系,保留灌木和草本根系Remove tree roots only | 无乔木根系呼吸No tree root respiration | 搭拱棚/露地Arched shed/open ground |
C | 去除乔木和草本根系,保留灌木根系Remove roots of tree and herbs,and retain roots of shrubs | 无乔木和草本根系呼吸No root respiration of trees and herbs | 搭拱棚/露地Arched shed/open ground |
D | 去除乔木、灌木和草本根系Remove all plant roots | 无所有植物根系呼吸No plant root respiration | 搭拱棚/露地Arched shed/open ground |
Table 3
Experimental design of fine root biomass in 0?20 cm soil layer"
处理号 Treatment numbers | 去根处理 Method of root removal | 土壤细根根系组成 Composition of fine root system in soil | 增温处理 Warming treatment |
A | 保留乔木、灌木和草本根系 With roots of trees, shrubs and herbs | 乔、灌、草根系 Roots of trees, shrubs, and herbs | 搭拱棚/露地 Arched shed/open ground |
B | 去除乔木根系,保留灌木和草本根系 Remove roots of trees only | 灌木和草本根系 Roots of shrubs and herbs | 搭拱棚/露地 Arched shed/open ground |
C | 去除草本根系+乔木根系,保留灌木根系 Remove roots of herbs and trees | 灌木根系 Roots of shrubs | 搭拱棚/露地 Arched shed/open ground |
Table 4
Comparison of fine root biomass under warming and control treatments g·m?3"
根系组成 Roots composition | 处理 Treatment | 林型 Forest type | |||
PB | PT | LP | PM | ||
乔木层根系 | CK | 1.83±0.19a | 1.82±0.16a | 1.81±0.19a | 1.76±0.18a |
Roots of trees | 增温Warming | 1.88±0.19a | 1.84±0.17a | 1.82±0.19a | 1.77±0.17a |
灌木层根系 | CK | 1.23±0.10a | 1.12±0.14a | 1.11±0.11a | 1.06±0.09b |
Roots of shrubs | 增温Warming | 1.28±1.11a | 1.14±0.10a | 1.13±0.10a | 1.09±0.10b* |
草本层根系 | CK | 0.55±0.06a | 0.52±0.04a | 0.51±0.05a | 0.39±0.3b |
Roots of herbs | 增温Warming | 0.61±0.07a* | 0.57±0.05a* | 0.58±0.06a* | 0.49±0.4a * |
总根系 | CK | 3.61±0.33a | 3.46±0.30a | 3.44±0.29a | 3.11±0.54b |
Total roots | 增温Warming | 3.77±0.40a | 3.55±0.41a | 3.53±0.38a | 3.35±0.42b |
Table 5
Comparison of soil root respiration rate and its carbon flux under warming and control treatments"
项目 Item | 处理 Treatment | 林型 Forest type | |||
PB | PT | LP | PM | ||
生长季月份碳通量 | CK | 412.55±52.11a | 406.10±41.00a | 359.65±40.11b | 351.52±36.10b |
Monthly carbon flux/(t· hm?2m?1) | 增温Warming | 446.20±45.00a | 440.38±39.69a | 389.03±39.99b | 381.42±38.00b |
根系总呼吸速率 | CK | 1.32±0.13a | 1.30±0.12a | 1.15±0.11b | 1.12±0.10b |
Rate of total root respiration/(μmol·m?2s?1) | 增温Warming | 1.43±0.15a* | 1.41±0.15a* | 1.25±0.14a* | 1.22±0.13a* |
Fig.3
Comparison of root respiration rates of tree layer(A), shrub layer(B) and herb layer(C) under warming (W) and control (CK) treatments Under the same treatment, different letters represented significant difference between forest types; $* $ indicated significant different between temperature treatment and CK at P<0.05 . The same below."
Table 6
Comparison of Q10 value of root respiration rate under warming and control treatments"
处理Treatmeat | 乔木层 Treer layer | 灌木层 Shrub layer | 草本层 Herb layer | |||||||||||
PB | PT | LP | PM | PB | PT | LP | PM | PB | PT | LP | PM | |||
对照CK | 2.26±1.20b | 2.36±1.01b | 2.55±0.89a | 2.64±0.99a | 2.33±1.23c | 2.39±0.899c | 2.58±1.25b | 2.87±1.07a | 2.36±1.89c | 2.49±0.89c | 2.87±1.53b | 3.24±1.63a | ||
增温Warming | 2.16±0.99b | 2.19±1.25b | 2.53±1.69a | 2.45±1.27a | 2.22±0.89c | 2.29±1.25c | 2.51±1.31b | 2.69±1.02a | 2.19±1.23c | 2.39±1.48c | 2.81±1.84b | 2.99±1.23a |
Table 7
Effects of warming, succession and their interaction on root respiration rate"
土壤呼吸类型Soil respiration type | 增温Warming | 演替Succession | 增温×演替Warming×Succession |
Rta | 0.012* | 0.034* | 0.045* |
Rra | 0.082 | 0.043* | 0.097 |
Rrs | 0.012* | 0.013* | 0.032* |
Rrh | 0.021* | 0.051* | 0.024* |
Rta /RtQ10(Rta)Q10(Rra)Q10 (Rrh)Q10(Rrs) | 0.0610.1530.9930.1010.214 | 0.045*0.0820.6810.041*0.069 | 0.1090.048*0.5590.038*0.291 |
白秀梅, 韩有志, 郭汉清 庞泉沟自然保护区典型森林土壤大团聚体特征. 生态学报, 2014, 34 (7): 1654- 1662. | |
Bai X M, Han Y Z, Guo H Q Characteristics of soil macroaggregates under typical forests in Pangquangou Nature Reserve. Acta Ecologica Sinica, 2014, 34 (7): 1654- 1662. | |
陈 平, 赵 博, 闫子超, 等 太岳山油松人工林土壤呼吸对模拟氮沉降的短期响应. 生态学报, 2018, 38 (22): 8184- 8193. | |
Chen P, Zhao B, Yan Z C, et al Short- term response of soil respiration to simulated nitrogen deposition in a Pinus tabulaeformis plantation on Taiyue Mountain, China . Acta Ecologica Sinica, 2018, 38 (22): 8184- 8193. | |
陈仕东, 刘小飞, 熊德成, 等 持续性主动增温对中亚热带森林土壤呼吸影响研究初报. 亚热带资源与环境学报, 2013, 8 (4): 1- 8.
doi: 10.3969/j.issn.1673-7105.2013.04.001 |
|
Chen S D, Liu X F, Xong D C, et al A preliminary study on effects of continuous active warming on soil respiration rates in central sub-tropical forests. Journal of Subtropical Resources and Environment, 2013, 8 (4): 1- 8.
doi: 10.3969/j.issn.1673-7105.2013.04.001 |
|
程 严, 列志旸, 刘旭军, 等 增温对南亚热带针阔叶混交林凋落物分解酶活性的影响. 应用与环境生物学报, 2021, 27 (4): 923- 929.
doi: 10.19675/j.cnki.1006-687x.2020.10024 |
|
Cheng Y, Li Z Y, Liu X J, et al Effects of warming on litter-decomposition enzyme activities in coniferous broad-leaved mixed forest in south subtropical China. Chinese Journal of Applied & Environmental Biology, 2021, 27 (4): 923- 929.
doi: 10.19675/j.cnki.1006-687x.2020.10024 |
|
段北星, 蔡体久, 宋 浩, 等 寒温带兴安落叶松林凋落物层对土壤呼吸的影响. 生态学报, 2020, 40 (4): 1357- 1366. | |
Duan B X, Cai T J, Song H, et al Effect of soil Iittalfall on soil respiration in cold-temperate Larch forest. Acta Ecologica Sinica, 2020, 40 (4): 1357- 1366. | |
高润梅, 郭晋平 文峪河上游河岸林的演替分析与预测. 生态学报, 2010, 30 (6): 1564- 1572. | |
Gao R M, Guo J P Succession andprediction of the riparianforest inupper-reachof Wenyuhe Watershed. Acta Ecologica Sinica, 2010, 30 (6): 1564- 1572. | |
高一飞, 张 静, 唐旭利, 等 亚热带马尾松林恢复过程中物种丰富度及生物量变化. 生态环境学报, 2016, 25 (1): 22- 29.
doi: 10.16258/j.cnki.1674-5906.2016.01.004 |
|
Gao Y F, Zhang J, Tang X L, et al Variation of biomass and species richness in subtropical forest based on Pinus massoniana succession . Ecology and Environmental Sciences, 2016, 25 (1): 22- 29.
doi: 10.16258/j.cnki.1674-5906.2016.01.004 |
|
耿兆鹏, 毛子军, 黄 唯, 等 小兴安岭原始阔叶红松林与枫桦次生林土壤呼吸及其各组分特征的比较研究. 植物研究, 2017, 37 (2): 312- 320.
doi: 10.7525/j.issn.1673-5102.2017.02.021 |
|
Geng Z P, Mao Z J, Huang W, et al Comparative study on the soil respiration and component characteristics of primary broad- leaved Korean pine forest and Betula costata secondary forest in Xiaoxing’ an Mountatins, China . Bulletin of Botanical Research, 2017, 37 (2): 312- 320.
doi: 10.7525/j.issn.1673-5102.2017.02.021 |
|
黄 唯, 毛子军, 韩营营, 等 小兴安岭地区枫桦次生林与原始阔叶红松林土壤呼吸和地下碳分配. 植物研究, 2015, 35 (3): 384- 390.
doi: 10.7525/j.issn.1673-5102.2015.03.010 |
|
Huang W, Mao Z J, Han Y Y, et al Soil respiration and total belowground carbon allocation of Betula costata secondary forest and mixed broadleaved Korean pine forest in Xiaoxing’an Mountains, China . Bulletin of Botanical Research, 2015, 35 (3): 384- 390.
doi: 10.7525/j.issn.1673-5102.2015.03.010 |
|
金 超, 吴初平, 丁 易, 等 午潮山常绿次生阔叶林主要木本植物功能群及其演替特征. 生态学报, 2021, 41 (8): 3053- 3066. | |
Jin C, Wu C P, Ding Y, et al The functional groups and their succession characteristics of dominant population in an evergreen secondary broad-leaved forest of Wu Chao Mountain. Acta Ecologica Sinica, 2021, 41 (8): 3053- 3066. | |
雷 蕾, 肖文发, 曾立雄, 等 马尾松林土壤呼吸组分对不同营林措施的响应. 生态学报, 2016, 36 (17): 5360- 5370. | |
Lei L, Xiao W F, Zeng L X, et al Responses of soil respiration and its components to forest management in Pinus massoniana stands . Acta Ecologica Sinica, 2016, 36 (17): 5360- 5370. | |
李 超, 林伟盛, 杨智杰, 等 中亚热带杉木人工幼林林下植被生物量对短期增温和隔离降雨交互作用的响应. 生态学杂志, 2020, 39 (8): 2528- 2537.
doi: 10.13292/j.1000-4890.202008.014 |
|
Li C, Lin W S, Yang Z J, et al Responses of understory vegetation biomass to interaction between short-term warming and isolated rainfall in a subtropical Cunninghamia lanceolata plantation . Chinese Journal of Ecology, 2020, 39 (8): 2528- 2537.
doi: 10.13292/j.1000-4890.202008.014 |
|
刘 美, 陈亚梅, 崔宁洁, 等 模拟增温对高寒灌丛生长季土壤呼吸的影响. 生态学杂志, 2021, 40 (4): 1038- 1048.
doi: 10.13292/j.1000-4890.202104.026 |
|
Liu M, Chen Y M, Cui N J, et al Effects of simulated warming on soil respiration in growing season in an alpine scrubland. Chinese Journal of Ecology, 2021, 40 (4): 1038- 1048.
doi: 10.13292/j.1000-4890.202104.026 |
|
李先锋. 2018. 中亚热带格氏栲天然林和杉木人工林土壤呼吸及其组分对土壤增温的响应. 福州: 福建师范大学. | |
Li X F. 2018. Responses of soil respiration and its components to soil warming in natural forests of subtropical Castanopsis kawakamii and Cuninghamia lanceolata plantations. Fujian : Fujian Normal University. [in Chinese] | |
刘运通, 张一平, 武传胜, 等. 2016. 模拟亚热带常绿阔叶林土壤温度与土壤异养呼吸对气候变暖的响应. 生态学杂志, 35(7): 1799−1806. | |
Liu Y T, Zhang Y P, Wu C S, et al. 2016. Simulation of the responses of soil temperature and soil heterotrophic respiration to climate warming in a subtropical evergreen broad-leaved forest. Chinese Journal of Ecology. 35(7): 1799−1806. [in Chinese] | |
马志良, 赵文强, 刘 美, 等, 2018. 土壤呼吸组分对气候变暖的响应研究进展. 应用生态学报, 29(10): 3477−3486. | |
Ma Z L, Zhao W Q, Liu M, et al. 2018. Research progress on the responses of soil respiration components to climatic warming. Chinese Journal of Applied Ecology, 29(10): 3477−3486. [in Chinese] | |
蒲晓婷, 林伟盛, 杨玉盛, 等 杉木幼林土壤垂直剖面CO2通量对土壤增温的响应 . 环境科学学报, 2017, 37 (1): 288- 297. | |
Pu X T, Lin W S, Yang Y S, et al Vertical profile of soil CO2 flux in a young Chinese fir plantation in response to soil warming . Acta Scientiae Circumstantiae, 2017, 37 (1): 288- 297. | |
唐偲頔, 张 政, 蔡小真, 等 增温和隔离降雨对亚热带森林土壤N2O通量的影响 . 应用生态学报, 2017, 28 (10): 3119- 3126. | |
Tang C D, Zhang Z, Cai X Z, et al Effects of warming and precipitation exclusion on soil N2O fluxes in subtropical forests . Chinese Journal of Applied Ecology, 2017, 28 (10): 3119- 3126. | |
田志杰, 刘晓莹, 陈春兰, 等 五台山臭冷杉林土壤呼吸时空变化特征. 生态学杂志, 2020, 39 (12): 3952- 3960.
doi: 10.13292/j.1000-4890.202012.018 |
|
Tian Z J, Liu X Y, Chen C L, et al Temporal and spatial variation characteristics of soil respiration in Abies odorifera forest in Wutai Mountain . Chinese Journal of Ecology, 2020, 39 (12): 3952- 3960.
doi: 10.13292/j.1000-4890.202012.018 |
|
王 一, 刘彦春, 刘世荣, 等. 2016. 模拟气候变暖和林内穿透雨减少对干旱年暖温带锐齿栎林土壤呼吸的影响. 林业科学研究, 29(5): 698−704. | |
Wang Y, Liu Y C, Liu S R, et al. 2016. Response of soil respiration to soil warming and through fall exclusion in warm- temperate oak forest in Drought Year. Forest Research, 29(5): 698−704. [in Chinese] | |
许辰森, 熊德成, 邓 飞, 等 杉木幼苗和伴生植物细根对土壤增温的生理生态响应. 生态学报, 2017, 37 (4): 1232- 1243. | |
Xu C S, Xiong D C, Deng F, et al The ecophysiological responses of fine-roots of Chinese fir(Cunninghamia lanceolata) seedlings and the associated plants to soil warming . Acta Ecologica Sinica, 2017, 37 (4): 1232- 1243. | |
严俊霞, 李洪建, 李君剑, 等 山西高原落叶松人工林土壤呼吸的空间异质性. 环境科学, 2015, 36 (5): 1793- 1801.
doi: 10.13227/j.hjkx.2015.05.039 |
|
Yan J X, Li H J, Li J J, et al Spatial heterogeneity of soil respiration in larch plantation in Shanxi Plateau. Environmental Science, 2015, 36 (5): 1793- 1801.
doi: 10.13227/j.hjkx.2015.05.039 |
|
杨晶晶, 陈 闻, 袁 媛, 等. 2020. 模拟增温对羊草生态系统土壤呼吸速率的影响. 生态学报, 40(17): 6202−6214. | |
Yang J J, Chen W, Yuan Y, et al, 2020. Effects of simulated warming on soil respiration rate of Leymus chinensis grassland ecosystem. Acta Ecologica Sinica, 40(17): 6202−6214. [in Chinese] | |
杨 林, 陈亚梅, 和润莲, 等 高山森林土壤微生物群落结构和功能对模拟增温的响应. 应用生态学报, 2016, 27 (9): 2855- 2863. | |
Yang L, Chen Y M, He R L, et al Responses of soil microbial community structure and function to simulated warming in alpine forest. Chinese Journal of Applied Ecology, 2016, 27 (9): 2855- 2863. | |
杨 扬, 张喜亭, 肖 路, 等 火灾恢复年限对大兴安岭森林乔灌草多样性及优势种影响. 植物研究, 2019, 39 (4): 514- 520.
doi: 10.7525/j.issn.1673-5102.2019.04.005 |
|
Yang Y, Zhang X T, Xiao L, et al Effect of forest-fire rehabilitation time on plant diversity in Daxing’an Mountains, Northeastern China. Bulletin of Botanical Research, 2019, 39 (4): 514- 520.
doi: 10.7525/j.issn.1673-5102.2019.04.005 |
|
张德强, 孙晓敏, 周国逸, 等 南亚热带森林土壤CO2排放的季节动态及其对环境变化的响应 . 中国科学. D辑:地球科学, 2006, (S1): 130- 138. | |
Zhang D Q, Sun X M, Zhou G Y, et al Seasonal dynamics of soil CO2 emission from subtropical forests and its response to environmental change . Science in Chinese Ser. D:Earth Sciences, 2006, (S1): 130- 138. | |
张云宇, 孙晓凤, 张临峰, 等 帽儿山温带落叶阔叶林细根生物量、生产力和周转率. 应用生态学报, 2021, 32 (9): 3053- 3060.
doi: 10.13287/j.1001-9332.202109.001 |
|
Zhang Y Y, Sun X F, Zhang L F, et al Responses of fine root biomass to diameters of and distances to the neighboring trees of Fraxinus mandschurica plantation with different stocking densities . Chinese Journal of Applied Ecology, 2021, 32 (9): 3053- 3060.
doi: 10.13287/j.1001-9332.202109.001 |
|
赵小娜, 秦晓娟, 董 刚, 等 庞泉沟自然保护区植物群落分类学多样性. 应用生态学报, 2014, 25 (12): 3437- 3442.
doi: 10.13287/j.1001-9332.20140925.003 |
|
Zhao X N, Qin X J, Dong G. et al Axonomic diversity of plant communities in Pangquangou Nature Reserve. Chinese Journal of Applied Ecology, 2014, 25 (12): 3437- 3442.
doi: 10.13287/j.1001-9332.20140925.003 |
|
郑鹏飞, 余新晓, 贾国栋, 等 北京山区不同植被类型的土壤呼吸特征及其温度敏感性. 应用生态学报, 2019, 30 (5): 1726- 1734.
doi: 10.13287/j.1001-9332.201905.038 |
|
Zheng P F, Yu X X, Jia G D, et al Soil respiration characteristics and temperature sensitivity of different vegetation types in mountainous areas of Beijing. Chinese Journal of Applied Ecology, 2019, 30 (5): 1726- 1734.
doi: 10.13287/j.1001-9332.201905.038 |
|
Atkin O K, Edwards E J, Lovers B R Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist, 2000, 147 (1): 141- 154.
doi: 10.1046/j.1469-8137.2000.00683.x |
|
Atkin O K, Tjoelker M G Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 2003, 8 (7): 343- 351.
doi: 10.1016/S1360-1385(03)00136-5 |
|
Carey J C, Tang J W, Templer P H Temperature response of soil respiration largely unaltered with experimental warming. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (48): 13797- 13802.
doi: 10.1073/pnas.1605365113 |
|
Davidson E A, Janssens I A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081): 165−173. | |
Grant R F, Rochette P Soil microbial respiration at different water potentials and temperatures: Theory and Mathematical Modeling. Soil Science Society of America Journal, 1994, 58 (6): 1681- 1690.
doi: 10.2136/sssaj1994.03615995005800060015x |
|
Hopkins F M, Filley T R, Gleixner G, et al Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses. Soil Biology and Biochemistry, 2014, 76, 57- 69.
doi: 10.1016/j.soilbio.2014.04.028 |
|
IPCC. 2013. Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. | |
Klimek B, Choczy M, Juszkiewicz A, et al. 2009. Scots Pine( Pinus sylvestris L.) roots and soil moisture did not affect soil thermal sensitivity. European Journal of Soil Biology, 45 (5 /6) : 442−447. | |
Li J Q, Pei J M, Pendall E, et al Spatial heterogeneity of temperature sensitivity of soil respiration: a globalanalysis of field observations. Soil Biology and Biochemistry, 2020, 141, 107675. | |
Litvak M, Miller S, Wofsy S C, et al. 2003. Effect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest. Journal of Geophysical Research,108, doi: 10.1029/2001JD000854. | |
Luo Y Q, Wan S Q, Hui D F, et al Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413 (6856): 622- 625.
doi: 10.1038/35098065 |
|
Moyano F E, Kutsch W L, Rebmann C Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology, 2007, 148 (1): 135- 143. | |
Payeur-Poirier J L, Coursolle C, Margolis H A, et al CO2 fluxes of a boreal black spruce chronosequence in eastern North America . Agricultural and Forest Meteorology, 2012, 153, 94- 105.
doi: 10.1016/j.agrformet.2011.07.009 |
|
Qi Y, Xu M, Wu J G Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecological Modelling, 2002, 153 (1): 131- 142. | |
Sun L J, Mioko A, Yuji K, et al Relationship between fine-root exudation and respiration of two Quercus species in a Japanese temperate forest . Tree physiology, 2017, 37 (8): 1011- 1020.
doi: 10.1093/treephys/tpx026 |
|
Wang X, Liu L L, Piao S L, et al Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology, 2014, 20 (10): 3229- 3237.
doi: 10.1111/gcb.12620 |
|
Xu Z F, Tang S S, Xiong L, et al Temperature sensitivity of soil respiration in China’s forest ecosystems: patterns and controls. Applied Soil Ecology, 2015, 93, 105- 110.
doi: 10.1016/j.apsoil.2015.04.008 |
|
Zheng Z M, Yu G R, Fu Y L, et al Temperature sensitivity of soil respiration is affected by prevailing climatic conditions and soil organic carbon content: a trans-China based case study. Soil Biology and Biochemistry, 2009, 41 (7): 1531- 1540.
doi: 10.1016/j.soilbio.2009.04.013 |
|
Zou J L, Tobin B, Luo Y Q, et al Response of soil respiration and its components to experimental warming and water addition in a temperate Sitka spruce forest ecosystem. Agricultural and Forest Meteorology, 2018, 260−261, 204- 215.
doi: 10.1016/j.agrformet.2018.06.020 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||