Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (4): 104-116.doi: 10.11707/j.1001-7488.LYKX20230618
• Research papers • Previous Articles
Gao Wanting1,2,3, Hu Xiaochuang1,2,3, Sun Shoujia1,2,3, Zhang Jinsong1,2,3, Meng Ping1,2,3, Cai Jinfeng2
Received:
2023-12-15
Revised:
2024-05-28
Published:
2025-04-21
CLC Number:
Gao Wanting, Hu Xiaochuang, Sun Shoujia, Zhang Jinsong, Meng Ping, Cai Jinfeng. Prediction of the Distribution of Robinia pseudoacacia in China under Future Climate Change Using an Optimized MaxEnt Model[J]. Scientia Silvae Sinicae, 2025, 61(4): 104-116.
巢清尘, 李柔珂, 崔 童, 等. 2023. 中国气候变化科学认识进展及未来展望:中国《第四次气候变化国家评估报告·第一部分》解读. 中国人口·资源与环境, 33(1): 74–79. Chao Q C, Li R K, Cui T, et al. 2023. Scientific progress and future prospects in climate change: an interpretation of Part 1 of China’s Fourth National Assessment Report on Climate Change. China Population, Resources and Environment, 33(1): 74–79. [in Chinese] 高宗渊. 2023. 水分胁迫对刺槐生理特性的影响. 特种经济动植物, 26(6): 70-72. Gao Z Y. 2023. Effects of water stress on physiological characteristics of Robinia pseudoacacia. Special Economic Animals and Plants, 26(6): 70-72. [in Chinese] 汲玉河, 周广胜, 李宗善. 2023. 气候变化驱动下黄土高原刺槐林气候适宜性和脆弱性. 生态学报, 43(8): 3348-3358. Ji Y H, Zhou G S, Li Z S. 2023. Climate suitability and vulnerability of Robinia pseudoacacia forest driven by climate change on the Loess Plateau. Acta Ecologica Sinica, 43(8): 3348-3358. [in Chinese] 兰雪涵, 王金玲, 付 聪, 等. 2022. 基于优化MaxEnt模型的天女木兰在中国适生区预测. 西北林学院学报, 37(4): 100-106. Lan X H, Wang J L, Fu C, et al. 2022. Prediction of suitable distribution area of Magnolia sieboldii in China based on the optimized MaxEnt model. Journal of Northwest Forestry University, 37(4): 100-106. [in Chinese] 李平平, 王彦辉, 段文标, 等. 2023. 黄土高原刺槐人工林立地指数变化及评价. 林业科学, 59(4): 18-31. Li P P, Wang Y H, Duan W B, et al. 2023. Variation and evaluation of site index of black locust plantations on the Loess Plateau of northwest China. Scientia Silvae Sinicae, 59(4): 18-31. [in Chinese] 刘 阳, 苗 晨, 王鹤松. 2023. 气候变化对落叶松人工林在中国适生区分布的影响. 生态学报, 43(23): 9686-9698. Liu Y, Miao C, Wang H S. 2023. Influence of climate change on distribution of suitable areas of Larix plantation in China. Acta Ecologica Sinica, 43(23): 9686-9698. [in Chinese] 刘亚玲, 信忠保, 李宗善, 等. 2023. 黄土丘陵区小流域不同海拔刺槐径向生长对气候的响应差异. 生态学报, 43(24): 10119-10130. Liu Y L, Xin Z B, Li Z S, et al. 2023. Growth characteristics and biomass of artificial Robinia pseudoacacia in the Loess Hilly and Gully areas. Acta Ecologica Sinica, 43(24): 10119-10130. [in Chinese] 荣文文, 黄 祥, 牛攀新, 等. 2023. 基于最大熵模型的中药材木贼麻黄潜在适生区. 生态学报, 43(20): 8631-8646. Rong W W, Huang X, Niu P X, et al. 2023. Potentially suitable areas for traditional Chinese medicinal material Ephedra equisetina based on MaxEnt model. Acta Ecologica Sinica, 43(20): 8631-8646. [in Chinese] 万辛如, 程超源, 白德凤, 等. 2023. 气候变化的生态影响及适应对策. 中国科学院院刊, 38(3): 518-527. Wan X R, Cheng C Y, Bai D F, et al. 2023. Ecological impacts of climate change and adaption strategies. Bulletin of Chinese Academy of Sciences, 38(3): 518-527. [in Chinese] 王 蕾, 张百超, 石 英, 等. 2022. IPCC AR6报告关于气候变化影响和风险主要结论的解读. 气候变化研究进展, 18(4): 389-394. Wang L, Zhang B C, Shi Y, et al. 2022. Interpretation of the IPCC AR6 on the impacts and risks of climate change. Climate Change Research, 18(4): 389-394. [in Chinese] 王晓帆, 段雨萱, 金露露, 等. 2023. 基于优化的最大熵模型预测中国高山栎组植物的历史、现状与未来分布变化. 生态学报, 43(16): 6590-6604. Wang X F, Duan Y X, Jin L L, et al. 2023. Prediction of historical, present and future distribution of Quercussect. Heterobalanus based on the optimized MaxEnt model in China. Acta Ecologica Sinica, 43(16): 6590-6604. [in Chinese] 向竣文, 张利平, 邓 瑶, 等. 2021. 基于CMIP6的中国主要地区极端气温/降水模拟能力评估及未来情景预估. 武汉大学学报(工学版), 54(1): 46-57, 81. Xiang J W, Zhang L P, Deng Y, et al. 2021. Projection and evaluation of extreme temperature and precipitation in major regions of China by CMIP6 models. Engineering Journal of Wuhan University, 54(1): 46-57, 81. [in Chinese] 张彦静, 斯 琴, 胡 洁, 等. 2023. 气候变化情景下裸冠菊在中国的潜在适生区分布预测. 生态学报, 43(21): 8852-8864. Zhang Y J, Si Q, Hu J, et al. 2023. Prediction of the potential geographical distribution of the invasive plant Gymnocoronis spilanthoides in China under climate change. Acta Ecologica Sinica, 43(21): 8852-8864. [in Chinese] 赵蓬晖, 张江涛, 王 念. 2017. 刺槐原产地分布及世界各国引种与研究概况. 河南林业科技, 37(1): 30-32. Zhao P H, Zhang J T, Wang N. 2017. The original distribution introduction and development of Robinia pserdoacacia. Journal of Henan Forestry Science and Technology, 37(1): 30-32. [in Chinese] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述. 气候变化研究进展, 15(5): 445-456. Zhou T J, Zou L W, Chen X L. 2019. Commentary on the coupled model intercomparison project phase 6 (CMIP6). Climate Change Research, 15(5): 445-456. [in Chinese] 朱耿平, 乔慧捷. 2016. Maxent模型复杂度对物种潜在分布区预测的影响. 生物多样性, 24(10): 1189-1196. Zhu G P, Qiao H J. 2016. Effect of the Maxent model’s complexity on the prediction of species potential distributions. Biodiversity Science, 24(10): 1189-1196. [in Chinese] Anderegg W R L, Trugman A T, Badgley G, et al. 2020. Divergent forest sensitivity to repeated extreme droughts. Nature Climate Change, 10(12): 1091-1095. Anderson R P, Raza A. 2010. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37(7): 1378-1393. Anibaba Q A, Dyderski M K, Jagodziński A M. 2022. Predicted range shifts of invasive giant hogweed (Heracleum mantegazzianum) in Europe. Science of the Total Environment, 825: 154053. Bjorkman A D, Myers-Smith I H, Elmendorf S C, et al. 2018. Plant functional trait change across a warming tundra biome. Nature, 562(7725): 57-62. Bradley B A. 2009. Regional analysis of the impacts of climate change on cheatgrass invasion shows potential risk and opportunity. Global Change Biology, 15(1): 196-208. Buckman-Sewald J, Whorton C R, Root K V. 2014. Developing macrohabitat models for bats in parks using maxent and testing them with data collected by citizen scientists. International Journal of Biodiversity and Conservation, 6(2): 171-183. Cao Y W, Hwarari D, Radani Y, et al. 2023. Molecular Mechanism Underlying Plant Response to Cold Stress. Phyton-International Journal of Experimental Botany, 92(9): 2665-2683. Chen W D, Wei J, Zhu K, et al. 2022. Predicting potential distribution of Emmenopterys henryi in Southwest China based on the Maxent model and influencing factors. Tropical Ecology, 63(4): 572-583. Cobos M E, Peterson A T, Barve N, et al. 2019. Kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ, 7: e6281. Cui Y H, Bi H X, Liu S Q, et al. 2020. Developing additive systems of biomass equations for Robinia pseudoacacia L. in the region of Loess Plateau of western Shanxi Province, China. Forests, 11(12): 1332. Dormann C F, Elith J, Bacher S, et al. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1): 27-46. Dyderski M K, Paź S, Frelich L E, et al. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology, 24(3): 1150–1163. Elith J, Leathwick J R. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40: 677–697. Fourcade Y, Engler J O, Rödder D, et al. 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS One, 9(5): e97122. Gan J Y, He G, Yu Y L, et al. 2022. Maxent model predictions of climate change impacts on the suitable distribution of crayfish aquaculture in China. Indian Journal of Animal Research, 56(10): 1295-1300. Grossiord C, Bachofen C, Gisler J, et al. 2022. Warming may extend tree growing seasons and compensate for reduced carbon uptake during dry periods. Journal of Ecology, 110(7): 1575-1589. Guisan A, Zimmermann N E. 2000. Predictive habitat distribution models in ecology. Ecological Modelling, 135(2/3): 147-186. Hulme M, Zhao Z C, Jiang T. 1994. Recent and future climate change in east Asia. International Journal of Climatology, 14(6): 637-658. Kafaei S, Karami P, Mehdizadeh R, et al. 2021. Relationship between niche breadth and range shifts of Rhinopoma muscatellum (Chiroptera: Rhinopomatidae) in climate change scenarios in arid and semiarid mountainous region of Iran. Journal of Mountain Science, 18(9): 2357-2376. Khadka D, Babel M S, Abatan A A, et al. 2022. An evaluation of CMIP5 and CMIP6 climate models in simulating summer rainfall in the Southeast Asian monsoon domain. International Journal of Climatology, 42(2): 1181-1202. Li G Q, Xu G H, Guo K, et al. 2014. Mapping the global potential geographical distribution of black locust (Robinia pseudoacacia L. ) using herbarium data and a maximum entropy model. Forests, 5(11): 2773-2792. Li K J, Liu X F, Zhang J H, et al. 2023. Complexity responses of Rhododendron species to climate change in China reveal their urgent need for protection. Forest Ecosystems, 10: 100124. Little E L Jr. 1978. Atlas of United States trees. volume 5, Florida. Washington, D. C: U. S. Department of Agriculture, Forest Service. Liu J M, Xu Y Y, Sun C W, et al. 2022. Distinct ecological habits and habitat responses to future climate change in three east and southeast Asian Sapindus species. Forest Ecology and Management, 507: 119982. Liu M X, Yang C L, Mu R L. 2023. Effect of soil water–phosphorus coupling on the photosynthetic capacity of Robinia pseudoacacia L. seedlings in semi-arid areas of the Loess Plateau, China. Environmental Monitoring and Assessment, 195(8): 932. Martínez-Minaya J, Cameletti M, Conesa D, et al. 2018. Species distribution modeling: a statistical review with focus in spatio-temporal issues. Stochastic Environmental Research and Risk Assessment, 32(11): 3227-3244. Meng H, Wei X, Franklin S B, et al. 2017. Geographical variation and the role of climate in leaf traits of a relict tree species across its distribution in China. Plant Biology, 19(4): 552-561. Meynard C N, Quinn J F. 2007. Predicting species distributions: a critical comparison of the most common statistical models using artificial species. Journal of Biogeography, 34(8): 1455-1469. Morales N S, Fernández I C, Baca-González V. 2017. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ, 5: e3093. Nicolescu V N, Rédei K, Mason W L, et al. 2020. Ecology, growth and management of black locust (Robinia pseudoacacia L. ), a non-native species integrated into European forests. Journal of Forestry Research, 31(4): 1081-1101. Norberto M, Sillero N, Coimbra J, et al. 2023. Filling the maize yield gap based on precision agriculture–A MaxEnt approach. Computers and Electronics in Agriculture, 211: 107970. Pan S, Peng D L, Li Y M, et al. 2023. Potential global distribution of the guava root-knot nematode Meloidogyne enterolobii under different climate change scenarios using MaxEnt ecological niche modeling. Journal of Integrative Agriculture, 22(7): 2138-2150. Parmesan C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637–669. Peng S S, Piao S L, Ciais P, et al. 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501(7465): 88-92. Phillips S J, Anderson R P, Schapire R E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3/4): 231-259. Popp A, Calvin K, Fujimori S, et al. 2017. Land-use futures in the shared socio-economic pathways. Global Environmental Change, 42: 331-345. Puchałka R, Dyderski M K, Vítková M, et al. 2021. Black locust (Robinia pseudoacacia L. ) range contraction and expansion in Europe under changing climate. Global Change Biology, 27(8): 1587-1600. Quintero I, Wiens J J. 2013. Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecology Letters, 16(8): 1095-1103. Quiroga M P, Souto C P. 2022. Ecological niche modeling, niche overlap, and good old Rabinowitz’s rarities applied to the conservation of gymnosperms in a global biodiversity hotspot. Landscape Ecology, 37(10): 2571-2588. Ridder N N, Pitman A J, Ukkola A M. 2021. Do CMIP6 climate models simulate global or regional compound events skillfully? Geophysical Research Letters, 48(2): e2020GL091152. Sekercioglu C H, Schneider S H, Fay J P, et al. 2008. Climate change, elevational range shifts, and bird extinctions. Conservation Biology, 22(1): 140-150. Shi X D, Wang J W, Zhang L, et al. 2023. Prediction of the potentially suitable areas of Litsea cubeba in China based on future climate change using the optimized MaxEnt model. Ecological Indicators, 148: 110093. Shrestha U B, Sharma K P, Devkota A, et al. 2018. Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecological Indicators, 95: 99-107. Sigdel S R, Wang Y F, Camarero J J, et al. 2018. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Global Change Biology, 24(11): 5549-5559. Su Z X, Su B Q, Mao S L, et al. 2023. Leaf C: N: P stoichiometric homeostasis of a Robinia pseudoacacia plantation on the Loess Plateau. Journal of Forestry Research, 34(4): 929-937. Walkovszky A. 1998. Changes in phenology of the locust tree (Robinia pseudoacacia L. ) in Hungary. International Journal of Biometeorology, 41(4): 155-160. Walther G R, Post E, Convey P, et al. 2002. Ecological responses to recent climate change. Nature, 416(6879): 389-395. Wan G Z, Wang L, Jin L, et al. 2021. Evaluation of environmental factors affecting the quality of Codonopsis pilosula based on chromatographic fingerprint and MaxEnt model. Industrial Crops and Products, 170: 113783. Werenkraut V, Arbetman M P, Fergnani P N. 2022. The oriental hornet (Vespa orientalis L. ): a threat to the americas? Neotropical Entomology, 51(2): 330-338. Xu L L, Meng P, Tong X J, et al. 2022. Productivity and water use efficiency of Pinus tabulaeformis responses to climate change in the temperate monsoon region. Agricultural and Forest Meteorology, 327: 109188. Yang W J, Sun S X, Wang N X, et al. 2023. Dynamics of the distribution of invasive alien plants (Asteraceae) in China under climate change. Science of the Total Environment, 903: 166260. Zhang X T, He P, Guo L F, et al. 2023. Potential carbon sequestration and economic value assessment of the relict plant Ginkgo biloba L. based on the maximum entropy model. Forests, 14(8): 1618. Zhao Y, Deng X W, Xiang W H, et al. 2021. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecological Informatics, 64: 101393. Zheng T, Sun J Q, Shi X J, et al. 2022. Evaluation of climate factors affecting the quality of red Huajiao (Zanthoxylum bungeanum maxim. ) based on UPLC-MS/MS and MaxEnt model. Food Chemistry: X, 16: 100522. Zheng Y X, Yuan C, Matsushita N, et al. 2023. Analysis of the distribution pattern of the ectomycorrhizal fungus Cenococcum geophilum under climate change using the optimized MaxEnt model. Ecology and Evolution, 13(9): e10565. Zhong X R, Zhang L, Zhang J B, et al. 2023. Maxent modeling for predicting the potential geographical distribution of Castanopsis carlesii under various climate change scenarios in China. Forests, 14(7): 1397. |
[1] | Xu Ke’er, Tang Luyao, Zhang Bona, Ye Linfeng, Wang Zhongyuan, Xie Jiangbo. Variation in Functional Traits of Sophora japonica across a Precipitation Gradient [J]. Scientia Silvae Sinicae, 2025, 61(4): 81-91. |
[2] | Niuniu Cui,Jianzhuang Pang,Yifan Zhang,Hang Xu,Qin Zhang,Zhiqiang Zhang. Impacts of Climate Change and Vegetation Restoration on Hydrology in a Typical Watershed of Haihe Basin: A Case Study of Qingshuihe Watershed in Zhangjiakou [J]. Scientia Silvae Sinicae, 2025, 61(3): 38-49. |
[3] | Yun Huang,Liliang Xu,Bofu Zheng,Xu Song,Fangqing Hu,Jinqi Zhu,Wei Wan. Responses of Productivity and Carbon Use Efficiency of Typical Subtropical Forests to Climate Change [J]. Scientia Silvae Sinicae, 2025, 61(3): 121-134. |
[4] | Yutian Zhang,Junnan Shi,Huaiqing Zhang,Binglun Wu. Spatiotemporal Patterns and Driving Forces of Vegetation Restoration and Degradation in Dongting Lake Wetland [J]. Scientia Silvae Sinicae, 2024, 60(8): 1-13. |
[5] | Lixia Chen,Feng Lu,Hongxing Jiang,Ge Sun,Xiupeng Yue,Yixuan Wang,Tong Gao,Xingbo Hu,Changqing Ding. Predicting the Distribution of Suitable Habitats for Oriental Storks Based on Satellite Tracking in Yellow River Delta [J]. Scientia Silvae Sinicae, 2024, 60(8): 46-56. |
[6] | Jiaojun Zhu,G. Geoff Wang,Huaiqing Zhang,Tian Gao. On the Research of Climate-Smart Forestry [J]. Scientia Silvae Sinicae, 2024, 60(7): 1-7. |
[7] | Zhao Zhuqi, Hu Zhenhong, He Xian, Huang Zhiqun. Research Progresses on the Dynamics of Microbial Community Establishment in Woody Debris [J]. Scientia Silvae Sinicae, 2024, 60(2): 106-117. |
[8] | Jiayan Shen,Zexin Fan,Hui Zhang,Xinhua Peng,Jinhua Li,Xiao Yu,Wenxiong Yang,Yunfang Li,Xinyu Li,Yuening Liu,Jianrong Su. Response Heterogeneity of Radial Growth of the Three Pine Species to Climate Factors in Yunnan Province [J]. Scientia Silvae Sinicae, 2024, 60(11): 48-62. |
[9] | Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios [J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74. |
[10] | Lei Liu,Lijuan Zhao,Jiaqi Liu,Huisheng Zhang,Zhiwei Zhang,Ruifen Huang,Ruihe Gao. Potentially Suitable Distribution Areas of Monochamus alternatus in China under Current and Future Climatic Scenarios Based on Optimized MaxEnt Model [J]. Scientia Silvae Sinicae, 2024, 60(11): 139-148. |
[11] | Panpan Xue,Ning Miao,Ximing Yue,Qiong Tao,Yuandong Zhang,Qiuhong Feng,Kangshan Mao. Divergence Phenomenon of Radial Growth of Minjiang Fir in Response to Warming at Different Slope Aspects and Elevations on the Eastern Margin of the Tibetan Plateau [J]. Scientia Silvae Sinicae, 2023, 59(7): 65-77. |
[12] | Tianrun Cai,Jia Guo,Ziyi Wang,Yaxin Song,Shumin Zhang,Minsheng Yang,Jun Zhang. Spatial Pattern Analysis of Clonal Growth of Robinia pseudoacacia in Mountainous Areas Based on SSR Molecular Markers [J]. Scientia Silvae Sinicae, 2023, 59(6): 19-27. |
[13] | Xuelei Wei,Guogang Zhang,Ru Jia,Yunrui Ji,Hongying Xu,Zeyu Yang,Huajin Liu,Yulin Liu,Peiyu Yang. Variation of Waterbird Diversity and Its Affecting Factors in Xingkai Lake, Heilongjiang Province [J]. Scientia Silvae Sinicae, 2023, 59(6): 118-129. |
[14] | Juan Han,Yapeng Li,Yanting Tian,Qi Guo,Yun Li,Yuhan Sun,Yongping Deng,Dongsheng Niu,Lizhuo Su,Xiuyu Li,Zuodeng Peng. Optimization of Efficient Regeneration System of Robinia pseudoacacia Leavesin vitro [J]. Scientia Silvae Sinicae, 2023, 59(4): 68-78. |
[15] | Ya Wang,Junhui Wang,Fude Wang,Yifu Liu,Cancan Tan,Yanchao Yuan,Wen Nie,Jianfeng Liu,Ermei Chang,Zirui Jia. Simulation of Suitable Distribution Areas of Picea koraiensis in China Since the Last Interglacial and Under Future Climate Scenarios [J]. Scientia Silvae Sinicae, 2023, 59(12): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||