Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (1): 115-125.doi: 10.11707/j.1001-7488.LYKX20240088
• Research papers • Previous Articles Next Articles
Cuiping Wu1,Caoliang Jin1,Jianping Ying2,Jinwei Suo1,Jiasheng Wu1,Yuanyuan Hu1,*()
Received:
2024-02-15
Online:
2025-01-25
Published:
2025-02-09
Contact:
Yuanyuan Hu
E-mail:hyy_1985@zafu.edu.cn
CLC Number:
Cuiping Wu,Caoliang Jin,Jianping Ying,Jinwei Suo,Jiasheng Wu,Yuanyuan Hu. Effects of Quota Water Addition on Anatomical Changes and Gene Expression in Aril Cracking of Torreya grandis cv. ‘Merrilii’ During Near Maturity Stage[J]. Scientia Silvae Sinicae, 2025, 61(1): 115-125.
Fig.1
Changes in soil moisture content after water addition Data are mean ± SD. Different letters denote significant differences among the different growth stages under each treatment at P < 0.05. Asterisk indicates the significant differences between CK and WA at the same growth stage: *, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001, ns, P > 0.05."
Table 1
Primers for RT-qPCR"
基因 Gene | 上游引物 Forward primers (5'-3') | 下游引物 Reverse primer (5'-3') |
Q-TgEXP1 | GCGCGTAGCTGCTTCTATTA | AGCGTAAGAGGCCCATATCT |
Q-TgEXP2 | AAGAAGCTTCGTTGACCCG | CCGAGTTGAGCCATTACGG |
Q-TgEXP3 | AAAATGGGCATCCTACGCTC | TCCATTAACCATCCCAGGGTA |
Q-TgEXP4 | TGCAGTGTTGCTGTTTCTCA | CGCCATAAAATGTAGCGTGC |
Q-TgEXP5 | CGCCAAATATCGACCTGGAA | GCCAAACTAATGCAGCGTAG |
Q-TgEXP6 | TCTGTGGTTATCTCCTCGTCT | CATCGCTGCCACCATAGAA |
Q-TgEXP7 | AGCTGTACTCAAGACTGCTCT | ATTGCTAAGATACCCACCAGG |
Q-TgEXP8 | TGGCCTTTCTCTGTGGGTAA | ATCACCGCCCCCATAAAATG |
Q-TgPME1 | TAATCCGAGCTACTGAGGCT | ACTATCAATGCCGAAGCCAG |
Q-TgPME2 | TTCTTGGCTAGGTTCGATGC | TACGCCATTACGCTCCTCTA |
Q-TgACO1 | GGAACAGTGAAGCCCTGAAG | GGATGTTGCCCTCTCAGAAA |
Q-TgACO2 | TGCCTCCCTTTTCTGGTTTG | CATTTGCAATTTGGGCCATGA |
Fig.2
Changes in appearance, cracking rate, firmness, ethylene production volume of aril in Torreya grandis cv ‘Merrilli’ after water addition Note: A-B Appearance and cross-section ; C, Cracking rate; D, Firmness; E, Ethylene production volume; F, Pink and dark blue lines are the correlation analysis between craking rate, firmness, and the ethylene production volume, respectively. Data are mean ± SD. Different letters denote significant differences among the different growth stages under the water addition and control treatment at P< 0.05. Asterisk indicates the significant differences between CK and WA at the same growth stage: *, P≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001, ns, P > 0.05."
Fig.3
Changes in cell structure and epidermal cell layer, parenchymatous cell layer of aril in Torreya grandis cv ‘Merrilli’ after water addition A. Cross section of aril; B. Specific data of cell structure; a. Epidermal cell layer; b. Parenchyma cell layer; c.Endocarp cell lay; Red arrow:Broken resin canals."
Fig.4
Changes in cell wall components of aril in Torreya grandis cv ‘Merrilli’ after water addition A. Alcohol insoluble solids content; B. Pectin content; C. Hemicellulose content; D. Cellulose content; E. Lignin content; F. Correlation analysis, in which pink and sky blue lines are the correlation between cracking rate and WSP and CSP, respectively, and yellow and deep sky blue lines are the correlation between hardness and WSP and CSP, respectively."
安普南, 杨晓旭, 刘 畅, 等. 菜豆种皮开裂过程中木质素含量及相关酶活变化. 黑龙江大学工程学报, 2021, 12 (2): 90- 96. | |
An P N, Yang X X, Liu C, et al. Changes in lignin content and related enzyme activities during seed coat dehiscence of kidney bean. Journal of Engineering of Heilongjiang University, 2021, 12 (2): 90- 96. | |
曹建康, 姜微波, 赵玉梅. 2007. 果蔬采后生理生化实验指导. 北京: 中国轻工业出版社. | |
Cao J K, Jiang W B, Zhao Y M. 2007. Experimental guidance of postharvest physiology and biochemistry of fruits and vegetables. Beijing: China Light Industry Press. [in Chinese] | |
高美玲, 于长宝, 魏晓明, 等. 抗裂与易裂果西瓜果皮解剖结构及酶活性比较. 北方园艺, 2016, 40 (20): 92- 96. | |
Gao M L, Yu C B, Wei X M, et al. Comparison of anatomical structure and enzyme activity of crack-resistant and susceptible fruit watermelon. Northern Horticulture, 2016, 40 (20): 92- 96. | |
郭红彦, 白晋华, 段风琴, 等. 钙处理对‘壶瓶枣’裂果细胞壁降解酶活性及组织结构的影响. 园艺学报, 2019, 46 (8): 1486- 1494. | |
Guo H Y, Bai J H, Duan F Q, et al. Effect of CaCl2 treatment on cell wall degrading enzymes activities and microstructure of fruit cracking of Ziziphus Jujuba ‘Huping Zao’. Chinese Journal of Horticulture, 2019, 46 (8): 1486- 1494. | |
阚 娟, 刘 俊, 金昌海. 桃果实成熟软化与细胞壁降解相关糖苷酶及乙烯生物合成的关系. 中国农业科学, 2012, 45 (14): 2931- 2938.
doi: 10.3864/j.issn.0578-1752.2012.14.016 |
|
Kan J, Lin J, Jin C H. Study on the relationship between peach fruit softening, cell wall degradation related glycosidase and ethlylene biosynthesis. Scientia Agricultura Sinica, 2012, 45 (14): 2931- 2938.
doi: 10.3864/j.issn.0578-1752.2012.14.016 |
|
雷 琴, 任小林. 秦冠和富士苹果果实成熟过程中的质地变化特性. 西北农业学报, 2007, (1): 213- 216.
doi: 10.3969/j.issn.1004-1389.2007.01.052 |
|
Lei Q, Ren X L. Characteristics of texture change with qinguan and fuji apples during ripening. Acta Agriculturae Boreali-Occidentalis Sinica, 2007, (1): 213- 216.
doi: 10.3969/j.issn.1004-1389.2007.01.052 |
|
李冬冬. 2022. 温室番茄的灌溉致裂力学机制研究. 杨凌: 西北农林科技大学. | |
Li D D. 2022. Mechanical mechanism of irrigation-induced cracking to tomato fruit in greenhouse. Yangling: Northwest A&F University. [in Chinese] | |
李 敏. 2013. 乙烯调控早熟苹果果实软化和裂果机理的初步研究. 泰安: 山东农业大学. | |
Li M. 2013. The study on the mechanisms of ethylene-regulated early ripening apple fruit softening and dehiscence. Tai’an: Shandong Agricultural University. [in Chinese] | |
黎章矩, 戴文圣. 2007. 中国香榧. 北京: 科学出版社. | |
Li Z J, Dai W S. 2007. Chinese Torreya grandis. Beijing: China Science Press. [in Chinese] | |
林敏娟, 张晶晶, 王建宇, 等. 枣裂果生理特性与相关基因的表达分析. 山西农业大学学报(自然科学版), 2021, 41 (6): 67- 74. | |
Lin M J, Zhang J J, Wang J Y, et al. Physiological characteristics of Jujube fruit cracking and expression analysis of related genes. Journal of Shanxi Agricultural University(Natural Science Edition), 2021, 41 (6): 67- 74. | |
朱暖暖. 2021. 灌水对高温胁迫下玉米生长发育及产量的调控效应. 郑州: 河南农业大学. | |
Zhu N N. 2021. Regulating effects of irrigation on maize (Zea mays L.) growth and yield under high temperature stress . Zhengzhou: Henan Agricultural University. [in Chinese] | |
单燕飞, 王为宇, 项伟霞, 等. 堆沤温度对后熟过程中榧籽主要营养物质变化的影响. 林业科学, 2019, 55 (7): 46- 56.
doi: 10.11707/j.1001-7488.20190705 |
|
Shan Y F, Wang W Y, Xiang W X, et al. Effect of retting temperature on transformation of main nutrients in seeds of different Torreya grandis cultivars during after-ripening period. Scientia Silvae Sinicae, 2019, 55 (7): 46- 56.
doi: 10.11707/j.1001-7488.20190705 |
|
沈家怡. 2022. 氮沉降下香榧假种皮开裂机制的初探. 杭州: 浙江农林大学. | |
Shen J Y. 2022. Preliminary study on cracking mechanism of Torreya grandis aril under nitrogen deposition. Hangzhou: Zhejiang A & F University. [in Chinese] | |
沈家怡, 吴翠萍, 姚 佳, 等. 香榧假种皮开裂过程中组织结构、细胞壁代谢的变化. 林业科学, 2023, 59 (2): 86- 95.
doi: 10.11707/j.1001-7488.LYKX20220314 |
|
Shen J Y, Wu C P, Yao J, et al. Changes of anatomic structure and cell wall metabolism of Torreya grandis cv. ‘Merrilii’ aril during cracking. Scientia Silvae Sinicae, 2023, 59 (2): 86- 95.
doi: 10.11707/j.1001-7488.LYKX20220314 |
|
辛海青, 周军永, 孙耀星, 等. 枣易裂与抗裂品种灌水后果皮结构和扩张蛋白基因表达差异研究. 园艺学报, 2021, 48 (9): 1785- 1793. | |
Xin H Q, Zhou J Y, Sun Y X, et al. Differences in the pericarp structure and the expression of expansin genes after irrigation between easily cracked and resistant jujube. Chinese Journal of Horticulture, 2021, 48 (9): 1785- 1793. | |
杨芯芳. 2021. 水分处理对枣裂果及品质的影响. 阿拉尔: 塔里木大学. | |
Yang Q F. 2021. Effect of water treatment on fruit cracking and quality of jujube . Aral: Tarim University. [in Chinese] | |
叶 珊, 王为宇, 周敏樱, 等. 不同采收成熟度和堆沤方式对香榧种子堆沤后熟品质的影响. 林业科学, 2017, 53 (11): 43- 51.
doi: 10.11707/j.1001-7488.20171105 |
|
Ye S, Wang W Y, Zhou M Y, et al. Effects of different harvest maturity and after-ripening ways on the harvested quality of Torreya grandis ‘Merrillii’ seeds. Scientia Silvae Sinicae, 2017, 53 (11): 43- 51.
doi: 10.11707/j.1001-7488.20171105 |
|
张彦苹, 王 晨, 朱旭东. 2023. 膨大期果面喷施IAA对桃成熟期果实性状和相关基因表达的影响. 西北植物学报, 43(9): 1499-1508. | |
Zhang Y P, Wang C, Zhu X D. 2023. Effects of IAA treatment at expansion stage on fruit traits and related gene expression in peach fruit at ripening stage. Acta Botanica Boreali-Occidentalia Sinica,43(9):1499-1508. [in Chinese] | |
Balbontín C, Ayala H, M Bastías R, et al. Cracking in sweet cherries: A comprehensive review from a physiological, molecular, and genomic perspective. Chilean Journal of Agricultural Research, 2013, 73 (1): 66- 72.
doi: 10.4067/S0718-58392013000100010 |
|
Bennett A B, Labavitch J M. Ethylene and ripening-regulated expression and function of fruit cell wall modifying proteins. Plant Science, 2008, 175, 130- 136.
doi: 10.1016/j.plantsci.2008.03.004 |
|
Brummell D A, Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol, 2001, 47 (1-2): 311- 40. | |
Chen J J, Duan Y J, Hu Y L, et al. Transcriptome analysis of atemoya pericarp elucidates the role of polysaccharide metabolism in fruit ripening and cracking after harvest. BMC Plant Biology, 2019, 19, 219.
doi: 10.1186/s12870-019-1756-4 |
|
Huang W N, Liu H K, Zhang H H, et al. Ethylene-induced changes in lignification and cell wall-degrading enzymes in the roots of mungbean (Vigna radiata) sprouts. Plant Physiology & Biochemistry, 2013, 73, 412- 419. | |
Jiang F, Lopez A, Jeon S, et al. Disassembly of the fruit cell wall by the ripening-associated polygalacturonase and expansin influences tomato cracking. Horticulture research, 2019, 6, 17.
doi: 10.1038/s41438-018-0105-3 |
|
Kasai S, Hayama H, Kashimura Y, et al. Relationship between fruit cracking and expression of the expansin gene MdEXPA3 in ‘Fuji’apples (Malus domestica Borkh. ). Scientia Horticulturae, 2008, 116 (2): 194- 198.
doi: 10.1016/j.scienta.2007.12.002 |
|
Khadivi-Khub A. Physiological and genetic factors influencing fruit cracking. Acta Physiologiae Plantarum, 2015, 37 (1): 1- 14. | |
Knoche M, Peschel S. Studies on water transport through the sweet cherry fruit surface. VI. Effect of hydrostatic pressure on water uptake. The Journal of Horticultural Science and Biotechnology, 2002, 77 (5): 609- 614.
doi: 10.1080/14620316.2002.11511546 |
|
Knoche M, Winkler A. The mechanism of rain cracking of sweet cherry fruit. Italus Hortus, 2019, 26 (1): 59- 65. | |
Li N, Fu L J, Song Y Q, et al. Water entry in jujube fruit and its relationship with cracking. Aca Physiol Plant, 2019, 41, 162.
doi: 10.1007/s11738-019-2954-2 |
|
Mineo S, Naoya Y, Miho H, et al. Accumulation of proanthocyanidins and/or lignin deposition in buff-pigmeted soybean seed coats may lead to frequent defective cracking. Planta, 2017, 245 (3): 659- 670.
doi: 10.1007/s00425-016-2638-8 |
|
Moctezuma E, Smith D L, Gross K C. Antisense suppression of a β‐galactosidase gene (TBG6) in tomato increases fruit cracking. Journal of experimental botany, 2003, 54 (390): 2025- 2033.
doi: 10.1093/jxb/erg214 |
|
Mohnen D. Pectin structure and biosynthesis. Curr Opin Plant Biol, 2008, 11 (3): 266- 77.
doi: 10.1016/j.pbi.2008.03.006 |
|
Oeller P W, Lu M I N W, Taylor L P, et al. Reversible inhibition of tomato fruit senescence by antisense RNA. Science, 1991, 254 (5030): 437- 439.
doi: 10.1126/science.1925603 |
|
Seo H, Sawant S S, Song J. Fruit cracking in pears: its cause and management- a review. Agronomy, 2022, 12, 2437.
doi: 10.3390/agronomy12102437 |
|
Vicente A R, Powell A, Greve L C, et al. Cell wall disassembly events in boysenberry (Rubus idaeus L. Rubus ursinus Cham. & Schldl. ) fruit development. Functional Plant Biology, 2007, 34 (7): 614- 623.
doi: 10.1071/FP07002 |
|
Wakabayashi K, Chun J P, Huber D J. Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Persea americana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiologia Plantarum, 2000, 108, 345- 352. | |
Wakasa Y, Kudo H, Ishikawa R, et al. Low expression of an endopolygalacturonase gene in apple fruit with long-term storage potential. Postharvest Biology and Technology, 2006, 39, 193- 198.
doi: 10.1016/j.postharvbio.2005.10.005 |
|
Wang A, Tan D, Tatsuki M, et al. Molecular mechanism of distinct ripening profiles in ‘Fuji’ apple fruit and its early maturing sports. Postharvest Biology and Technology, 2009, 52 (1): 38- 43.
doi: 10.1016/j.postharvbio.2008.09.001 |
|
Wang Y, Lu W J, Li J G, et al. Differential expression of two expansin genes in developing fruit of cracking-susceptible and-resistant litchi cultivars. Journal of the American Society for Horticultural Science, 2006, 131 (1): 118- 121.
doi: 10.21273/JASHS.131.1.118 |
|
Wu J S, Huang J D, Hong Y W, et al. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway. Industrial Crops and Products, 2018, 120, 47- 60.
doi: 10.1016/j.indcrop.2018.04.041 |
|
Xue L, Sun M, Wu Z, et al. LncRNA regulates tomato fruit cracking by coordinating gene expression via a hormone-redox-cell wall network. BMC Plant Biology, 2020a, 20, 162.
doi: 10.1186/s12870-020-02373-9 |
|
Xue C, Guan S C, Chen J Q, et al. Genome wide identification and functional characterization of strawberry pectin methylesterases related to fruit softening. BMC plant biology, 2020b, 20 (1): 13.
doi: 10.1186/s12870-019-2225-9 |
|
Yan J W, Zeng H, Chen WJ, et al. New insights into the carotenoid biosynthesis in Torreya grandis kernels. Horticultural Plant Journal, 2023, 9 (6): 1108- 1118.
doi: 10.1016/j.hpj.2023.02.010 |
|
Zhang Z Y, Shi Y N, Ma Y C, et al. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. Plant Biotechnology Journal, 2020, 18 (11): 2267- 2279.
doi: 10.1111/pbi.13382 |
[1] | Liang Hu,Meng’en Xing,Hongyuan Fang,Hanyu Liu,Zhiqi Du,Nan Wang,Yanmei Sun,Wenzhong Fan,Lichao Feng. Life History and Soil Ecological Adaptability of Profenusa thomsoni(Hymenoptera: Tenthredinidae), an Invasive Birch Leaf Miner [J]. Scientia Silvae Sinicae, 2023, 59(5): 121-127. |
[2] | Jiayi Shen,Cuiping Wu,Jia Yao,Jiasheng Wu,Rui Zhang,Yuanyuan Hu. Changes of Anatomic Structure and Cell Wall Metabolism of Torreya grandis cv. ‘Merrilii’ Aril during Cracking [J]. Scientia Silvae Sinicae, 2023, 59(2): 86-95. |
[3] | Miao Zhang,Shengcai Zhou,Mengjie Wu,Zaikang Tong,Xiao Han,Junhong Zhang,Longjun Cheng. Identification of the PbWRKY Gene Family and Its Expression Analysis under Deficiency of Phosphorus in Phoebe bournei [J]. Scientia Silvae Sinicae, 2022, 58(2): 133-147. |
[4] | Fang Tang,Shutang Zhao,Lijuan Wang,Xueqin Song,Mengzhu Lu. Gene Expression of Secondary Vascular System Regeneration in Populus tomentosa [J]. Scientia Silvae Sinicae, 2021, 57(9): 52-65. |
[5] | Zhen Li,Tingting Yuan,Chenglei Zhu,Kebin Yang,Xinzhang Song,Zhimin Gao. Molecular Characteristics and Patterns of Gene Expression of Ammonium Transporter in Moso Bamboo [J]. Scientia Silvae Sinicae, 2021, 57(7): 70-79. |
[6] | Xiaotong Kang,Hui Chen. Cloning and Expression of alpha-pinene synthase and (-)-limonene synthase Genes in Pinus armandi [J]. Scientia Silvae Sinicae, 2021, 57(6): 180-188. |
[7] | Yahui Miao,Dan Ju,Kehao Liang,Aibin Wang,Junling Liu,Lingyun Zhang. Cloning and Functional Analysis of Transcription Factor Gene PwNF-YB8 from Picea wilsonii [J]. Scientia Silvae Sinicae, 2021, 57(5): 77-92. |
[8] | Xinyi Zhou,Liqiong Yan,Yuntong Lü,Lili Sun,Jingwen Zhu,Chuanwang Cao. Activities and Gene Expressions of Phenylpropane Metabolic Enzymes in Populus simonii×P. nigra by Herbivore Induction of Lymantria dispar (Lepidoptera: Lymantriidae) [J]. Scientia Silvae Sinicae, 2021, 57(3): 108-116. |
[9] | Minhao Liu,Long Li,Jing Ye,Xuanyuan Zhou,Zhouqi Li,Ruishen Fan,Junlei Xu. Genome-Wide Identification and Expression Analysis of the ARF Gene Family in Eucommia ulmoides [J]. Scientia Silvae Sinicae, 2021, 57(3): 170-180. |
[10] | Kunjin Han,Juanjuan Guo,Ziqing Lü,Yuyan Li,Shijie Wang,Minsheng Yang,Jinmao Wang. Detection of Resistance of Multi-Gene Transgenic Populus×euramericana 'Neva' to Target Pests [J]. Scientia Silvae Sinicae, 2021, 57(11): 85-93. |
[11] | Limin Wang,Yahui Chen,Qingshan Yang,Ritao Qu,Jiang Jiang,Jinchi Zhang,Hongxia Zhang,Zhizhong Song. Cloning and Functional Analysis of Potassium Channel Gene PdbSKOR in Populus davidiana×P. bolleana [J]. Scientia Silvae Sinicae, 2021, 57(1): 53-63. |
[12] | Chenglei Zhu,Kebin Yang,Xiurong Xu,Shuang Ma,Xiaopei Li,Zhimin Gao. Molecular Characteristics of NIP Genes in Phyllostachys edulis and Their Expression Patterns in Response to Stresses [J]. Scientia Silvae Sinicae, 2021, 57(1): 64-76. |
[13] | Weibo Sun,Xindong Gong,Yan Zhou,Hongyan Li. Photosynthetic Characteristics of Transgenic Poplars with Maize PEPC and PPDK Gene at Young Plant Stage [J]. Scientia Silvae Sinicae, 2020, 56(7): 33-43. |
[14] | Zhongyuan Liu,Zheng Liu,Ying Xu,Shanshan Liu,Zhilan Tian,Qingjun Xie,Caiqiu Gao. Cloning and Salt Tolerance Analysis of Transcription Factor HSFA4 from Betula platyphylla [J]. Scientia Silvae Sinicae, 2020, 56(5): 69-79. |
[15] | Bi Liang,Jiaqi Zhang,Fei Ren,Hengkang Hu,Chuanmei Xu,Yuanyuan Hu,Youjun Huang,Heqiang Lou,Qixiang Zhang. Cloning and Expression Analysis of Ent-Kaurene Oxidase Gene CcKo in Carya cathayensis [J]. Scientia Silvae Sinicae, 2020, 56(10): 70-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||