Scientia Silvae Sinicae ›› 2026, Vol. 62 ›› Issue (1): 42-56.doi: 10.11707/j.1001-7488.LYKX20250296
• Research papers • Previous Articles Next Articles
Jiao Liu1,2,Aixia Yang3,Shuaifeng Li1,Jianrong Su1,*(
)
Received:2025-05-09
Revised:2025-11-09
Online:2026-01-25
Published:2026-01-14
Contact:
Jianrong Su
E-mail:jianrongsu@vip.sina.com
CLC Number:
Jiao Liu,Aixia Yang,Shuaifeng Li,Jianrong Su. Construction of Ecological Security Pattern in Sichuan-Yunnan Ecological Barrier Area Based on Ecosystem Health[J]. Scientia Silvae Sinicae, 2026, 62(1): 42-56.
Table 1
List of data sources"
| 研究参数Research parameters | 年份Year | 空间分辨率Spatial resolution | 数据来源Data sources |
| 土地利用/覆盖Land use/land cover(LULC) | 2021 | 30 m | 中国科学院空天信息创新研究院Aerospace Information Research Institute, Chinese Academy of Sciences |
| 数字高程模型Digital elevation model | 2019 | 30 m | NASA地球科学数据NASA Earth Science Data( |
| 年均气温、逐月降水数据集、逐月潜在蒸散发数据集Annual mean temperature, Monthly precipitation dataset, Monthly potential evapotranspiration dataset | 2021 | 1 000 m | 国家青藏高原科学数据中心National Qinghai-Tibet Plateau Science Data Center (http://data.tpdc.ac.cn) |
| 土壤数据Soil data | 2010— 2018 | 90 m | 国家科技基础条件平台——国家地球系统科学数据中心National Earth System Science Data Center, National Science & Technology Infrastructure of China ( |
| 归一化植被指数Normalized vegetation index(NDVI) | 2021 | 30 m | 采用2021年Landsat遥感影像计算Calculated with Landsat remote sensing images in 2021 |
| 净初级生产力Net primary productivity(NPP) | 2021 | 500 m | MYD17A3HGF数据集MYD17A3HGF dataset ( |
| 道路、湖泊、河流数据Road, lake, and river data | 2021 | 矢量数据 Vector data | OpenStreetMap( |
Table 3
Correction value of carbon densityof each land use type in 2021 t·hm–2"
| 土地利用类型 Land use type | 地上生 物量碳 Aboveground biomass carbon | 地下生 物量碳 Underground biomass carbon | 土壤有 机碳 Soil organic carbon | 死有 机碳 Dead organic matter carbon |
| 耕地Farmland | 0.411 1 | 2.734 1 | 93.437 7 | 0 |
| 林地Forest | 12.174 4 | 48.916 8 | 111.922 9 | 2.177 3 |
| 草地Grassland | 0.474 7 | 4.857 4 | 90.657 9 | 0.09 |
| 灌木地Shrubland | 4.662 7 | 5.828 4 | 89.205 | 0.924 2 |
| 水域Water | 0 | 0 | 0 | 0 |
| 建设用地Built-up land | 4.804 3 | 1.921 7 | 70.628 3 | 0 |
| 交通运输用地 Transportation land | 4.941 5 | 1.976 6 | 71.815 1 | 0 |
| 其他Other | 0 | 0 | 0 | 0 |
Table 4
Trade-off values and order weights under different risk scenarios"
| 情景Scenario | 风险Risk | 权衡Trae-off | w1 | w2 | w3 | w4 | w5 |
| 1 | 0 | 0 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
| 2 | 0.1 | 0.374 | 0.000 | 0.000 | 0.033 | 0.333 | 0.633 |
| 3 | 0.2 | 0.570 | 0.000 | 0.040 | 0.180 | 0.320 | 0.460 |
| 4 | 0.3 | 0.717 | 0.040 | 0.120 | 0.200 | 0.280 | 0.360 |
| 5 | 0.4 | 0.859 | 0.120 | 0.160 | 0.200 | 0.240 | 0.280 |
| 6 | 0.5 | 1.000 | 0.200 | 0.200 | 0.200 | 0.200 | 0.200 |
| 7 | 0.6 | 0.859 | 0.280 | 0.240 | 0.200 | 0.160 | 0.120 |
| 8 | 0.7 | 0.717 | 0.360 | 0.280 | 0.200 | 0.120 | 0.040 |
| 9 | 0.8 | 0.570 | 0.460 | 0.320 | 0.180 | 0.040 | 0.000 |
| 10 | 0.9 | 0.374 | 0.633 | 0.333 | 0.033 | 0.000 | 0.000 |
| 11 | 1 | 0 | 1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Table 5
Weights and classification criteria of ecological resistance factors"
| 阻力因子Resistance factor | 权重 Weight | 相对阻力值Relative resistance value | ||||
| 10 | 30 | 50 | 70 | 90 | ||
| 土地发展概率因子 Land development probability factor | 0.416 7 | 基于公式(11)Calculation based on equation (11) | ||||
| 海拔Elevation/ m | 0.142 6 | <2 000 | 2 000–2 500 | 2 500–3 000 | 3 000–3 500 | >3 500 |
| 坡度Slope/ (°) | 0.056 7 | <8 | 8~15 | 15~25 | 25~35 | >35 |
| 地形起伏度Topographic relief/m | 0.074 5 | <100 | 100~200 | 200~300 | 300~400 | >400 |
| 植被覆盖度Vegetation coverage (%) | 0.158 8 | >0.8 | 0.6~0.8 | 0.4~0.6 | 0.2~0.4 | <0.2 |
| 距道路距离Distance from road/m | 0.083 3 | >5 000 | 2 000~5 000 | 1 000~2 000 | 500~1 000 | <500 |
| 土壤侵蚀量Amount of soil erosion/ (t·km?2) | 0.067 4 | <500 | 500~1 000 | 1 000~2 000 | 2 000~5 000 | >5 000 |
Table 6
Conservation efficiency of various ecosystem services in different scenarios"
| 情景 Scenario | 生态系统物理健康Ecosystem physical health | 生态系统服务Ecosystem service | 平均保护效率 Average protection efficiency | ||||||
| 生态活力 Ecological vigor | 生态组织力 Ecological organization | 生态恢复力 Ecological resilience | 产水量 Water yield | 生境质量 指数Habitat quality index | 碳储量 Carbon storage | 土壤保持量 Soil retention capacity | |||
| 1 | 1.388 | 1.241 | 1.360 | 0.737 | 1.114 | 1.200 | 1.113 | 1.164 8 | |
| 2 | 1.371 | 1.246 | 1.359 | 0.780 | 1.134 | 1.201 | 1.153 | 1.177 6 | |
| 3 | 1.354 | 1.245 | 1.352 | 0.840 | 1.139 | 1.201 | 1.205 | 1.190 9 | |
| 4 | 1.338 | 1.243 | 1.346 | 0.895 | 1.141 | 1.200 | 1.231 | 1.199 2 | |
| 5 | 1.323 | 1.240 | 1.341 | 0.937 | 1.142 | 1.199 | 1.247 | 1.204 1 | |
| 6 | 1.300 | 1.231 | 1.333 | 0.995 | 1.144 | 1.197 | 1.270 | 1.209 9 | |
| 7 | 1.271 | 1.197 | 1.324 | 1.077 | 1.147 | 1.194 | 1.326 | 1.219 3 | |
| 8 | 1.234 | 1.130 | 1.310 | 1.181 | 1.148 | 1.189 | 1.410 | 1.228 7 | |
| 9 | 1.196 | 1.061 | 1.279 | 1.267 | 1.133 | 1.175 | 1.489 | 1.228 6 | |
| 10 | 1.177 | 1.028 | 1.224 | 1.293 | 1.100 | 1.148 | 1.498 | 1.209 7 | |
| 11 | 0.957 | 0.945 | 0.381 | 1.162 | 0.485 | 0.737 | 0.400 | 0.723 9 | |
| 陈竹安, 况 达, 危小建, 等. 基于MSPA与MCR模型的余江县生态网络构建. 长江流域资源与环境, 2017, 26 (8): 1199- 1207. | |
| Chen Z A, Kuang D, Wei X J, et al. Construction of the ecological network in Yujiang County based on the MSPA and MCR models. Resources and Environment in the Yangtze Basin, 2017, 26 (8): 1199- 1207. | |
| 董文卓, 苏维词, 勾 容, 等. 生态系统服务和生态系统健康视角下的贵州省生态风险时空演变. 应用生态学报, 2025, 36 (4): 1211- 1221. | |
| Dong W Z, Su W C, Gou R, et al. Spatial and temporal evolution of ecological risk in Guizhou Province, China from the perspective of ecosystem services and ecosystem health. Chinese Journal of Applied Ecology, 2025, 36 (4): 1211- 1221. | |
| 傅伯杰, 王晓峰, 冯晓明, 等. 2017. 国家生态屏障区生态系统评估. 北京: 科学出版社. | |
| Fu B J, Wang X F, Feng X M, et al. 2017. Ecological system assessment of national ecological barrier areas. Beijing: Science Press. [in Chinese] | |
| 高彬嫔, 李 琛, 吴映梅, 等. 川滇生态屏障区景观生态风险评价及影响因素. 应用生态学报, 2021, 32 (5): 1603- 1613. | |
| Gao B P, Li C, Wu Y M, et al. Landscape ecological risk assessment and influencing factors in ecological conservation area in Sichuan-Yunnan provinces, China. Chinese Journal of Applied Ecologys, 2021, 32 (5): 1603- 1613. | |
| 黄 云, 徐黎亮, 郑博福, 等. 亚热带典型森林生产力及碳利用率的气候变化响应. 林业科学, 2025, 61 (3): 121- 134. | |
| Huang Y, Xu L L, Zheng B F, et al. Responses of productivity and carbon use efficiency of typical subtropical forests to climate change. Scientia Silvae Sinicae, 2025, 61 (3): 121- 134. | |
| 郎 燕, 刘 宁, 刘世荣. 气候和土地利用变化影响下生态屏障带水土流失趋势研究. 生态学报, 2021, 41 (13): 5106- 5117. | |
| Lang Y, Liu N, Liu S R. Changes in soil erosion and its driving factors under climate change and land use scenarios in Sichuan-Yunnan-Loess Plateau region and the southern Hilly Mountain Belt, China. Acta Ecologica Sinica, 2021, 41 (13): 5106- 5117. | |
| 刘斯媛, 罗 勇, 于 慧, 等. 川西北长江黄河源区生态安全格局构建及优化. 环境工程技术学报, 2023, 13 (4): 1315- 1324. | |
| Liu S Y, Luo Y, Yu H, et al. Construction and optimization of ccological security pattern in the source regions of the Yangtze River and the Yellow River in northwestem Sichuan. Journal of Environmental Engineering Technology, 2023, 13 (4): 1315- 1324. | |
| 王晓蓉, 崔 媛, 张 勇, 等. 1995—2019年香格里拉市高寒草甸景观格局和潜在生产力变化特征研究. 西南林业大学学报(自然科学), 2025, 45 (1): 106- 116. | |
| Wang X R, Cui Y, Zhang Y, et al. Changes in land-scape patterns and potential productivity of alpine meadows in Shangri-La from 1995 to 2019. Journal of Southwest Forestry University, 2025, 45 (1): 106- 116. | |
| 武 燕, 吴映梅, 李 琛, 等. 基于MAUP下川滇生态屏障区生态系统服务价值多尺度空间分异及地理探测响应. 水土保持研究, 2023, 30 (2): 333- 342. | |
| Wu Y, Wu Y M, Li C, et al. Multi-scale spatial differentiation and geographic detection response of ecosystem service value in Sichuan-Yunnan ecological barrier based on the modifiable areal unit problem. Research of Soil and Water Conservation, 2023, 30 (2): 333- 342. | |
| 许 峰, 尹海伟, 孔繁花, 等. 基于MSPA与最小路径方法的巴中西部新城生态网络构建. 生态学报, 2015, 35 (19): 6425- 6434. | |
| Xu F, Yin H W, Kong F H, et al. Developing ecological networks based on MSPA and the least-cost path method: a case study in bazhong western new district. Acta Ecologica Sinica, 2015, 35 (19): 6425- 6434. | |
| 易 浪, 孙 颖, 尹少华, 等. 生态安全格局构建: 概念、框架与展望. 生态环境学报, 2022, 31 (4): 845- 856. | |
| Yi L, Sun Y, Yin S H, et al. Construction of ecological security pattern: concept, framework and prospect. Ecology and Environmental Sciences, 2022, 31 (4): 845- 856. | |
| 杨时民, 李玉文, 吕玉哲. 扎龙湿地生态安全评价指标体系研究. 林业科学, 2006, 42 (5): 127- 132. | |
| Yang S M, Li Y W, Lü Y Z. The assessment index system of Zhalong wetland eco-security. Scientia Silvae Sinicae, 2006, 42 (5): 127- 132. | |
|
Bai J i, Sun R, Liu Y F, et al. Integrating ecological and recreational functions to optimize ecological security pattern in Fuzhou City. Scientific Reports, 2025, 15 (1): 778.
doi: 10.1038/s41598-024-84660-1 |
|
|
Cao W Y, Li X B, Lyu X, et al. To explore the effectiveness of various ecological security pattern construction methods in many growth situations in the future: a case study of the West Liaohe River Basin in Inner Mongolia. Science of the Total Environment, 2024, 948, 174607.
doi: 10.1016/j.scitotenv.2024.174607 |
|
|
Cai Y C, Li H, Li W C. Optimization of a “social-ecological” system pattern from the perspective of ecosystem service supply and demand: a case study of Jilin Province. Land, 2024, 13 (10): 1716.
doi: 10.3390/land13101716 |
|
|
Cong Z X, Yang S, Zhu B K, et al. Identification of key ecological restoration areas based on ecological security patterns and territorial spatial ecological restoration zoning: a case study of the middle and lower reaches of the Yellow River in China. Journal for Nature Conservation, 2025, 84, 126793.
doi: 10.1016/j.jnc.2024.126793 |
|
|
Das M, Das A, Mandal A. Research note: Ecosystem health (EH) assessment of a rapidly urbanizing metropolitan city region of eastern India: a study on Kolkata Metropolitan Area. Landscape and Urban Planning, 2020, 204, 103938.
doi: 10.1016/j.landurbplan.2020.103938 |
|
|
Du Z Y, Ji X B, Zhao W Y, et al. Integrating revised DPSIR and ecological security patterns to assess the health of alpine grassland ecosystems on the Qinghai-Tibet Plateau. Science of the Total Environment, 2024, 957, 177833.
doi: 10.1016/j.scitotenv.2024.177833 |
|
|
Fang J, Xu L Y, Lu Q. Ecological security patterns of Chinese lakes based on ecosystem service values assessment and human threat factors evaluation. Ecological Informatics, 2024, 82, 102754.
doi: 10.1016/j.ecoinf.2024.102754 |
|
|
Guo J, Feng P F, Xue H, et al. A framework of ecological security patterns in arid and semi-arid regions considering differences socioeconomic scenarios in ecological risk: case of Loess Plateau, China. Journal of Environmental Management, 2025a, 373, 123923.
doi: 10.1016/j.jenvman.2024.123923 |
|
|
Guo Y C, Xu D W, Xu J, et al. Multi-scale analysis of spatial and temporal evolution of ecosystem health in the Harbin-Changchun urban agglomeration, China. Sustainability, 2024, 16 (2): 837.
doi: 10.3390/su16020837 |
|
|
Guo Z Y, Zhu C X, Fan X, et al. Analysis of ecological network evolution in an ecological restoration area with the MSPA-MCR model: a case study from Ningwu County, China. Ecological Indicators, 2025b, 170, 113067.
doi: 10.1016/j.ecolind.2024.113067 |
|
|
Han J Z, Hu Z Q, Mao Z, et al. How to account for changes in carbon storage from Coal Mining and Reclamation in Eastern China? Taking Yanzhou Coalfield as an example to simulate and estimate. Remote Sensing, 2022, 14 (9): 2014.
doi: 10.3390/rs14092014 |
|
|
Han P Y, Hu H Z, Zhou J Y, et al. Integrating key ecosystem services to study the spatio-temporal dynamics and determinants of ecosystem health in Wuhan’s central urban area. Ecological Indicators, 2024, 166, 112352.
doi: 10.1016/j.ecolind.2024.112352 |
|
|
Hu J L, Qing G, Wang Y X, et al. Landscape ecological security of the Lijiang River Basin in China: spatiotemporal evolution and pattern optimization. Sustainability, 2024, 16 (13): 5777.
doi: 10.3390/su16135777 |
|
|
Huang X Y, Xiu L N, Lu Z X, et al. Ecological networks construction and optimization in the Longdong Loess Plateau: the advantages of self-organizing map and complex networks. Ecological Indicators, 2025, 170, 113138.
doi: 10.1016/j.ecolind.2025.113138 |
|
|
Huang Y, Gan X, Feng Y F, et al. A new framework for assessing ecosystem health with consideration of the sustainable supply of ecosystem services. Landscape Ecology, 2024, 39 (2): 37.
doi: 10.1007/s10980-024-01834-y |
|
|
Jia J, Guo W L, Xu L Y, et al. Multi scenario simulation of land use in Chaohu Lake Basin Based on PLUS model. Polish Journal of Environmental Studies, 2025, 34 (2): 1207- 1219.
doi: 10.15244/pjoes/187145 |
|
|
Jie Y, Wang S Y, Jie Z, et al. Optimisation of ecological security patterns in ecologically transition areas under the perspective of ecological resilience: a case of Taohe River. Ecological Indicators, 2024, 166, 112315.
doi: 10.1016/j.ecolind.2024.112315 |
|
|
Knaapen J P, Scheffer M, Harms B. Estimating habitat isolation in landscape planning. Landscape and Urban Planning, 1992, 23 (1): 1- 16.
doi: 10.1016/0169-2046(92)90060-D |
|
|
Lei J J, Li C S, Yang W N. Ecosystem health assessment and approaches to improve Sichuan Province based on an improved vigor organization resilience model. Ecological Indicators, 2023, 155, 110925.
doi: 10.1016/j.ecolind.2023.110925 |
|
|
Lewis S L, Maslin M A. Defining the Anthropocene. Nature, 2015, 519 (7542): 171- 180.
doi: 10.1038/nature14258 |
|
|
Li C, Qiao W F, Gao B P, et al. Unveiling spatial heterogeneity of ecosystem services and their drivers in varied landform types: Insights from the Sichuan-Yunnan ecological barrier area. Journal of Cleaner Production, 2024b, 442, 141158.
doi: 10.1016/j.jclepro.2024.141158 |
|
|
Li C, Wu Y M, Gao B P, et al. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecological Indicators, 2021b, 132, 108328.
doi: 10.1016/j.ecolind.2021.108328 |
|
|
Li C, Wu Y M, Gao B P, et al. Construction of ecological security pattern of national ecological barriers for ecosystem health maintenance. Ecological Indicators, 2023, 146, 109801.
doi: 10.1016/j.ecolind.2022.109801 |
|
|
Li J Y, Chen X, De Maeyer P, et al. Ecological security warning in Central Asia: integrating ecosystem services protection under SSPs-RCPs scenarios. Science of the Total Environment, 2024, 912, 168698.
doi: 10.1016/j.scitotenv.2023.168698 |
|
|
Li T, Li L, Tang M F, et al. Heterogeneous impacts of human activity intensity on regional ecological security patterns: the case of southwest China. Land, 2024d, 13 (12): 2172.
doi: 10.3390/land13122172 |
|
|
Li W J, Xie S Y, Wang Y, et al. Effects of urban expansion on ecosystem health in southwest China from a multi-perspective analysis. Journal of Cleaner Production, 2021a, 294, 126341.
doi: 10.1016/j.jclepro.2021.126341 |
|
|
Li W P, Liu Y D, Lin Q R, et al. Identification of ecological security pattern in the Qinghai-Tibet Plateau. Ecological Indicators, 2025b, 170, 113057.
doi: 10.1016/j.ecolind.2024.113057 |
|
|
Li X D, Tao H Y, Wang J, et al. Integrated evaluation of the ecological security pattern in central Beijing using InVEST, MSPA, and Multifactor indices. Land, 2025, 14 (1): 205.
doi: 10.3390/land14010205 |
|
|
Li Y Y, Qin L, Wang Y H, et al. Ecosystem health assessment of the largest lake wetland in the Yellow River basin using an improved vigor-organization-resilience-services model. Ecological Indicators, 2024a, 166, 112539.
doi: 10.1016/j.ecolind.2024.112539 |
|
| Lin X, Wang Z T, Bao Y. Integrating ecosystem stress into the assessment of ecosystem health in karst areas and exploring its driving factors. Ecological Indicators, 2024, 167, 112662. | |
|
Liu X Y, Su Y, Li Z G, et al. Constructing ecological security patterns based on ecosystem services trade-offs and ecological sensitivity: a case study of Shenzhen metropolitan area, China. Ecological Indicators, 2023, 154, 110626.
doi: 10.1016/j.ecolind.2023.110626 |
|
|
Ma J W, Ding X, Shu Y Q, et al. Spatio-temporal variations of ecosystem health in the Liuxi River Basin, Guangzhou, China. Ecological Informatics, 2022, 72, 101842.
doi: 10.1016/j.ecoinf.2022.101842 |
|
|
Ma Y, Chen H, Yang M, et al. Assessment of supply-demand relationships considering the interregional flow of ecosystem services. Environmental science and pollution research international, 2024, 31 (19): 27710- 27729.
doi: 10.1007/s11356-024-32904-y |
|
|
Nie H R, Zhao Y, Zhu J, et al. Ecological security pattern construction in typical oasis area based on ant colony optimization: a case study in Yili River Valley, China. Ecological Indicators, 2024, 169, 112770.
doi: 10.1016/j.ecolind.2024.112770 |
|
|
Pan Z Z, He J H, Liu D F, et al. Predicting the joint effects of future climate and land use change on ecosystem health in the middle reaches of the Yangtze River Economic Belt, China. Applied Geography, 2020, 124, 102293.
doi: 10.1016/j.apgeog.2020.102293 |
|
|
Peng J, Wang Y L, Wu J S, et al. Research progress on evaluation frameworks of regional ecological sustainability. Chinese Geographical Science, 2011, 21 (4): 496- 510.
doi: 10.1007/s11769-011-0490-0 |
|
|
Qiao W Y, Hu B, Guo Z, et al. Evaluating the sustainability of land use integrating SDGs and its driving factors: a case study of the Yangtze River Delta urban agglomeration, China. Cities, 2023, 143, 104569.
doi: 10.1016/j.cities.2023.104569 |
|
|
Qin X L, Ling H B, Shan Q J, et al. Construction of ecological security patterns in typical arid regions based on the synergy of efficient ecological water utilization and environmental quality enhancement. Catena, 2025, 249, 108713.
doi: 10.1016/j.catena.2025.108713 |
|
|
Ren S M, Zhao H, Zhang H L, et al. Influence of natural and social economic factors on landscape pattern indices: the case of the Yellow River Basin in Henan Province. Water, 2023, 15 (23): 4174.
doi: 10.3390/w15234174 |
|
|
Shi X Y, Zhao X Q, Pu J W, et al. Evolution modes, types, and social-ecological drivers of ecologically critical areas in the Sichuan-Yunnan ecological barrier in the last 15 years. International Journal of Environmental Research and Public Health, 2022, 19 (15): 9206.
doi: 10.3390/ijerph19159206 |
|
|
Shi Y, Fan X X, Chen H N, et al. Landscape pattern evolution and ecological security assessment based on land use changes in mining cities: a case study of Heihe City. Frontiers in Environmental Science, 2024, 12, 1488439.
doi: 10.3389/fenvs.2024.1488439 |
|
|
Shu R, Ma G Q, Zou Y B, et al. Bibliometric analysis of ecological security pattern construction: current status, evolution, and development trends. Ecological Indicators, 2024, 169, 112754.
doi: 10.1016/j.ecolind.2024.112754 |
|
|
Sturck J, Verburg P H. Multifunctionality at what scale? A landscape multifunctionality assessment for the European Union under conditions of land use change. Landscape Ecology, 2017, 32 (3): 481- 500.
doi: 10.1007/s10980-016-0459-6 |
|
|
Tang F, Fu M C, Wang L, et al. Land-use change in Changli County, China: predicting its spatio-temporal evolution in habitat quality. Ecological Indicators, 2020, 117, 106719.
doi: 10.1016/j.ecolind.2020.106719 |
|
| Tang X L, Zhao X, Bai Y F, et al. Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (16): 4021- 4026. | |
|
Wang C X, Yu C Y, Chen T Q, et al. Can the establishment of ecological security patterns improve ecological protection? An example of Nanchang, China. Science of the Total Environment, 2020, 740, 140051.
doi: 10.1016/j.scitotenv.2020.140051 |
|
|
Wang T, Li H, Huang Y. The complex ecological network’s resilience of the Wuhan metropolitan area. Ecological Indicators, 2021, 130, 108101.
doi: 10.1016/j.ecolind.2021.108101 |
|
|
Wang X Y, Yao W F, Luo Q Z, et al. Spatial relationship between ecosystem health and urbanization in coastal mountain city, Qingdao, China. Ecological Informatics, 2024, 79, 102458.
doi: 10.1016/j.ecoinf.2023.102458 |
|
|
Wang Y C, Yang X, Zhang X J, et al. Spatiotemporal dynamic characteristics and conservation strategy of ecological security pattern in a rapidly urbanizing zone. Ecological Indicators, 2024, 166, 112457.
doi: 10.1016/j.ecolind.2024.112457 |
|
|
Wang Y, Zhou X G, Ding C, et al. Construction and optimization of the watershed-scale ecological network based on network characteristic analysis: a case study of the Lancang River Basin. Ecological Indicators, 2025, 171, 113164.
doi: 10.1016/j.ecolind.2025.113164 |
|
|
Williams J R, Renard K G, Dyke P T. EPIC: a new method for assessing erosion’s effect on soil productivity. Journal of Soil and Water Conservation, 1983, 38 (5): 381- 383.
doi: 10.1080/00224561.1983.12436327 |
|
|
Wu Q, Cao Y, Zhang Y J, et al. Linking ecosystem services trade-offs, human preferences and future scenario simulations to ecological security patterns: a novel methodology for reconciling conflicting ecological functions. Applied Geography, 2025, 176, 103534.
doi: 10.1016/j.apgeog.2025.103534 |
|
|
Wu S Y, Zhao C, Yang L, et al. Spatial and temporal evolution analysis of ecological security pattern in Hubei Province based on ecosystem service supply and demand analysis. Ecological Indicators, 2024, 162, 112051.
doi: 10.1016/j.ecolind.2024.112051 |
|
| Wu Y D, Han Z Y, Meng J J, et al. Circuit theory-based ecological security pattern could promote ecological protection in the Heihe River Basin of China. Environmental Science and Pollution Research, 2023, 30 (10): 27340- 27356. | |
|
Xiang K M, Chen L, Li W Y, et al. Construction and optimization strategy of ecological security pattern in county-level cities under spatial and temporal variation of ecosystem services: case study of Mianzhu, China. Land, 2024, 13 (7): 936.
doi: 10.3390/land13070936 |
|
|
Xiao Z L, Liu R, Gao Y H, et al. Spatiotemporal variation characteristics of ecosystem health and its driving mechanism in the mountains of southwest China. Journal of Cleaner Production, 2022, 345, 131138.
doi: 10.1016/j.jclepro.2022.131138 |
|
|
Xie X, Fang B, Xu H Z Y, et al. Study on the coordinated relationship between urban land use efficiency and ecosystem health in China. Land Use Policy, 2021, 102, 105235.
doi: 10.1016/j.landusepol.2020.105235 |
|
|
Yan L B, Yu L F, An M T, et al. Explanation of the patterns, spatial relationships, and node functions of biodiversity and island: an example of nature reserves in Guizhou, southwest China. Sustainability, 2019, 11 (22): 6197.
doi: 10.3390/su11226197 |
|
| Yang A X, Zhong B, Hu L F, et al. Assessment of land cover status and change in the world and “the Belt and Road” region from 2016 to 2020. Sensors, 2023, 23 (16): 7158. | |
|
Yang A X, Zhong B, Wang X L, et al. 30 m 5-yearly land cover maps of Qilian Mountain area (QMA_LC30) from 1990 to 2020. Scientific Data, 2024, 11 (1): 1339.
doi: 10.1038/s41597-024-03976-9 |
|
|
Yang J L, Xin Z B, Li X Y, et al. Vigor-organization-resilience framework for assessing ecosystem health in the Qinghai-Xizang Plateau. Ecosystem Health and Sustainability, 2024, 10, 0260.
doi: 10.34133/ehs.0260 |
|
|
Zhang F Y, Jia Y Y, Liu X L, et al. Application of MSPA-MCR models to construct ecological security pattern in the basin: a case study of Dawen River basin. Ecological Indicators, 2024, 160, 111887.
doi: 10.1016/j.ecolind.2024.111887 |
|
|
Zhang L L, Liu Q Y, Wang J, et al. Constructing ecological security patterns using remote sensing ecological index and circuit theory: A case study of the Changchun-Jilin-Tumen region. Journal of Environmental Management, 2025, 373, 123693.
doi: 10.1016/j.jenvman.2024.123693 |
|
|
Zhang P P, Song M J, Lu Q Q. Mapping ecological security patterns based on ecosystem service valuation in the Qinling-Daba Mountain area, China: a multi-scenario study for development and conservation tradeoffs. Land, 2024b, 13 (10): 1629.
doi: 10.3390/land13101629 |
|
|
Zhao C, Shao N, Yang S, et al. Integrated assessment of ecosystem health using multiple indicator species. Ecological Engineering, 2019, 130, 157- 168.
doi: 10.1016/j.ecoleng.2019.02.016 |
|
|
Zhao X Q, Yue Q F, Pei J C, et al. Ecological security pattern construction in karst area based on ant algorithm. International Journal of Environmental Research and Public Health, 2021, 18 (13): 6863.
doi: 10.3390/ijerph18136863 |
|
|
Zhou Y, Li X H, Liu Y S. Land use change and driving factors in rural China during the period 1995—2015. Land Use Policy, 2020, 99, 105048.
doi: 10.1016/j.landusepol.2020.105048 |
|
|
Zhou J J, Zhao Y R, Huang P, et al. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecological Indicators, 2020b, 118, 106803.
doi: 10.1016/j.ecolind.2020.106803 |
|
|
Zhu X L, Qie R Q, Luo C, et al. Assessment and driving factors of wetland ecosystem service function in northeast China based on InVEST-PLUS model. Water, 2024, 16 (15): 2153.
doi: 10.3390/w16152153 |
|
|
Zhu Y C, Liu Y C, Xiao Y, et al. Construction of ecological security patterns incorporating multiple types of ecological service functions for developed coastal regions: a case study in Jinjiang Watershed, China. Land, 2024b, 13 (8): 1227.
doi: 10.3390/land13081227 |
| [1] | Xiaohang Bai,Jieping Chen. Public Preference and Perception for Cultural Ecosystem Services of Urban Forest Parks [J]. Scientia Silvae Sinicae, 2025, 61(6): 99-108. |
| [2] | Jienan Ye,Yizhou Huang,Shuhao Jia,Ting Zhang. Identification of Ecological Sources and Construction of an Ecological Security Pattern in Bazhong, Sichuan Province [J]. Scientia Silvae Sinicae, 2025, 61(11): 56-69. |
| [3] | Wei Xiaoyan, Mao Xufeng, Xia Jianxin. Ecological Compensation Quantitative Study on Nature Reserve Ecological Emigrants:Taking the Urad National Nature Reserve as An Example [J]. Scientia Silvae Sinicae, 2013, 49(12): 157-163. |
| [4] | Wang Bing;Ren Xiaoxu;Hu Wen. Assessment of Forest Ecosystem Services Value in China [J]. Scientia Silvae Sinicae, 2011, 47(2): 145-153. |
| [5] | Wang Yixiang;Lu Yuanchang;Zhang Shougong;Bai Shangbin;Liu Xianzhao. Present Situation and Prospect of Forest Ecosystem Health Assessment [J]. Scientia Silvae Sinicae, 2010, 46(2): 134-140. |
| [6] | Wang Bing Ma;Xiangqian;Guo Hao;Wang Yan;Leng Ling. Evaluation of the Chinese Fir Forest Ecosystem Services Value [J]. Scientia Silvae Sinicae, 2009, 12(4): 124-130. |
| [7] | Li Changrong. Forest Ecosystem Services and Their Valuation in Wulingyuan Natural Reserve [J]. Scientia Silvae Sinicae, 2004, 40(2): 16-20. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||