Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 111-123.doi: 10.11707/j.1001-7488.LYKX20230041
Previous Articles Next Articles
Yuanhao Qi1,2,Zhengyang Hou1,2,*,Taixun Liu3,Qing Xu4
Received:
2023-02-05
Online:
2024-09-25
Published:
2024-10-08
Contact:
Zhengyang Hou
CLC Number:
Yuanhao Qi,Zhengyang Hou,Taixun Liu,Qing Xu. Effects of Modeling Assumptions on the Estimation of Stem Volume with Model-Based Inference[J]. Scientia Silvae Sinicae, 2024, 60(9): 111-123.
Table 1
Summary of the spectral indices"
光谱指数 Spectral indices | 计算公式 Formula |
增强型植被指数Enhanced vegetation index (EVI) | 2.5(NIR ? R)/(NIR + 6R ? 7.5B + 1) |
广义化差分植被指数Generalized difference vegetation index (GDVI) | (NIR2 ? R2)/(NIR2 + R2) |
归一化差值植被指数Normalized difference vegetation index (NDVI) | (NIR ? R)/(NIR + R) |
归一化差值水体指数Normalized difference water index (NDWI) | (NIR ? SWIR2)/(NIR + SWIR) |
有效叶面积指数Specific leaf area vegetation indexm (SLAVI) | NIR/(R + SWIR2) |
比值植被指数Simple ratio (SR) | NIR/R |
Table 3
Several model assumptions"
假设情形 | Case 1 线性模型 | Case 2 非线性模型 |
Cases | Linear models | Nonlinear models |
同方差假设 Homogeneous variance assumption | Case 1.1 | Case 2.1 |
异方差假设 Heteroscedastic variance assumption | Case 1.2 | Case 2.2 |
指数方差函数 Exponential variance function | Case 1.2.1 | Case 2.2.1 |
幂方差函数 Power variance function | Case 1.2.2 | Case 2.2.2 |
“四步法”方差函数 “4-step procedure”variance function | Case 1.2.3 | Case 2.2.3 |
空间自相关假设 Spatial autocorrelation assumption | Case 1.3 | Case 2.3 |
Table 4
Summary of the models"
模型 Models | 假设情形 Cases | 均方根误差 RMSE | 自变量 Independent variable | 模型参数估计值 Estimate | 模型参数标准误估计 Std. error |
Case 1 线性模型 Linear models | Case 1.1 | 4.458 | 截距项 Intercept | ?7.452 | 1.214 |
EVI | 12.925 | 1.055 | |||
Case 1.2.1 | 4.474 | 截距项 Intercept | ?6.344 | 0.992 | |
EVI | 11.823 | 1.024 | |||
Case 1.2.2 | 4.480 | 截距项 Intercept | ?6.086 | 0.924 | |
EVI | 11.622 | 0.972 | |||
Case 1.2.3 | 4.480 | 截距项 Intercept | ?6.086 | 0.769 | |
EVI | 11.615 | 0.903 | |||
Case 1.3.1 | 4.475 | 截距项 Intercept | ?6.298 | 1.009 | |
EVI | 11.786 | 1.035 | |||
Case 1.3.2 | 4.480 | 截距项 Intercept | ?6.069 | 0.942 | |
EVI | 11.610 | 0.984 | |||
Case 1.3.3 | 4.478 | 截距项 Intercept | ?6.145 | 0.803 | |
EVI | 11.676 | 0.924 | |||
Case 2 非线性模型 Nonlinear models | Case 2.1 | 4.416 | 1.582 | 0.091 | |
EVI | 2.235 | 0.227 | |||
Case 2.2.1 | 4.417 | 1.567 | 0.076 | ||
EVI | 2.288 | 0.215 | |||
Case 2.2.2 | 4.417 | 1.563 | 0.075 | ||
EVI | 2.295 | 0.209 | |||
Case 2.2.3 | 4.416 | 1.582 | 0.118 | ||
EVI | 2.232 | 0.266 | |||
Case 2.3.1 | 4.416 | 1.574 | 0.078 | ||
EVI | 2.263 | 0.220 | |||
Case 2.3.2 | 4.416 | 1.569 | 0.078 | ||
EVI | 2.274 | 0.213 | |||
Case 2.3.3 | 4.417 | 1.568 | 0.074 | ||
EVI | 2.279 | 0.205 |
Table 5
Effects of model assumptions on the mean estimator and variance estimators of model-based inference"
模型 Models | 假设情形 Cases | 均值估计量 | 解析法方差估计量 | 抽样精度 Sampling precision (%) | 自助法方差估计量 |
Case 1 线性模型 Linear models | Case 1.1 | 7.306 | 0.147 | 94.75 | 0.148 |
Case 1.2.1 | 7.208 | 0.147 | 94.68 | 0.153 | |
Case 1.2.2 | 7.251 | 0.148 | 94.69 | 0.152 | |
Case 1.2.3 | 7.244 | 0.151 | 96.64 | 0.152 | |
Case 1.3.1 | 7.159 | 0.153 | 94.53 | 0.146 | |
Case 1.3.2 | 7.203 | 0.154 | 94.55 | 0.143 | |
Case 1.3.3 | 7.189 | 0.164 | 94.36 | 0.196 | |
Case 2 非线性模型 Nonlinear models | Case 2.1 | 7.289 | 0.148 | 94.72 | 0.149 |
Case 2.2.1 | 7.316 | 0.147 | 94.76 | 0.147 | |
Case 2.2.2 | 7.298 | 0.147 | 94.75 | 0.148 | |
Case 2.2.3 | 7.331 | 0.221 | 93.59 | 0.237 | |
Case 2.3.1 | 7.321 | 0.156 | 94.61 | 0.154 | |
Case 2.3.2 | 7.304 | 0.156 | 94.60 | 0.153 | |
Case 2.3.3 | 7.303 | 0.153 | 94.64 | 0.202 |
Table 6
The number of points inside and outside the confidence domain and their percentage"
模型 Models | 假设情形 Cases | 置信域内点数 Points within the confidence domain | 置信域外点数 Points outside the confidence domain | 置信域内点数占比 Points within the confidence domain(%) | 置信域外点数占比 Points outside the confidence domain(%) |
Case 1 线性模型 Linear models | Case1.1 | 27 751 | 2 249 | 92.50 | 7.50 |
Case 1.2.1 | 28 808 | 1 192 | 96.03 | 3.97 | |
Case 1.2.2 | 28 705 | 1 295 | 95.68 | 4.32 | |
Case 1.2.3 | 24 981 | 5 019 | 83.27 | 16.73 | |
Case 1.3.1 | 28 895 | 1 105 | 96.32 | 3.68 | |
Case 1.3.2 | 28 801 | 1 199 | 96.00 | 4.00 | |
Case 1.3.3 | 22 744 | 7 256 | 75.81 | 24.19 | |
Case 2 非线性模型 Nonlinear models | Case 2.1 | 26 034 | 3 966 | 86.78 | 13.22 |
Case 2.2.1 | 28 458 | 1 542 | 94.86 | 5.14 | |
Case 2.2.2 | 28 375 | 1 625 | 94.58 | 5.42 | |
Case 2.2.3 | 20 808 | 9 192 | 69.36 | 30.64 | |
Case 2.3.1 | 29 051 | 949 | 96.84 | 3.16 | |
Case 2.3.2 | 28 322 | 1 678 | 94.41 | 5.59 | |
Case 2.3.3 | 26 500 | 3 500 | 88.33 | 11.67 |
冯益明, 唐守正, 李增元. 空间统计分析在林业中的应用. 林业科学, 2004, 40 (3): 149- 155.
doi: 10.3321/j.issn:1001-7488.2004.03.026 |
|
Feng Y M, Tang S Z, Li Z Y. Application of spatial statistic analysis in forestry. Scientia Silvae Sinicae, 2004, 40 (3): 149- 155.
doi: 10.3321/j.issn:1001-7488.2004.03.026 |
|
李永慈, 唐守正. 带度量误差的全林整体模型参数估计研究. 北京林业大学学报, 2006, 28 (1): 23- 27.
doi: 10.3321/j.issn:1000-1522.2006.01.004 |
|
Li Y C, Tang S Z. Parameter estimate of the whole stand model with measurement error. Journal of Beijing Forestry University, 2006, 28 (1): 23- 27.
doi: 10.3321/j.issn:1000-1522.2006.01.004 |
|
曾伟生. 森林资源清查成果的有效数字问题. 华东森林经理, 1997, 11 (1): 12- 15. | |
Zeng W S. Effective figures of forest resources inventory results. East China Forest Management, 1997, 11 (1): 12- 15. | |
曾伟生, 唐守正. 利用度量误差模型方法建立相容性立木生物量方程系统. 林业科学研究, 2010, 23 (6): 797- 803. | |
Zeng W S, Tang S Z. Using measurement error modeling method to establish compatible single-tree biomass equations system. Forest Research, 2010, 23 (6): 797- 803. | |
曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析. 林业科学研究, 2011, 24 (2): 137- 143. | |
Zeng W S, Tang S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models. Forest Research, 2011, 24 (2): 137- 143. | |
Arevalo J. Improving woodfuel governance in Burkina Faso: the experts’ assessment. Renewable and Sustainable Energy Reviews, 2016, 57, 1398- 1408.
doi: 10.1016/j.rser.2015.12.178 |
|
Breidenbach J, Antón-Fernández C, Petersson H, et al. Quantifying the model-related variability of biomass stock and change estimates in the Norwegian national forest inventory. Forest Science, 2014, 60 (1): 25- 33.
doi: 10.5849/forsci.12-137 |
|
Breidenbach J, Kublin E, McGaughey R, et al. Mixed-effects models for estimating stand volume by means of small footprint airborne laser scanner data. The Photogrammetric Journal of Finland, 2008, 21 (1): 4- 15. | |
Breidenbach J, McRoberts R E, Astrup R. Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume. Remote Sensing of Environment, 2016, 173, 274- 281.
doi: 10.1016/j.rse.2015.07.026 |
|
Chatterjee S, Hadi A S. 2006. Regression analysis by example: chatterjee/regression. Hoboken, NJ, USA, John Wiley & Sons, Inc. | |
Chave J, Andalo C, Brown S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 2005, 145 (1): 87- 99.
doi: 10.1007/s00442-005-0100-x |
|
Davidson R, MacKinnon J G. 1993. Estimation and inference in econometrics. New York: Oxford University Press. | |
Deming W E, Stephan F F. On the interpretation of censuses as samples. Journal of the American Statistical Association, 1941, 36 (213): 45- 49.
doi: 10.1080/01621459.1941.10502070 |
|
Efron B. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 1979, 7 (1): 1- 26. | |
Esteban J, McRoberts R E, Fernández-Landa A, et al. A model-based volume estimator that accounts for both land cover misclassification and model prediction uncertainty. Remote Sensing, 2020, 12 (20): 3360.
doi: 10.3390/rs12203360 |
|
Fortin M J, James P M A, MacKenzie A, et al. Spatial statistics, spatial regression, and graph theory in ecology. Spatial Statistics, 2012, 1, 100- 109.
doi: 10.1016/j.spasta.2012.02.004 |
|
Fuller W A. 1987. Measurement error models. New York: John Wiley & Sons. | |
Gobakken T, Næsset E, Nelson R, et al. Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning. Remote Sensing of Environment, 2012, 123, 443- 456.
doi: 10.1016/j.rse.2012.01.025 |
|
Gregoire T G, Lin Q F, Boudreau J, et al. Regression estimation following the square-root transformation of the response. Forest Science, 2008, 54 (6): 597- 606.
doi: 10.1093/forestscience/54.6.597 |
|
Harrell F E Jr. 2001. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York, NY: Springer. | |
Hou Z Y, Xu Q, McRoberts R E, et al. Effects of temporally external auxiliary data on model-based inference. Remote Sensing of Environment, 2017, 198, 150- 159.
doi: 10.1016/j.rse.2017.06.013 |
|
Jonsson K, Ong C K, Odongo J C W. Influence of scattered néré and karité trees on microclimate, soil fertility and millet yield in Burkina Faso. Experimental Agriculture, 1999, 35 (1): 39- 53.
doi: 10.1017/S0014479799001039 |
|
Lambert M C, Ung C H, Raulier F. Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research, 2005, 35 (8): 1996- 2018.
doi: 10.1139/x05-112 |
|
MacKinnon J G, White H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 1985, 29 (3): 305- 325.
doi: 10.1016/0304-4076(85)90158-7 |
|
Magnussen S, Breidenbach J, Mauro F. The challenge of estimating a residual spatial autocorrelation from forest inventory data. Canadian Journal of Forest Research, 2017, 47 (11): 1557- 1566.
doi: 10.1139/cjfr-2017-0247 |
|
Mauro F, Monleon V J, Temesgen H, et al. Analysis of spatial correlation in predictive models of forest variables that use LiDAR auxiliary information. Canadian Journal of Forest Research, 2017, 47 (6): 788- 799.
doi: 10.1139/cjfr-2016-0296 |
|
McRoberts R E, V C Lessard. 2001. Estimating the uncertainty in diameter growth model predictions and its effects on the uncertainty of annual inventory estimates. Proceedings of the Second annual Forest Inventory and Analysis symposium, Salt Lake City, UT, 70−75. | |
McRoberts R E. A model-based approach to estimating forest area. Remote Sensing of Environment, 2006, 103 (1): 56- 66.
doi: 10.1016/j.rse.2006.03.005 |
|
McRoberts R E, Chen Q, Domke G M, et al. Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology and Management, 2016, 378, 44- 56.
doi: 10.1016/j.foreco.2016.07.007 |
|
McRoberts R E, Chen Q, Gormanson D D, et al. The shelf-life of airborne laser scanning data for enhancing forest inventory inferences. Remote Sensing of Environment, 2018a, 206, 254- 259.
doi: 10.1016/j.rse.2017.12.017 |
|
McRoberts R E, Næsset E, Gobakken T, et al. Assessing components of the model-based mean square error estimator for remote sensing assisted forest applications. Canadian Journal of Forest Research, 2018b, 48 (6): 642- 649.
doi: 10.1139/cjfr-2017-0396 |
|
McRoberts R E, Næsset E, Gobakken T. Estimation for inaccessible and non-sampled forest areas using model-based inference and remotely sensed auxiliary information. Remote Sensing of Environment, 2014, 154, 226- 233.
doi: 10.1016/j.rse.2014.08.028 |
|
McRoberts R E, Tomppo E O, Vibrans A C, et al. Design considerations for tropical forest inventories. Pesquisa Florestal Brasileira, 2013, 33 (74): 189- 202.
doi: 10.4336/2013.pfb.33.74.430 |
|
Næsset E. Estimating above-ground biomass in young forests with airborne laser scanning. International Journal of Remote Sensing, 2011, 32 (2): 473- 501.
doi: 10.1080/01431160903474970 |
|
Nelson R, Krabill W, Tonelli J. Estimating forest biomass and volume using airborne laser data. Remote Sensing of Environment, 1988, 24 (2): 247- 267.
doi: 10.1016/0034-4257(88)90028-4 |
|
Nicholson S E. A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Climate Dynamics, 2009, 32 (7): 1155- 1171. | |
Pinheiro J C. 2000. Linear mixed-effects models: basic concepts and examples//Pinheiro J C, Bates D M. Mixed-effects models in S and S-PLUS. New York: Springer. | |
Rahlf J, Breidenbach J, Solberg S, et al. Comparison of four types of 3D data for timber volume estimation. Remote Sensing of Environment, 2014, 155, 325- 333.
doi: 10.1016/j.rse.2014.08.036 |
|
Saarela S, Schnell S, Grafström A, et al. Effects of sample size and model form on the accuracy of model-based estimators of growing stock volume. Canadian Journal of Forest Research, 2015, 45 (11): 1524- 1534.
doi: 10.1139/cjfr-2015-0077 |
|
Saarela S, Wästlund A, Holmström E, et al. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data, accounting for tree-level allometric and LiDAR model errors. Forest Ecosystems, 2020, 7 (1): 43.
doi: 10.1186/s40663-020-00245-0 |
|
Seber G A F, Wild C J. 1989. Nonlinear regression. New York: Wiley, 1989. | |
Solow A R. Bootstrapping correlated data. Journal of the International Association for Mathematical Geology, 1985, 17 (7): 769- 775.
doi: 10.1007/BF01031616 |
|
Vågen T G, Winowiecki L A, Tamene Desta L, et al. 2015. The land degradation surveillance framework (LDSF) - Field Guide v 4.1. Nairobi: World Agroforestry Centre. | |
Xu Q, Man A, Fredrickson M, et al. Quantification of uncertainty in aboveground biomass estimates derived from small-footprint airborne LiDAR. Remote Sensing of Environment, 2018, 216, 514- 528.
doi: 10.1016/j.rse.2018.07.022 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||