Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (9): 113-122.doi: 10.11707/j.1001-7488.LYKX20240766
• Research papers • Previous Articles Next Articles
Haosen Yu,Zhixin Zeng,Jing Qiao,Qiqi Zhang,Yang Jiao,Xuexin Yang,Yingrui Zhang,Yubing Yang,Yusen Zhao,Wenbo Shu*()
Received:
2024-12-16
Online:
2025-09-25
Published:
2025-10-10
Contact:
Wenbo Shu
E-mail:wenboshu@mail.hzau.edu.cn
CLC Number:
Haosen Yu,Zhixin Zeng,Jing Qiao,Qiqi Zhang,Yang Jiao,Xuexin Yang,Yingrui Zhang,Yubing Yang,Yusen Zhao,Wenbo Shu. PagTMK10 Mediates Auxin Signaling Pathway Affecting Height and Radial Growth of Populus alba × P. glandulosa[J]. Scientia Silvae Sinicae, 2025, 61(9): 113-122.
Table 2
Cloning primer sequences for PagTMK10"
引物名称 Primer name | 引物序列 Primer sequence(5'–3') |
TMK10-Pro-F | GCCCTCTTATTTCTTTATT |
TMK10-Pro-R | TTTGTGGTGTTTTCTCAT |
PMV2-JD-F(菌落鉴定Colony identification) | TATGACCATGATTACGCCAAGC |
PMV2-F(同源臂Homologous arm) | TGCATCCAACGCGTTGGGAGCTC |
PMV2-R(同源臂Homologous arm) | GCCTTCGCCATTCTAGACTCGAG |
TMK10-CDS-F | ATGAGAAAACACCACAAAAAG |
TMK10-CDS-R | CTACCGCCCATCAGCAGAAGT |
TATGACCATGATTACGAATTCGG | |
AGCTTTCGCGAGCTCGGTACC | |
TCTAGAGGATCCCCGGGTACC |
Fig.3
Staining of PagTMK10 and PagDR5 promoter-GUS transgenic plants A: 21-day PagDR5 promoter stained plants, c–d: detail of bud tip and lateral roots. B: 21-day PagTMK10 promoter stained plants, e–f: detail of bud tip and taproot end. C: Photograph of the third stem node stained section of PagDR5 promoter plants. D: Photograph of the third stem node stained section of PagTMK10 promoter plants."
Fig.4
Phenotypic statistics of WT-type and OE-type seedling plants planted in soil A: Gel electrophoretic pattern for identification of overexpressed PagTMK10 transgenic plants; B: Relative expression analysis of overexpressed PagTMK10 transgenic poplar; C: Comparison photographs of overexpressed PagTMK10 transgenic poplar and WT-type phenotypes after 45-day of greenhouse incubation; D: Overexpression of PagTMK10 transgenic poplar and WT-type plants were compared in terms of plant height at 45 days, and asterisks indicate significant differences (*, P<0.05); E: Overexpression of PagTMK10 transgenic poplar and WT-type plants were compared in terms of basal diameter at 45 days, and asterisks indicate significant differences (*, P<0.05); F: Comparison photographs of overexpression of PagTMK10 transgenic poplar and WT-type after 6 months of field cultivation, Scale bar is 20 cm; G: Overexpression of PagTMK10 transgenic poplar and WT-type plants were compared in terms of plant height after 6 months of field cultivation, and asterisks indicate significant differences (**, P<0.01); H: Overexpression of PagTMK10 transgenic poplar and WT-type plants were compared in terms of basal diameter after 6 months of field cultivation, and asterisks indicate significant differences (*, P<0.05)."
Fig.5
Phenotypic statistics of buds formation after de-stemming in WT- and OE-type plants A: Photographs of sprout growth after de-topping of overexpressed PagTMK10 transgenic plants and WT-type plants; B: Comparison of sprouting rate between overexpressed PagTMK10 transgenic poplar and WT-type plants on 4, 5 and 6 days after de-topping; C: Comparison of the number of sprouts at 30 days between PagTMK10 transgenic poplar and WT-type plants, and asterisks indicate significant differences (***, P<0.001); D: Comparison of the height of sprouts between overexpressed PagTMK10 transgenic poplar and WT-type plants on 30 days, and asterisks denote significant differences (***, P<0.001). The data in Figures B, C, and D are the average of 9 replicates. Scale bar: 1 cm."
孔祥培, 张蒙悦, 丁兆军. 柳暗花明: 胞外生长素信号感受的新突破. 植物学报, 2023, 58 (6): 861- 865.
doi: 10.11983/CBB23149 |
|
Kong X P, Zhang M Y, Ding Z J. There is a way out-new breakthroughs in extracellular auxin sensing. Journal of Integrative Plant Biology, 2023, 58 (6): 861- 865.
doi: 10.11983/CBB23149 |
|
马 军, 徐通达. 植物非经典生长素信号转导通路解析. 生物技术通报, 2020, 36 (7): 15- 22. | |
Ma J, Xu T D. Non-canonical auxin signaling pathway in plants. Biotechnology Bulletin, 2020, 36 (7): 15- 22. | |
左雯腾, 孟佳慧, 卢孟柱, 等. 银腺杨生长素受体基因PagFBL3对茎生长发育的影响. 林业科学, 2023, 59 (11): 59- 67.
doi: 10.11707/j.1001-7488.LYKX20230198 |
|
Zuo W T, Meng J H, Lu M Z, et al. Effects of PagFBL3 gene on stem growth and development of Populus alba × P. glandulosa. Scientia Silvae Sinicae, 2023, 59 (11): 59- 67.
doi: 10.11707/j.1001-7488.LYKX20230198 |
|
舒文波, 赵树堂, 章晶晶, 等. 超量表达FBL1对84K杨根系和生长量影响研究. 林业科学研究, 2015, 28 (6): 871- 876.
doi: 10.3969/j.issn.1001-1498.2015.06.017 |
|
Shu W B, Zhao S T, Zhang J J, et al. Overexpressing FBL1 receptor led to root formation and growth of Populus alba × P. glandulosa cl. ‘84K’. Forest Research, 2015, 28 (6): 871- 876.
doi: 10.3969/j.issn.1001-1498.2015.06.017 |
|
徐慧芳, 陈 栩. 生长素研究现状及其在大豆育种中的应用. 中国科学: 生命科学, 2024, 54 (2): 247- 259.
doi: 10.1360/SSV-2023-0069 |
|
Xu H F, Chen X. Current opinions on auxin research and its application in soybean breeding. Scientia Sinica Vitae, 2024, 54 (2): 247- 259.
doi: 10.1360/SSV-2023-0069 |
|
张琦琦. 2024. ‘84K’杨内生菌脱菌体系及PagTMK家族部分形成层高表达基因功能研究. 武汉: 华中农业大学. | |
Zhang Q Q. 2024. Endophytes debacterization system and functional study of some cambium high-expression genes in the PagTMK family of '84K'. Wuhan: Huazhong Agriculture University. [in Chinese] | |
Björklund S, Antti H, Uddestrand I, et al. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant Journal, 2007, 52 (3): 499- 511.
doi: 10.1111/j.1365-313X.2007.03250.x |
|
Cao M, Chen R, Li P, et al. TMK1-mediated auxin signalling regulates differential growth of the apical hook. Nature, 2019, 568 (7751): 240- 243.
doi: 10.1038/s41586-019-1069-7 |
|
Chang C, Schaller G E, Patterson S E, et al. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase. Plant Cell, 1992, 4 (10): 1263- 1271. | |
Chen Y R, Yordanov Y S, Ma C, et al. DR5 as a reporter system to study auxin response in Populus. Plant Cell Reports, 2013, 32 (3): 453- 463.
doi: 10.1007/s00299-012-1378-x |
|
Cohen J D, Strader L C. An auxin research odyssey: 1989-2023. Plant Cell, 2024, 36 (5): 1410- 1428.
doi: 10.1093/plcell/koae054 |
|
Dai N, Wang W Y, Patterson S E, et al. The TMK subfamily of receptor-like kinases in Arabidopsis display an essential role in growth and a reduced sensitivity to auxin. PLoS One, 2013, 8 (4): e60990.
doi: 10.1371/journal.pone.0060990 |
|
Friml J, Gallei M, Gelová Z, et al. ABP1-TMK auxin perception for global phosphorylation and auxin canalization. Nature, 2022, 609 (7927): 575- 581.
doi: 10.1038/s41586-022-05187-x |
|
Heidstra R. Asymmetric cell division in plant development. Progress in Molecular and Subcellular Biology, 2007, 45, 1- 37. | |
Huang R F, Zheng R, He J, et al. Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (42): 21285- 21290. | |
Kepinski S, Leyser O. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature, 2005, 435 (7041): 446- 451.
doi: 10.1038/nature03542 |
|
Li L X, Verstraeten I, Roosjen M, et al. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. Nature, 2021, 599 (7884): 273- 277.
doi: 10.1038/s41586-021-04037-6 |
|
Lin W W, Zhou X, Tang W X, et al. TMK-based cell-surface auxin signalling activates cell-wall acidification. Nature, 2021, 599 (7884): 278- 282.
doi: 10.1038/s41586-021-03976-4 |
|
Marques-Bueno M M, Armengot L, Noack L C, et al. Auxin-regulated reversible inhibition of TMK1 signaling by MAKR2 modulates the dynamics of root gravitropism. Current Biology, 2021, 31 (1): 228- 237.
doi: 10.1016/j.cub.2020.10.011 |
|
Nilsson J, Karlberg A, Antti H, et al. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell, 2008, 20 (4): 843- 855.
doi: 10.1105/tpc.107.055798 |
|
Petrasek J, Friml J. Auxin transport routes in plant development. Development, 2009, 136 (16): 2675- 2688.
doi: 10.1242/dev.030353 |
|
Qiu D Y, Bai S L, Ma J C, et al. The genome of Populus alba x Populus tremula var. glandulosa clone 84K. DNA Research: an international journal for rapid publication of reports on genes and genomes, 2019, 26 (5): 423- 431.
doi: 10.1093/dnares/dsz020 |
|
Shu W B, Liu Y L, Guo Y H, et al. A Populus TIR1 gene family survey reveals differential expression patterns and responses to 1-naphthaleneacetic acid and stress treatments. Frontiers in Plant Science, 2015, 6, 719.
doi: 10.3389/fpls.2015.00719 |
|
Shu W B, Zhou H J, Jiang C, et al. The auxin receptor TIR1 homolog (PagFBL1) regulates adventitious rooting through interactions with Aux/IAA28 in Populus. Plant Biotechnology Journal, 2019, 17 (2): 338- 349.
doi: 10.1111/pbi.12980 |
|
Wang Q, Qin G C, Cao M, et al. 2020. A phosphorylation-based switch controls TAA1-mediated auxin biosynthesis in plants. Nature Communications, 11(1): 679. | |
Xu C Z, Shen Y, He F, et al. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytologist, 2019, 222 (2): 752- 767.
doi: 10.1111/nph.15658 |
|
Yang J, He H, He Y M, et al. 2021. TMK1-based auxin signaling regulates abscisic acid responses via phosphorylating ABI1/2 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 118(24): e2102544118. | |
Yu Z P, Zhang F, Friml J, et al. Auxin signaling: research advances over the past 30 years. Journal of Integrative Plant Biology, 2022, 64 (2): 371- 392.
doi: 10.1111/jipb.13225 |
[1] | Yang Jiao,Shen Wang,Zhixin Zeng,Jing Qiao,Haosen Yu,Qiqi Zhang,Mingxuan Qiu,Yining Pan,Wenbo Shu. Isolation, Identification and Sterilization Technology of 84K Poplar Tissue Culture Seedlings Infected with Bacteria [J]. Scientia Silvae Sinicae, 2025, 61(8): 106-115. |
[2] | Weiyue Wang,Yanfang Wan,Dongmei Wang,Pengtao Yu,Yanhui Wang,Yushi Bai. Slope Aspect Differences of Both the Radial Growth of Dominant Trees of Larix principis-rupprechtii and Main Environmental Influence Factors in Liupan Mountain [J]. Scientia Silvae Sinicae, 2025, 61(1): 26-36. |
[3] | Xiaodong Zhou,Shunli Chang,Guanzheng Wang,Xuejiao Sun,Yutao Zhang,Xiang Li. Altitude Differentiation of Radial Growth of Picea schrenkiana in Response to Climate Change in Tianshan Mountains [J]. Scientia Silvae Sinicae, 2024, 60(3): 45-56. |
[4] | Haotong Ma,Guangze Jin,Zhili Liu. Changes of Basal Area Growth of Pinus koraiensis with Tree Ages and Impact Factors in Xiaoxing’ anling Mountains, Northeast China [J]. Scientia Silvae Sinicae, 2023, 59(7): 96-105. |
[5] | Wenteng Zuo,Jiahui Meng,Mengzhu Lu,Liuqiang Wang. Effects of the Growth Hormone Receptor Gene PagFBL3 on Stem Growth and Development of Populus alba × P. glandulosa [J]. Scientia Silvae Sinicae, 2023, 59(11): 59-67. |
[6] | Kai Zhao,Yan Fan,Shengqiang Zou,Xuhui Huan,Shuhui Du,Youzhi Han,Shengji Wang. Cloning and Expression Analysis of PagMYBR 96 Involved in Salt Stress Response in Populus alba × P. glandulosa '84K' [J]. Scientia Silvae Sinicae, 2022, 58(9): 117-127. |
[7] | Yajing Xu,Jiawei Wang,Yanqiu Zhao,Cheng Jiang,Lichao Huang,Yi An,Wei Zeng,Jin Zhang,Mengzhu Lu. Effect of PagMSBP1/2a Gene of 84K Poplar on Lignin Biosynthesis [J]. Scientia Silvae Sinicae, 2022, 58(6): 56-65. |
[8] | Junguang Yao,Ya Geng,Yijing Liu,Yi An,Lichao Huang,Wei Zeng,Mengzhu Lu. Effects of S-Adenosylmethionine Decarboxylase Gene on Drought Tolerance of Populus alba × P. glandulosa '84K' [J]. Scientia Silvae Sinicae, 2022, 58(2): 125-132. |
[9] | Jian Yu,Jiajia Chen,Guang Zhou,Guohua Liu,Yongping Wang,Junqing Li,Qijing Liu. Response of Radial Growth of Abies forrestii and Picea likiangensis to Climate Factors in the Central Hengduan Mountains, Southwest China [J]. Scientia Silvae Sinicae, 2020, 56(12): 28-38. |
[10] | Bin Wang,Xianglin Tian,Tianjian Cao. Uncertainty Analysis of Height Predictions for Young Pinus tabulaeformis Using a Bayesian Approach [J]. Scientia Silvae Sinicae, 2020, 56(11): 73-86. |
[11] | Zhao Zhijiang, Guo Wenxia, Kang Dongwei, Cui Li, Zhao Lianjun, Li Junqing. Response of Radial Growth of Abies faxoniana and Picea purpurea to Climatic Factors in Subalpine of Western Sichuan [J]. Scientia Silvae Sinicae, 2019, 55(7): 1-16. |
[12] | Bai Xue, Fan Zexin. Response of Tree Ring Width to Climate Change of Tetracentron sinensis in Humid Evergreen Broad-Leaved Forest in the Middle Ailao Mountains [J]. Scientia Silvae Sinicae, 2018, 54(3): 161-167. |
[13] | Zu Xiaofeng, Ni Chengcai, Gorden Nigh, Qin Xianlin. Based on Mixed-Effects Model and Empirical Best Linear Unbiased Predictor to Predict Growth Profile of Dominant Height [J]. Scientia Silvae Sinicae, 2015, 51(3): 25-33. |
[14] | Zhang Xiongqing, Zhang Jianguo, Duan Aiguo. Tree-Height Growth Model for Chinese Fir Plantation Based on Bayesian Method [J]. Scientia Silvae Sinicae, 2014, 50(3): 69-75. |
[15] | Yang Chengchao, Huang Qinjun, Su Xiaohua. Correlation between Endogenous IAA, ABA Contents and Height Growth of Black Poplar at the Seedling Stage [J]. Scientia Silvae Sinicae, 2013, 49(8): 35-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||