Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (9): 1-11.doi: 10.11707/j.1001-7488.LYKX20240214
Previous Articles Next Articles
Zhidan Zhang1(),Zhiguo Cao2,Guangxuan Yan2,Di Yao1,Qingqing Huang3,Jie Duan3,Yafei Wang3,Kai Wang3,Ni Zheng3,*
Received:
2024-04-23
Online:
2024-09-25
Published:
2024-10-08
Contact:
Ni Zheng
E-mail:1207639254@qq.com
CLC Number:
Zhidan Zhang,Zhiguo Cao,Guangxuan Yan,Di Yao,Qingqing Huang,Jie Duan,Yafei Wang,Kai Wang,Ni Zheng. Characterization of Retention of Atmospheric Particles by Five Typical Scenic Recreational Forests in Beijing[J]. Scientia Silvae Sinicae, 2024, 60(9): 1-11.
Table 1
Structure features and tree growth status of different experimental stands"
林分 编号 Stand ID | 林分类型 Stand type | 树种组成 Tree species composition | 平均树高 Average tree height/m | 平均胸径 Average DBH/cm | 郁闭度 Canopy density |
Ⅰ | 针阔混交林 Coniferous and broad-leaved mixed forest | 5华山松5银杏 5P. armandii 5G. biloba | 6.2/11.8 | 14.8/18.2 | 0.6 |
II | 阔叶混交林 broad-leaved mixed forest | 5毛白杨5白蜡 5P . tomentosa 5F . chinensis | 19.4/14.3 | 22.8/21.1 | 0.8 |
Ⅲ | 阔叶纯林 Pure broad-leaved forest | 10旱柳 10S . matsudana | 10.3 | 16 | 0.7 |
Ⅳ | 阔叶纯林 Pure broad-leaved forest | 10毛白杨 10P . tomentosa | 19.6 | 27.3 | 0.8 |
V | 多树种复层针阔混交林 Multi-tree layered conifer-broadleaf mixed forest | 4毛白杨3圆柏1侧柏 1白蜡1元宝枫+旱柳+栾树 4P . tomentosa 3S . chinensis 1P . orientalis 1F . chinensis 1A . truncatum+S . matsudana+ K . paniculata | 22.1/8.6/ 8.1/15.6/ 9.3/13.0/9.6 | 28.3/15.2/ 13.4/19.4/ 13.5/19.3/13.3 | 0.9 |
Table 2
The diameter distribution characteristics of particulate matter on the leaf surface of different tree species in various types of stands"
林分 Stand | 树种 Species | 粒径范围 Particle rage/μm | 粒径峰值 Peak particle size/μm | 粒径均值 Average particle size/μm |
Ⅰ | 华山松P. armandii | 0.38~133.75 | 22.73 | 19.6 |
银杏G. biloba | 0.38~83.90 | 20.71 | 15.4 | |
Ⅱ | 毛白杨P. tomentosa | 0.38~101.10 | 22.73 | 17.8 |
白蜡F. chinensis | 0.38~110.99 | 18.86 | 17.1 | |
Ⅲ | 旱柳S. matsudana | 0.38~194.23 | 24.95 | 31.4 |
Ⅳ | 毛白杨P. tomentosa | 0.38~101.10 | 11.83 | 16.2 |
Ⅴ | 毛白杨P. tomentosa | 0.38~133.75 | 10.78 | 19.1 |
旱柳S. matsudana | 0.38~256.95 | 22.73 | 35.7 | |
白蜡F. chinensis | 0.38~213.22 | 22.73 | 27.9 | |
圆柏S. chinensis | 0.38~146.82 | 11.83 | 17.2 | |
侧柏P. orientalis | 0.38~234.07 | 30.07 | 36.2 | |
栾树K. paniculata | 0.38~213.22 | 24.95 | 32.7 | |
元宝枫A. truncatum | 0.38~256.95 | 36.24 | 38.3 |
Table 3
Rank in the capacity of different-sized particulate matter retained by various tree species"
排序Rank | PM2.5 | PM10 | TSP |
1 | 华山松P. armandii | 银杏G. biloba | 元宝枫A. truncatum |
2 | 银杏G. biloba | 圆柏S. chinensis | 银杏G. biloba |
3 | 圆柏S. chinensis | 元宝枫A. truncatum | 栾树K. paniculata |
4 | 元宝枫A. truncatum | 栾树K. paniculata | 圆柏S. chinensis |
5 | 栾树K. paniculata | 华山松P. armandii | 华山松P. armandii |
6 | 白蜡F. chinensis | 侧柏P. orientalis | 侧柏P. orientalis |
7 | 毛白杨P. tomentosa | 白蜡F. chinensis | 旱柳S. matsudana |
8 | 侧柏P. orientalis | 旱柳S. matsudana | 白蜡F. chinensis |
9 | 旱柳S. matsudana | 毛白杨P. tomentosa | 毛白杨P. tomentosa |
阿丽亚·拜都热拉, 玉米提·哈力克, 塔依尔江·艾山, 等. 2015. 干旱区绿洲城市主要绿化树种最大滞尘量对比, 林业科学, 51(3): 57−64. | |
Aliya B, Umut H, Tayierjiang A, et al. 2015. Maximum dust retention of main greening trees in arid land oasis cities, northwest China. Scientia Silvae Sinicae, 51(3): 57−64. [in Chinese] | |
曹宏亮, 殷 杉, 章旭毅, 等. 基于UFORE模型的上海城市森林对大气PM2.5的削减量估算. 上海交通大学学报(农业科学版), 2016, 34 (5): 76- 83. | |
Cao H L, Yin S, Zhang X Y, et al. Modeled PM2.5 removal by urban forest in Shanghai. Journal of Shanghai JiaoTong University (Agricultural Science), 2016, 34 (5): 76- 83. | |
范舒欣, 晏 海, 齐石茗月, 等. 北京市26种落叶阔叶绿化树种的滞尘能力. 植物生态学报, 2015, 39 (7): 736- 745.
doi: 10.17521/cjpe.2015.0070 |
|
Fan S X, Yan H, Qi-Shi M Y, et al. Dust retention capacity of 26 deciduous broad-leaved greening tree species in Beijing. Chinese Journal of Plant Ecology, 2015, 39 (7): 736- 745.
doi: 10.17521/cjpe.2015.0070 |
|
樊 艺, 徐程扬. 城市森林结构与削减空气中PM2.5和PM10的耦合关系——以北京市海淀区中关村森林公园为例. 河北农业大学学报, 2023, 46 (5): 118- 128. | |
Fan Y, Xu C Y. Coupling structures of urban forest with air PM2.5 and PM10 reduction: a case study on Zhongguancun country park in Haidian, Beijing. Journal of Hebei Agricultural University, 2023, 46 (5): 118- 128. | |
高金晖, 王冬梅, 赵 亮, 等. 2007. 植物叶片滞尘规律研究: 以北京市为例. 北京林业大学学报, 29(2): 94−99. | |
Gao J H, Wang D M, Zhao L, et al. 2007. Airborne dust detainment by different plant leaves: taking Beijing as an example. Journal of Beijing Forestry University, 29(2): 94−99. [in Chinese] | |
古 琳, 王 成, 王艳英, 等. 夏季持续高温天气下无锡惠山游憩林内空气颗粒物变化特征. 林业科学, 2013, 49 (10): 66- 73. | |
Gu L, Wang C, Wang Y Y, et al. Variation in particle matters of recreational forests by the continued high temperature weather in Hui Mountain of Wuxi city. Scientia Silvae Sinicae, 2013, 49 (10): 66- 73. | |
郭二果, 王 成, 彭镇华, 等. 北京西山三种典型游憩林春季空气颗粒物日变化规律. 林业科学, 2009, 45 (6): 145- 148. | |
Guo E G, Wang C, Peng Z H, et al. Diurnal variation of airborne particulate matter in 3 typical recreation forests in west Mountain of Beijing area in spring. Scientia Silvae Sinicae, 2009, 45 (6): 145- 148. | |
郭亚男, 王爱霞, 邢建勋, 等. 不同季节路侧紫丁香绿带滞尘机制研究. 西北林学院学报, 2023, 38 (5): 279- 288.
doi: 10.3969/j.issn.1001-7461.2023.05.36 |
|
Guo Y N, Wang A X, Xing J X, et al. Dust retention mechanism of Syringa oblata green belt on roadsides in different seasons. Journal of Northwest Forestry University, 2023, 38 (5): 279- 288.
doi: 10.3969/j.issn.1001-7461.2023.05.36 |
|
韩冬荟. 2021. 城市森林及气候因子对大气颗粒物沉降影响研究. 哈尔滨: 东北林业大学. | |
Han D H. 2021. Effects of urban forests and meteorological factors on particulate matter deposition. Harbin: Northeast Forestry University. [in Chinese] | |
凯丽比努尔·努尔麦麦提, 玉米提·哈力克, 娜斯曼·那斯尔丁, 等. 乌鲁木齐市快速路绿化树种滞尘量与叶片结构特性分析. 西北林学院学报, 2022, 37 (2): 60- 67.
doi: 10.3969/j.issn.1001-7461.2022.02.08 |
|
Kalbinur N, Umuti H, Nasiman N, et al. Dust retention amount and leaf micro morphological structure of the greening species in the frostbelt along the expressway in Urumqi. Journal of Northwest Forestry University, 2022, 37 (2): 60- 67.
doi: 10.3969/j.issn.1001-7461.2022.02.08 |
|
李慧君, 李宏彬, 王 艳, 等. 大气颗粒物中微生物群落多样性及危害研究进展. 新乡医学院学报, 2015, 32 (2): 107- 110.
doi: 10.7683/xxyxyxb.2015.02.004 |
|
Li H J, Li H B, Wang Y, et al. Research progress on microbial community diversity and hazards in atmospheric particles. Journal of Xinxiang Medical University, 2015, 32 (2): 107- 110.
doi: 10.7683/xxyxyxb.2015.02.004 |
|
梁 丹, 王 彬, 王云琦, 等. 北京市典型绿化灌木阻滞吸附PM2.5能力研究. 环境科学, 2014, 35 (9): 3605- 3611. | |
Liang D, Wang B, Wang Y Q, et al. Ability of typical greenery shrubs of Beijing to adsorb and arrest PM2.5. Environmental Science, 2014, 35 (9): 3605- 3611. | |
李笑寒, 穆 森, 张 祥, 等. 北方城市绿地对大气颗粒物浓度的削减作用对比研究. 生态学报, 2024, 44 (10): 1- 13. | |
Li X H, Mu S, Zhang X, et al. Comparison of the reduction effects of green space on atmospheric particulate matter concentration in northern cities. Acta Ecologica Sinica, 2024, 44 (10): 1- 13. | |
刘欢欢, 曹治国, 贾黎明, 等. 基于超声清洗的植物叶片吸滞大气颗粒物定量评估——以银杏为例. 林业科学, 2016, 52 (12): 133- 140.
doi: 10.11707/j.1001-7488.20161216 |
|
Liu H H, Cao Z G, Jia L M, et al. Analysis of the role of ultrasonic cleaning in quantitative evaluation of the retention of tree leaves to atmospheric particles: a case study with Ginkgo biloba. Scientia Silvae Sinicae, 2016, 52 (12): 133- 140.
doi: 10.11707/j.1001-7488.20161216 |
|
刘金强, 曹治国, 郭泽敏, 等. 植物叶片表面水溶与非水溶性颗粒物滞纳量分离定量评估——以5种树种为例. 应用生态学报, 2019, 30 (5): 1763- 1771. | |
Liu J Q, Cao Z G, Guo Z M, et al. Quantitative evaluation for separation of water-soluble and water-insoluble particulate matter on leaf surface of tree species: taking five tree species as examples. Chinese Journal of Applied Ecology, 2019, 30 (5): 1763- 1771. | |
刘金强, 曹治国, 刘欢欢, 等. 基于超声清洗的树木叶面颗粒物粒径分布与吸滞效率研究——以银杏和油松为例. 植物生态学报, 2016, 40 (8): 798- 809.
doi: 10.17521/cjpe.2016.0100 |
|
Liu J Q, Cao Z G, Liu H H, et al. Ultrasonic based investigation on particle size distribution and retention efficiency of particulate matters retained on tree leaves: taking Ginkgo biloba and Pinus tabuliformis as examples. Chinese Journal of Plant Ecology, 2016, 40 (8): 798- 809.
doi: 10.17521/cjpe.2016.0100 |
|
王 兵, 张维康, 牛 香, 等. 北京10个常绿树种颗粒物吸附能力研究. 环境科学, 2015, 36 (2): 408- 414. | |
Wang B, Zhang W K, Niu X, et al. Particulate matter adsorption capacity of 10 evergreen species in Beijing. Environmental Science, 2015, 36 (2): 408- 414. | |
王会霞, 王彦辉, 杨 佳, 等. 不同绿化树种滞留PM2.5等颗粒污染物能力的多尺度比较. 林业科学, 2015, 51 (7): 9- 20.
doi: 10.11707/j.1001-7488.20150702 |
|
Wang H X, Wang Y H, Yang J, et al. Multi-scale comparisons of particulate matter and its size fractions deposited on leaf surfaces of major greening tree species. Scientia Silvae Sinicae, 2015, 51 (7): 9- 20.
doi: 10.11707/j.1001-7488.20150702 |
|
王科朴, 张语克, 刘雪华. 北京城市绿地对大气颗粒物的削减量计算. 环境科学与技术, 2020, 43 (4): 121- 129. | |
Wang K P, Zhang Y K, Liu X H. Modeled particulate matters removal by urban green lands in Beijing. Environmental Science & Technology, 2020, 43 (4): 121- 129. | |
王晓磊, 王 成. 城市森林调控空气颗粒物功能的研究现状与展望. 生态学报, 2014, 34 (8): 1910- 1921. | |
Wang X L, Wang C. Research status and prospects on functions of urban forests in regulating the air particulate matter. Acta Ecologica Sinica, 2014, 34 (8): 1910- 1921. | |
王赞红, 李纪标. 城市街道常绿灌木植物叶片滞尘能力及滞尘颗粒物形态. 生态环境, 2006, 15 (2): 327- 330. | |
Wang Z H, Li J B. Capacity of dust uptake by leaf surface of Euonymus Japonicus Thunb. and the morphology of captured particle in air polluted city. Ecology and Environment Sciences, 2006, 15 (2): 327- 330. | |
吴海龙, 余新晓, 师 忱, 等. PM2.5特征及森林植被对其调控研究进展. 中国水土保持科学, 2012, 10 (6): 116- 122. | |
Wu H L, Yu X X, Shi C, et al. Advances in the study of PM2.5 characteristic and the regulation of forests to PM2.5. Science of Soil and Water Conservation, 2012, 10 (6): 116- 122. | |
吴志萍, 王 成, 侯晓静, 等. 6种城市绿地空气PM2.5浓度变化规律的研究. 安徽农业大学学报, 2008, 35 (4): 494- 498. | |
Wu Z P, Wang C, Hou X J, et al. Variation of air PM2.5 concentration in six urban greenlands. Journal of Anhui Agricultural University, 2008, 35 (4): 494- 498. | |
肖 玉, 王 硕, 李 娜, 等. 北京城市绿地对大气PM2.5的削减作用. 资源科学, 2015, 37 (6): 1149- 1155. | |
Xiao Y, Wang S, Li N, et al. Atmospheric PM2.5 removal by green spaces in Beijing. Resources Science, 2015, 37 (6): 1149- 1155. | |
张维康, 王 兵, 牛 香. 北京不同污染地区园林植物对空气颗粒物的滞纳能力. 环境科学, 2015, 36 (7): 2381- 2388. | |
Zhang W K, Wang B, Niu X. Adsorption capacity of the air particulate matter in urban landscape plants in different polluted regions of Beijing. Environmental Science, 2015, 36 (7): 2381- 2388. | |
张志丹. 2016. 北京市典型林分对PM2.5等大气颗粒物调控作用研究. 北京: 北京林业大学. | |
Zhang Z D. 2016. Studies on regulation of typical forests to PM2.5 and other atmospheric particulate matter in Beijing. Beijing: Beijing Forestry University. | |
张志丹, 曹治国, 贾黎明. 北京4种典型风景游憩林对林内PM2.5的调控作用. 应用生态学报, 2015, 26 (11): 3475- 3481. | |
Zhang Z D, Cao Z G, Jia L M. Regulation of four typical scenic recreational plantations to stand PM2.5 concentration in Beijing, China. Chinese Journal of Applied Ecology, 2015, 26 (11): 3475- 3481. | |
张志丹, 席本野, 曹治国, 等. 植物叶片吸滞PM2.5等大气颗粒物定量研究方法初探——以毛白杨为例. 应用生态学报, 2014, 25 (8): 2238- 2242. | |
Zhang Z D, Xi B Y, Cao Z G, et al. Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example. Chinese Journal of Applied Ecology, 2014, 25 (8): 2238- 2242. | |
张子宜. 2012. 吉林省典型城市大气颗粒物中PAHs分布特征研究. 长春: 吉林大学. | |
Zhang Z Y. 2012. Study on the distribution characteristics of PAHs in particulate matter in typical cities of Jilin Province. Changchun: Jilin University. [in Chinese] | |
Cao Z G, Yu G, Chen Y S, et al. Particle size: a missing factor in risk assessment of human exposure to toxic chemicals in settled indoor dust. Environment International, 2012, 49, 24- 30.
doi: 10.1016/j.envint.2012.08.010 |
|
Chen Y, Ebenstein A, Greenstone M, et al. Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110 (32): 12936- 12941. | |
Hu W, Tallon L K, Si B C. Evaluation of time stability indices for soil water storage upscaling. Journal of Hydrology, 2012, 475, 229- 241.
doi: 10.1016/j.jhydrol.2012.09.050 |
|
Kim K, Jeon J, Jung H, et al. PM2.5 reduction capacities and their relation to morphological and physiological traits in 13 landscaping tree species. Urban Forestry & Urban Greening, 2022, 70, 127526. | |
Liu J Q, Cao Z G , Zou S Y, et al. 2018. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Science of Total Environment, 616/617: 417–426. | |
Liu X H, Yu X X, Zhang Z M. PM2.5 concentration differences between various forest types and its correlation with forest structure. Atmosphere, 2015, 6 (11): 1801- 1815.
doi: 10.3390/atmos6111801 |
|
Mochida A, Talata Y, Iwata T, et al. Examining tree canopy models for CFD prediction of wind environment at pedestrian level. Joumal of Wind Engineering and Industrial Aerodynamics, 2008, 96 (10/11): 1667- 1677. | |
Nowak D J, Crane D E, Stevens J C. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 2006, 4 (3/4): 115- 123. | |
Nowak D J, Hirabayashi S, Bodine A, et al. Modeled PM2.5 removal by trees in ten U. S. cities and associated health effects. Environmental Pollution, 2013, 178, 395- 402.
doi: 10.1016/j.envpol.2013.03.050 |
|
Popek R, Przybysza A, Gawrońska H, et al. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions. Ecotoxicology and Environmental Safety, 2018, 163, 56- 62.
doi: 10.1016/j.ecoenv.2018.07.051 |
|
Przybysz A, Sæbø A, Hanslin H M, et al. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time. Science of the Total Environment, 2014, 481, 360- 369.
doi: 10.1016/j.scitotenv.2014.02.072 |
|
Sæbø A, Popek R, Nawrot B, et al. Plant species differences in particulate matter accumulation on leaf surfaces. Science of the Total Environment, 2012, 427/428, 347- 354.
doi: 10.1016/j.scitotenv.2012.03.084 |
|
Song Y S, Maher B A, Li F, et al. Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmospheric Environment, 2015, 105, 53- 60.
doi: 10.1016/j.atmosenv.2015.01.032 |
|
Tiwary A, Sinnett D, Peachey C, et al. An integrated tool to assess the role of new planting in PM10 capture and the human health benefits: a case study in London. Environmental Pollution, 2009, 157 (10): 2645- 2653.
doi: 10.1016/j.envpol.2009.05.005 |
|
Wang H X, Maher B A, Ahmed I A, et al. Efficient removal of ultrafine particles from diesel exhaust by selected tree species: implications for roadside planting for improving the quality of urban air. Environmental Science & Technology, 2019, 53 (12): 6906- 6916. | |
Yang J, McBride J, Zhou J X, et al. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 2005, 3 (2): 65- 78. | |
Yue C, Cui K D, Duan J, et al. The retention characteristics for water-soluble and water-insoluble particulate matter of five tree species along an air pollution gradient in Beijing, China. Science of the Total Environment, 2021, 767, 145497.
doi: 10.1016/j.scitotenv.2021.145497 |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||