Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (12): 83-91.doi: 10.11707/j.1001-7488.LYKX20230533
Previous Articles Next Articles
Ruiyan Wei1,2,Weihua Zhang2,Fang Xu2,Yuanzhen Lin1,*()
Received:
2023-11-07
Online:
2024-12-25
Published:
2025-01-02
Contact:
Yuanzhen Lin
E-mail:.yzhlin@scau.edu.cn
CLC Number:
Ruiyan Wei,Weihua Zhang,Fang Xu,Yuanzhen Lin. Genomic Selection for Growth Traits and Early Selection of Superior Progeny in Castanopsis hystrix[J]. Scientia Silvae Sinicae, 2024, 60(12): 83-91.
Table 1
Distribution of SNPs in C. hystrix genome"
染色体号 Chromosome No. | Chr1 | Chr2 | Chr3 | Chr4 | Chr5 | Chr6 | Chr7 | Chr8 | Chr9 | Chr10 | Chr11 | Chr12 |
染色体长度 Chromosome size/Mb | 63.76 | 109.75 | 103.31 | 87.42 | 77.66 | 61.94 | 66.29 | 64.51 | 50.54 | 56.79 | 68.54 | 106.04 |
SNP数目SNP number | 60 835 | 83 426 | 97 191 | 72 637 | 65 273 | 53 556 | 59 774 | 56 819 | 45 687 | 54 151 | 52 119 | 89 409 |
SNP密度SNP density/(number·Mb?1) | 954.18 | 760.13 | 940.81 | 830.86 | 840.45 | 864.57 | 901.77 | 880.78 | 903.95 | 953.56 | 760.41 | 843.17 |
Table 2
GEBV and the comprehensive evaluation value of growth trait of the selected 15 candidates"
个体编号 Tree No. | H.GEBV (m) | DBH.GEBV (cm) | Qi | Qi排名 Qi rank | 家系号 Family NO. |
9.863 | 17.014 | 1.398 | 1 | F5 | |
10.055 | 16.618 | 1.397 | 2 | F5 | |
10.105 | 16.480 | 1.396 | 3 | F5 | |
10.320 | 16.096 | 1.395 | 4 | F8 | |
9.736 | 17.009 | 1.394 | 5 | F12 | |
10.129 | 16.352 | 1.394 | 6 | F29 | |
10.224 | 16.194 | 1.394 | 7 | F8 | |
9.946 | 16.592 | 1.392 | 8 | F8 | |
10.032 | 16.349 | 1.390 | 9 | F5 | |
10.094 | 16.237 | 1.390 | 10 | F29 | |
10.069 | 16.161 | 1.388 | 11 | F29 | |
9.941 | 16.354 | 1.387 | 12 | F5 | |
9.930 | 16.331 | 1.386 | 13 | F4 | |
9.981 | 16.224 | 1.386 | 14 | F29 | |
9.909 | 16.246 | 1.384 | 15 | F10 | |
Mean.s | 10.022 | 16.417 | — | — | — |
Mean.p | 9.370 | 15.600 | — | — | — |
曹 珂, 陈昌文, 杨选文, 等. 桃果实单果重及可溶性固形物含量的全基因组选择分析. 中国农业科学, 2023, 56 (5): 951- 963. | |
Cao K, Chen C W, Yang X W, et al. Genomic selection for fruit weight and soluble solid contents in peach. Scientia Agricultura Sinica, 2023, 56 (5): 951- 963. | |
丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价. 林业科学研究, 2016, 29 (3): 331- 339.
doi: 10.3969/j.issn.1001-1498.2016.03.004 |
|
Ding C J, Huang Q J, Zhang B Y, et al. Evaluation of important traits of different clones of north-typed Populus deltoides. Forest Research, 2016, 29 (3): 331- 339.
doi: 10.3969/j.issn.1001-1498.2016.03.004 |
|
李朋乐. 2022. 基于GBS-SNP开发的马尾松全基因组选择育种研究. 湖南: 中南林业科技大学. | |
Li P L. 2022. Study on genomic selection of Pinus massoniana based on GBS-SNP. Hunan: Central South University of Forestry & Technology. [in Chinese] | |
李 娜, 杨袁木, 徐 放, 等. 红锥优树无性系群体表型变异研究及综合选择. 中南林业科技大学学报, 2023, 43 (8): 73- 84. | |
Li N, Yang Y M, Xu F, et al. Phenotypic variation study and comprehensive selection of elite clonal populations of Castanopsis hystrix. Journal of Central South University of Forestry & Technology, 2023, 43 (8): 73- 84. | |
林元震. 林木基因型与环境互作的研究方法及其应用. 林业科学, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
Lin Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications. Scientia Silvae Sinicae, 2019, 55 (5): 142- 151.
doi: 10.11707/j.1001-7488.20190516 |
|
王鸣刚, 涂智杰, 丘小军, 等. 优质红锥种源遗传多样性的RAPD分析. 厦门大学学报(自然科学版), 2006, 45 (4): 570- 574. | |
Wang M G, Tu Z J, Qiu X J, et al. Genetic diversity of Castanopsis hystrix by RAPD analysis. Journal of Xiamen University (Natural Science), 2006, 45 (4): 570- 574. | |
肖丽娜, 魏瑞研, 谭芷茵, 等. AFEchidna—动植物育种数据遗传评估分析的R程序包. 林业与环境科学, 2022, 38 (5): 50- 56.
doi: 10.3969/j.issn.1006-4427.2022.05.009 |
|
Xiao L N, Wei R Y, Tan Z Y, et al. AFEchidna is a R package for genetic evaluation of plant and animal breeding datasets. Forestry and Environmental Science, 2022, 38 (5): 50- 56.
doi: 10.3969/j.issn.1006-4427.2022.05.009 |
|
徐 放, 杨晓慧, 廖焕琴, 等. 红锥天然分布区气候区区划. 林业与环境科学, 2017, 33 (2): 21- 28.
doi: 10.3969/j.issn.1006-4427.2017.02.004 |
|
Xu F, Liao H Q, Yang X H, et al. The climatic regionalization of the distributional region of Castanopsis hystrix. Forestry and Environmental Science, 2017, 33 (2): 21- 28.
doi: 10.3969/j.issn.1006-4427.2017.02.004 |
|
杨会肖, 廖焕琴, 杨晓慧, 等. 2代种子园红锥生长和形质性状遗传变异分析. 华南农业大学学报, 2017, 38 (5): 81- 85.
doi: 10.7671/j.issn.1001-411X.2017.05.014 |
|
Yang H X, Liao H Q, Yang X H, et al. Genetic variation analysis of growth and form traits of Castanopsis hystrix in the second generation seed orchard. Journal of South China Agricultural University, 2017, 38 (5): 81- 85.
doi: 10.7671/j.issn.1001-411X.2017.05.014 |
|
张苗苗, 王军辉, 卢 楠, 等. 林木全基因组选择研究现状和应用. 世界林业研究, 2021, 34 (4): 26- 32. | |
Zhang M M, Wang J H, Lu N, et al. Research progress and application of whole genomic selection in forest tree breeding. World Forestry Research, 2021, 34 (4): 26- 32. | |
朱积余, 蒋 燚, 潘 文. 广西红锥优树选择标准研究. 广西林业科学, 2002, 31 (3): 109- 113.
doi: 10.3969/j.issn.1006-1126.2002.03.001 |
|
Zhu J Y, Jiang Y, Pan W. Study on the selection criteria of Castanopsis hystrix superior tree in Guangxi. Guangxi Forestry Science, 2002, 31 (3): 109- 113.
doi: 10.3969/j.issn.1006-1126.2002.03.001 |
|
Bartholome J, Van Heerwaarden J, Isik F, et al. Performance of genomic prediction within and across generations in maritime pine. BMC Genomics, 2016, 17 (1): 604.
doi: 10.1186/s12864-016-2879-8 |
|
Beaulieu J, Doerksen T, Clément S, et al. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity, 2014, 113 (4): 343- 352.
doi: 10.1038/hdy.2014.36 |
|
Beyene Y, Semagn K, Mugo S, et al. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Science, 2015, 55 (1): 154- 163.
doi: 10.2135/cropsci2014.07.0460 |
|
Browning B L, Zhou Y, Browning S R. A one-penny imputed genome from next generation reference panels. American Journal of Human Genetics, 2018, 103 (3): 338- 348.
doi: 10.1016/j.ajhg.2018.07.015 |
|
Chen Z, Baison J, Pan J, et al. Accuracy of genomic selection for growth and wood quality traits in two control-pollinated progeny trials using exome capture as the genotyping platform in Norway spruce. BMC Genomics, 2018, 19 (1): 946.
doi: 10.1186/s12864-018-5256-y |
|
Cros D, Mbo-Nkoulou L, Bell J M, et al. Within-family genomic selection in rubber tree (Hevea brasiliensis) increases genetic gain for rubber production. Industrial Crops and Products, 2019, 138, 111464.
doi: 10.1016/j.indcrop.2019.111464 |
|
Crossa J, Pérez-Rodríguez P, Cuevas J, et al. Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 2017, 22 (11): 961- 975.
doi: 10.1016/j.tplants.2017.08.011 |
|
Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools. Bioinformatics, 2011, 27 (15): 2156- 2158.
doi: 10.1093/bioinformatics/btr330 |
|
Duran R, Isik F, Zapata-Valenzuela J, et al. Genomic predictions of breeding values in a cloned Eucalyptus globulus population in Chile. Tree Genetics & Genomes, 2017, 13 (4): 74. | |
Estopa R, Paludeto J, Müller B, et al. Genomic prediction of growth and wood quality traits in Eucalyptus benthamii using different genomic models and variable SNP genotyping density. New Forests, 2023, 54 (2): 343- 362.
doi: 10.1007/s11056-022-09924-y |
|
Gianola D, deLos C G, Hill W G, et al. Additive genetic variability and the Bayesian alphabet. Genetics, 2009, 183 (1): 347- 363.
doi: 10.1534/genetics.109.103952 |
|
Hickey J M, Chiurugwi T, Mackay I, et al. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery. Nature Genetics, 2017, 49 (9): 1297- 1303.
doi: 10.1038/ng.3920 |
|
Isik F. Genomic prediction of complex traits in perennial plants: a case for forest trees. Methods in Molecular Biology, 2022, 2467, 493- 520. | |
Isik F, Bartholomé J, Farjat A, et al. Genomic selection in maritime pine. Plant Science, 2016, 242, 108- 119.
doi: 10.1016/j.plantsci.2015.08.006 |
|
Isik F, Holland J, Maltecca C. 2017. Genetic data analysis for plant and animal breeding. Switzerland: Springer International Publishing. | |
Kwong Q B, Ong A L, Teh C K, et al. Genomic selection in commercial perennial crops: applicability and improvement in oil palm (Elaeis guineensis Jacq. ). Scientific Reports, 2017, 7 (1): 1- 9.
doi: 10.1038/s41598-016-0028-x |
|
Legarra A, Robert-Granié C, Manfredi E, et al. Performance of genomic selection in mice. Genetics, 2008, 180 (1): 611- 618.
doi: 10.1534/genetics.108.088575 |
|
Li N, Yang Y M, Xu F, et al. Genetic diversity and population structure analysis of Castanopsis hystrix and construction of a core collection using phenotypic traits and molecular markers. Genes, 2022, 13 (12): 2383.
doi: 10.3390/genes13122383 |
|
Liu G J, Tian Z W, Jia H Y, et al. Genetic parameter estimates for the growth and morphological traits of Castanopsis hystrix families and the genotype× environment interaction effects. Forests, 2023, 14 (8): 1619.
doi: 10.3390/f14081619 |
|
Meuwissen T H E, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 2001, 157 (4): 1819- 1829.
doi: 10.1093/genetics/157.4.1819 |
|
Nsibi M, Gouble B, Bureau S, et al. Adoption and optimization of genomic selection to sustain breeding for apricot fruit quality. Genes Genomes Genetics, 2020, 10 (12): 4513- 4529.
doi: 10.1534/g3.120.401452 |
|
O’Connor K M, Hayes B J, Hardner C M, et al. Genomic selection and genetic gain for nut yield in an Australian macadamia breeding population. BMC Genomics, 2021, 22 (1): 370.
doi: 10.1186/s12864-021-07694-z |
|
Perez P, deLos C G. Genome-wide regression and prediction with the BGLR statistical package. Genetics, 2014, 198 (2): 483- 495.
doi: 10.1534/genetics.114.164442 |
|
Pérez-Enciso M, Rincón J C, Legarra A. Sequence- vs. chip-assisted genomic selection: accurate biological information is advised. Genetics Selection Evolution, 2015, 47 (1): 43.
doi: 10.1186/s12711-015-0117-5 |
|
Rambolarimanana T, Ramamonjisoa L, Verhaegen D, et al. Performance of multi-trait genomic selection for Eucalyptus robusta breeding program. Tree Genetics & Genomes, 2018, 14 (5): 17. | |
Resende M D V, Resende M F R, Sansaloni C P, et al. Genomic selection for growth and wood quality in Eucalyptus: capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytologist, 2012a, 194 (1): 116- 128.
doi: 10.1111/j.1469-8137.2011.04038.x |
|
Resende M F R, Muñoz P, Resende M D V, et al. Accuracy of genomic selection methods in a standard data set of loblolly pine (Pinus taeda L.). Genetics, 2012b, 190 (4): 1503- 1510.
doi: 10.1534/genetics.111.137026 |
|
Spindel J, Begum H, Akdemir D, et al. Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genetics, 2015, 11 (2): e1004982.
doi: 10.1371/journal.pgen.1004982 |
|
Suontama M, Klápště J, Telfer E, et al. Efficiency of genomic prediction across two Eucalyptus nitens seed orchards with different selection histories. Heredity, 2019, 122 (3): 370- 379.
doi: 10.1038/s41437-018-0119-5 |
|
Thistlethwaite F R, Ratcliffe B, Klápště J, et al. Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics, 2017, 18 (1): 930.
doi: 10.1186/s12864-017-4258-5 |
|
VanRaden P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91 (11): 4414- 4423.
doi: 10.3168/jds.2007-0980 |
|
Xu Y B, Liu X G, Fu J J, et al. Enhancing genetic gain through genomic selection: from livestock to plants. Plant Communications, 2020, 1 (1): 100005.
doi: 10.1016/j.xplc.2019.100005 |
[1] | Tang Jixin, Pan Qilong, Liu Heng, Tian Zuwei, Chen Dongcheng, Huang Dewei, Mo Shiyu, Jiang Zhilin. Variation Law of Growth Strain in Standing Trees of Castanopsis hystrix Plantation and the Influence of Growth Weakening [J]. Scientia Silvae Sinicae, 2024, 60(12): 120-127. |
[2] | Meng Lanyang, Huang Yongli, Liang Junxia, Yan Yan, LI Yunjing, Feng Yuanheng, Yang Zhangqi, Tang Guoqiang. Effects of Pruning on the Form Quality of Artificial Young Forests of Michelia macclurei, Castanopsis hystrix and Castanopsis fissa [J]. Scientia Silvae Sinicae, 2023, 59(9): 106-116. |
[3] | Xiaolei Ding,Qingtong Wang,Sixi Lin,Ruiwen Zhao,Yue Zhang,Jianren Ye. Analysis of Genetic Variations of Bursaphelenchus xylophilus Populations between Guangdong and Jiangsu Provinces with SNP Marker [J]. Scientia Silvae Sinicae, 2022, 58(8): 1-9. |
[4] | Chengling Huang,Gang Yao,Xiaoling Tian,Yongquan Ren,Jiayong Huang,Yongpeng Ma. Phylogenomic Analysis of Rhododendron Species in Guizhou Baili Rhododendron Reserve Based on RAD Sequencing [J]. Scientia Silvae Sinicae, 2021, 57(2): 72-81. |
[5] | Yunpeng Wang,Rui Zhang,Zhichun Zhou,Shaohua Huang,Lizhen Ma,Huihua Fan. Dynamic Patterns of Genetic Variation in Early Growth Traits of the Open-Pollinated Families of Schima superba Plus Tree [J]. Scientia Silvae Sinicae, 2020, 56(9): 77-86. |
[6] | Zong Zhao,Yong Liu,Zuwei Tian,Hongyan Jia,Ruirui Zhao,Ning An. Dynamics of Seed Rain, Soil Seed Bank and Seedling Regeneration of Castanopsis hystrix [J]. Scientia Silvae Sinicae, 2020, 56(5): 37-49. |
[7] | Sheng Zhu,Minren Huang. Recent Advances and Prospect of the Genomic Selection in Forest Genetics and Tree Breeding [J]. Scientia Silvae Sinicae, 2020, 56(11): 176-186. |
[8] | Shen Le, Xu Jianmin, Li Guangyou, Lu Zhaohua, Yang Xueyan, Zhu Ying, Hu Yang, Song Peining, Guo Wenzhong. Genetic Parameters for Growth Traits in Eucalyptus urophylla×E. grandis F1 Hybrids [J]. Scientia Silvae Sinicae, 2019, 55(7): 68-76. |
[9] | Hanbin Wu,Aiguo Duan,Jianguo Zhang. Growth Variation and Selection Effect of Cunninghamia lanceolata Provenances at Different Stand Ages [J]. Scientia Silvae Sinicae, 2019, 55(10): 181-192. |
[10] | Zhang Shuainan, Luan Qifu, Jiang Jingmin. Genetic Variation Analysis for Growth and Wood Properties of Slash Pine Based on The Non-Destructive Testing Technologies [J]. Scientia Silvae Sinicae, 2017, 53(6): 30-36. |
[11] | Chen Lin, Zeng Jie, Jia Hongyan, Meng Cailan, Li Ming. Effects of Container Size and Matrix Formula on Seedlings Growth and Early Field Performance of Castanopsis hystrix [J]. Scientia Silvae Sinicae, 2017, 53(3): 76-83. |
[12] | Lai Meng, Sun Xiaomei, Zhang Shougong. Phenological Variation of Larix kaempferi and Its Hybrid Clones and Early Selection [J]. Scientia Silvae Sinicae, 2014, 50(7): 52-57. |
[13] | Wang Chaoying, Li Changxiao, Zhang Ye. Effects of Submergence-Drought Stresses on Growth and Physiological Characteristics of Salix rosthornii Seedlings [J]. Scientia Silvae Sinicae, 2013, 49(12): 164-170. |
[14] | Zhang Qian;Zeng Linghai;He Boxiang;Lian Huiming;Cai Yanling. Age Changes and Genetic Analysis of the Resin-Yielding Capacity of Open-Pollinated Families of Masson Pine [J]. , 2013, 49(1): 48-52. |
[15] | Luan Qifu;Jiang Jingmin;Zhang Jianzhong;Zhang Shougong. Estimation of Heritability and Combining Ability for Growth, Stem-Straightness and Wood Density of the F1 Generation of Pinus taeda×P. caribaea [J]. Scientia Silvae Sinicae, 2011, 47(3): 178-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||