Scientia Silvae Sinicae ›› 2020, Vol. 56 ›› Issue (2): 48-60.doi: 10.11707/j.1001-7488.20200206
• Articles • Previous Articles Next Articles
Yanbo Wang1,2,Weixi Zhang1,Changjun Ding1,Xiaohua Su1,*
Received:
2019-02-14
Online:
2020-02-25
Published:
2020-03-17
Contact:
Xiaohua Su
CLC Number:
Yanbo Wang,Weixi Zhang,Changjun Ding,Xiaohua Su. Community Structure and Niche Differentiation of Endophytic Microbiome in Populus alba×P. berolinensis under Different Ecological Environment[J]. Scientia Silvae Sinicae, 2020, 56(2): 48-60.
Table 1
Quality metrics of Illumina sequencing analysis"
质量指标 Quality metrics | 微生物 Microorganism | 根Root | 茎Stem | |||||
大庆Daqing | 北京Beijing | 齐齐哈尔Qiqihar | 大庆Daqing | 北京Beijing | 齐齐哈尔Qiqihar | |||
平均序列数Average of reads | 细菌Bacteria | 56 322±1 404 | 48 408±2357 | 51 063±2 249 | 65 134±7 121 | 67 383±8 655 | 60 422±7 691 | |
真菌Fungi | 43 887±2 355 | 51 118±4 313 | 47 400±2 332 | 72 160±4 296 | 69 731±3 178 | 71 812±1 953 | ||
平均读长Average read length | 细菌Bacteria | 397±1 | 395±0 | 395±0 | 394±0 | 394±0 | 394±0 | |
真菌Fungi | 318±12 | 277±9 | 268±25 | 282±17 | 276±22 | 274±9 | ||
非目标序列Non-target rRNA (%) 线粒体/叶绿体/质体 Mitochondria/Chloroplast/Plastid | 细菌Bacteria 真菌Fungi | 0.03±0.01 0 | 0.02±0.00 0 | 0.01±0.01 0 | 0 0 | 0.01±0.00 0 | 0.01±0.00 0 | |
未分类序列 Unclassified reads(%) | 细菌Bacteria 真菌Fungi | 0.02±0.01 4.45±2.14 | 0.02±0.01 24.11±12.05 | 0.24±0.24 0.89±0.75 | 0 19.93±13.88 | 0 25.42±16.49 | 0 4.75±2.07 |
Table 2
Data of environmental factors"
地点 Locations | pH | 土壤有机质含量 SOM/(g·kg-1) | 氮含量 N/(g·kg-1) | 磷含量 P/(g·kg-1) | 钾含量 K/(g·kg-1) |
大庆Daqing | 9.40±0.01a | 5.28±0.04c | 0.73±0.03c | 0.25±0.03b | 34.69±0.51a |
齐齐哈尔Qiqihar | 8.22±0.02b | 14.50±0.24a | 1.05±0.04a | 0.71±0.01a | 30.91±1.08b |
北京Beijing | 7.09±0.15c | 11.14±0.64b | 0.92±0.04b | 0.25±0.02b | 18.78±0.72c |
Table 5
Indicator species analysis"
内生菌类型 Endophytic type | OTU(属或以上) OTU(genus or higher) | 植物器官/种植地点 Plant compartments/Plant locations | 指标值 Indicator value | P | 相对丰度 Relative abundance(%) |
细菌 Bacteria | Actinophytocola | 根Root | 0.943 | 0.001*** | 14.51 |
游动放线菌属Actinoplanes | 根Root | 0.943 | 0.001*** | 1.28 | |
假诺卡氏菌属Pseudonocardia | 根Root | 0.882 | 0.003** | 1.39 | |
红微菌属Rhodomicrobium | 根Root | 0.882 | 0.001*** | 3.23 | |
链霉菌属Streptomyces | 根Root | 0.999 | 0.001*** | 11.91 | |
贪噬菌属Variovorax | 根Root | 0.957 | 0.004** | 1.84 | |
慢生根瘤菌属Bradyrhizobium | 根Root | 0.957 | 0.011* | 1.33 | |
双歧杆菌属Bifidobacterium | 茎Stem | 0.917 | 0.004** | 1.75 | |
小杆菌属Dialister | 茎Stem | 0.739 | 0.041* | 1.66 | |
粪杆菌属Faecalibacterium | 茎Stem | 0.814 | 0.026* | 1.48 | |
微球菌属Micrococcus | 茎Stem | 0.810 | 0.017* | 1.46 | |
红球菌属Rhodococcus | 茎Stem | 0.980 | 0.002** | 1.31 | |
Actinophytocola | 大庆(根)Daqing (Root) | 0.989 | 0.044* | 1.66 | |
Acidibacter | 齐齐哈尔(根)Qiqihar(Root) | 1.000 | 0.036* | 1.44 | |
真菌 Fungi | 小球腔菌属Leptosphaeria | 根Root | 0.816 | 0.007** | 7.99 |
Ilyonectria | 根Root | 0.943 | 0.001*** | 4.37 | |
格孢腔目Pleosporales | 茎Stem | 0.995 | 0.002** | 42.40 | |
链格孢属Alternaria | 茎Stem | 0.810 | 0.047* | 4.57 | |
Endosporium | 茎Stem | 0.816 | 0.008* | 48.55 | |
木霉属Trichoderma | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 2.72 | |
口蘑属Tricholoma | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 8.88 | |
锤舌菌纲Leotiomycetes | 大庆(根)Daqing (Root) | 0.989 | 0.032* | 2.28 | |
革菌科Thelephoraceae | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 6.01 | |
子囊菌门Ascomycota | 大庆(根)Daqing (Root) | 1.000 | 0.032* | 42.69 | |
隐球菌属Cryptococcus | 齐齐哈尔(根)Qiqihar(Root) | 1.000 | 0.032* | 2.14 | |
Neosetophoma | 北京(茎)Beijing (Stem) | 1.000 | 0.036* | 2.25 |
Table 4
Plant locations and compartments effect on the endophytic structure"
内生菌类型 Endophytic type | 影响因子 Impact factor | 分组 Groups | 属或以上Genus or higher | 各分组的丰度Abundance of each group(%) | P | ||
第1分组 The first group | 第2分组 The second group | 第3分组 The third group | |||||
细菌 Bacteria | 种植地点 Plant locations | DR/JR/QR | 慢生根瘤菌属Bradyrhizobium | 1.17 | 0.08 | 5.00 | 0.036* |
青枯菌属Ralstonia | 0.39 | 1.79 | 3.63 | 0.047* | |||
植物器官 Plant compartments | DR/DS | 红球菌属Rhodococcus | 3.38 | 47.05 | 0.001*** | ||
根瘤菌属Rhizobium | 9.24 | 0.12 | 0.007** | ||||
红微菌属Rhodomicrobium | 3.48 | 0 | 0.039* | ||||
JR/JS | 红球菌属Rhodococcus | 6.69 | 41.03 | 0.019* | |||
QR/QS | 青枯菌属Ralstonia | 3.63 | 11.3 | 0.008** | |||
慢生根瘤菌属Bradyrhizobium | 3.98 | 0.45 | 0.025* | ||||
红球菌属Rhodococcus | 24.29 | 44.28 | 0.047* | ||||
真菌 Fungi | 种植地点 Plant locations | DR/JR/QR | 子囊菌门Ascomycota | 53.49 | 3.01 | 0.09 | 0.027* |
小球腔菌属Leptosphaeria | 1.33 | 22.71 | 0 | 0.035* | |||
口蘑属Tricholoma | 8.88 | 0 | 0 | 0.022* | |||
植物器官 Plant compartments | DR/DS | 子囊菌门Ascomycota Endosporium | 53.49 | 0.09 | < 0.001*** | ||
0 | 68.10 | 0.008** | |||||
JR/JS | 革菌目Thelephorales | 6.08 | 0 | 0.017* | |||
QR/QS | 格孢菌目Pleosporales Endosporium | 0.23 | 78.50 | < 0.001*** | |||
0 | 77.90 | 0.023* |
华苟根, 郭坚华. 红球菌属的分类及应用研究进展. 微生物学通报, 2003. 30 (4): 107- 111.
doi: 10.3969/j.issn.0253-2654.2003.04.027 |
|
Hua G G , Guo J H . The taxonomy and application of Rhodococcus. Microbiology China, 2003. 30 (4): 107- 111.
doi: 10.3969/j.issn.0253-2654.2003.04.027 |
|
刘丛丛, 韩俊杰, 刘宏伟. 小球腔菌属次级代谢产物的化学及其生物学活性研究进展. 天然产物研究与开发, 2017. 29 (12): 2163- 2174. | |
Liu C C , Han J J , Liu H W . Secondary metabolites produced by Leptosphaeria and their bioactivities. Natural Product Research and Development, 2017. 29 (12): 2163- 2174. | |
王艳云, 郭笃发. 黄河三角洲盐碱地土壤真菌多样性. 北方园艺, 2016. 40 (18): 185- 189. | |
Wang Y Y , Guo D F . Fungal diversity of saline alkali soil in Yellow River Delta. Northern Horticulture, 2016. 40 (18): 185- 189. | |
Antoun H , Beauchamp C J , Goussard N , et al. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes:effect on radishes (Raphanus sativus L.). Plant and Soil, 1998. 204 (1): 57- 67.
doi: 10.1023/A:1004326910584 |
|
Azarias Guimarães A , Florentino L A , Alves Almeida K , et al. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Systematic and Applied Microbiology, 2015. 38 (6): 433- 441.
doi: 10.1016/j.syapm.2015.06.006 |
|
Beckers B, Beeck M O D, Thijs S, et al. 2016. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Frontiers in Microbiology, 7. | |
Beckers B , Beeck M O D , Weyens N , et al. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome, 2017. 5 (1): 25.
doi: 10.1186/s40168-017-0241-2 |
|
Bolger A , Lohse M , Usadel B . Trimmomatic:a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30, 2114- 2120.
doi: 10.1093/bioinformatics/btu170 |
|
Bulgarelli D , Rott M , Schlaeppi K , et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 2012. 488 (4709): 91- 95. | |
Bulgarelli D , Schlaeppi K , Spaepen S , et al. Structure and functions of the bacterial microbiota of plants. Annual Review Plant Biology, 2013. 64 (1): 807- 838.
doi: 10.1146/annurev-arplant-050312-120106 |
|
Cáceres M D , Legendre P . Associations between species and groups of sites:indices and statistical inference. Ecology, 2009. 90 (12): 3566- 3574.
doi: 10.1890/08-1823.1 |
|
Carrion V J , Cordovez V , Tyc O , et al. Involvement of Burkholderiaceae and sulfurous volatiles in disease-suppressive soils. The ISME Journal, 2018. 12 (9): 2307- 2321.
doi: 10.1038/s41396-018-0186-x |
|
Compant S , Clément C , Sessitsch A . Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization. Soil Biology & Biochemistry, 2009. 42 (5): 669- 678. | |
Dickie I . Insidious effects of sequencing errors on perceived diversity in molecular surveys. New Phytologist, 2010. 188 (4): 916- 918.
doi: 10.1111/j.1469-8137.2010.03473.x |
|
Edgar R , Haas B , Clemente J , et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011. 27 (6): 2194- 2200. | |
Fonseca-García C, Coleman-Derr D, Garrido E, et al. 2016. The cacti microbiome: interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 7. | |
Gołębiewski M , Deja-Sikora E , Cichosz M , et al. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microbial Ecology, 2014. 67 (3): 635- 647.
doi: 10.1007/s00248-013-0344-7 |
|
Gottel N R , Castro H F , Kerley M , et al. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Applied and Enviromental Microbiology, 2011. 77 (7): 5934- 5944. | |
Hallmann J A , Quadt-Hallmann A , Mahaffee W F , et al. Endophytic bacteria in agricultural crops. Canadian Journal of Microbiology, 2011. 43 (6): 895- 914. | |
Hardoim , Pablo R , Overbeek V , et al. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 2008. 16 (10): 463- 471.
doi: 10.1016/j.tim.2008.07.008 |
|
Hartman W H , Richardson C J , Vilgalys R , et al. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proc Natl Acad Sci U S A, 2008. 105 (46): 17842- 17847.
doi: 10.1073/pnas.0808254105 |
|
Hibbett D S . A phylogenetic overview of the Agaricomycotina. Mycologia, 2007. 98 (6): 917- 925. | |
Inceoǧlu O , Salles J F , Van O L , et al. Effects of plant genotype and growth stage on the betaproteobacterial communities associated with different potato cultivars in two fields. Applied and Environmental Microbiology, 2010. 76 (11): 3675- 3684.
doi: 10.1128/AEM.00040-10 |
|
Ishida T A , Nara K , Ma S , et al. Ectomycorrhizal fungal community in alkaline-saline soil in northeastern China. Mycorrhiza, 2009. 19 (5): 329- 335.
doi: 10.1007/s00572-008-0219-9 |
|
Ivica L , Peer B . Interactive tree of life v2:online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 2011. 39 (suppl 2): W475- W478. | |
Janpen P , Kiwamu M , Kamonluck T , et al. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology, 2009. 42 (2): 141- 149.
doi: 10.1016/j.apsoil.2009.02.008 |
|
Kesari V , Ramesh A M , Rangan L . Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Biomed Research International, 2013. (1): 165198. | |
Lauber C L , Hamady M , Knight R , et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009. 75 (15): 5111- 5120.
doi: 10.1128/AEM.00335-09 |
|
Liu H , Carvalhais L C , Crawford M , et al. Inner plant values:diversity, colonization and benefits from endophytic bacteria. Frontiers Microbiology, 2017. 8, 2552.
doi: 10.3389/fmicb.2017.02552 |
|
Lozupone C A , Knight R . Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104 (27): 11436- 11440.
doi: 10.1073/pnas.0611525104 |
|
Lu X , Zhang Y , Liu C , et al. Characterization of the antimonite-and arsenite-oxidizing bacterium Bosea sp. AS-1 and its potential application in arsenic removal. Journal of Hazardous Materials, 2018. 359, 527- 534.
doi: 10.1016/j.jhazmat.2018.07.112 |
|
Lunsmann V , Kappelmeyer U , Benndorf R , et al. In situ protein-SIP highlights Burkholderiaceae as key players degrading toluene by para ring hydroxylation in a constructed wetland model. Environmental Microbiology, 2016. 18 (4): 1176- 1186.
doi: 10.1111/1462-2920.13133 |
|
Magoč T , Salzberg S . Flash:fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011. 27 (21): 2957- 2963.
doi: 10.1093/bioinformatics/btr507 |
|
Marschner P , Solaiman Z , Rengel Z . Growth, phosphorus uptake, and rhizosphere microbial-community composition of a phosphorus-efficient wheat cultivar in soils differing in pH. Journal of Plant Nutrition & Soil Science, 2005. 168 (3): 343- 351. | |
Merilä P , Malmivaara-Lämsä M , Spetz P , et al. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Applied Soil Ecology, 2010. 46 (2): 259- 267.
doi: 10.1016/j.apsoil.2010.08.003 |
|
Naveed M , Mitter B , Reichenauer T G , et al. Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environmental & Experimental Botany, 2014. 97 (97): 30- 39. | |
Perez-Pantoja D , Donoso R , Agullo L , et al. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environmental Microbiology, 2012. 14 (5): 1091- 1117.
doi: 10.1111/j.1462-2920.2011.02613.x |
|
Podolich O , Ardanov P , Zaets I , et al. Reviving of the endophytic bacterial community as a putative mechanism of plant resistance. Plant and Soil, 2014. 388 (1/2): 367- 377. | |
Prischl M , Hackl E , Pastar M , et al. Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. Applied Soil Ecology, 2012. 54, 39- 48.
doi: 10.1016/j.apsoil.2011.12.005 |
|
Rangjaroen C , Rerkasem B , Teaumroong N , et al. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand. Archives of Microbiology, 2014. 196 (1): 35- 49. | |
Rasche F , Velvis H , Zachow C , et al. Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. Journal of Applied Ecology, 2006. 43 (3): 555- 566.
doi: 10.1111/j.1365-2664.2006.01169.x |
|
Redman R S , Ok K Y , Woodward C J D A , et al. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis:astrategy for mitigating impacts of climate change. Plos One, 2011. 6 (7): e14823.
doi: 10.1371/journal.pone.0014823 |
|
Reeuwijk L P v, International Soil R, Information C. 1995. Procedures for soil analysis. International Soil Reference and Information Centre, Wageningen, The Netherlands. | |
Rozek K , Rola K , Blaszkowski J , et al. Associations of root-inhabiting fungi with herbaceous plant species of temperate forests in relation to soil chemical properties. Science of the Total Enivironment, 2018. 649, 1573- 1579. | |
Sannigrahi P , Ragauskas A J , Tuskan G A . Poplar as a feedstock for biofuels:A review of compositional characteristics. Biofuels, Bioproducts and Biorefining, 2010. 4 (2): 209- 226.
doi: 10.1002/bbb.206 |
|
Shakya M , Gottel N , Castro H , et al. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. Plos One, 2013. 8 (10): e76382.
doi: 10.1371/journal.pone.0076382 |
|
Singh R , Dubey A K . Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Frontiers in Microbiology, 2018. 9, 1767.
doi: 10.3389/fmicb.2018.01767 |
|
Tardif S, Yergeau É, Tremblay J, et al. 2016. The Willow microbiome is influenced by soil petroleum-hydrocarbon concentration with plant compartment-specific effects. Frontiers in Microbiology, 7. | |
Thiem D, Gołębiewski M, Hulisz P, et al. 2018. How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? Frontiers in Microbiology, 9: 651. | |
Tsuneda A , Davey M L , Hambleton S , et al. Endosporium, a new endoconidial genus allied to the Myriangiales. Botany, 2008. 86 (9): 1020- 1033.
doi: 10.1139/B08-054 |
|
Tsuneda A T M N , Currah R S . Scleroconidioma, a new genus of dematiaceous Hyphomycetes. Canadian Journal of Botany, Canadian Journal of Botany, 2000. 78 (10): 1294- 1298.
doi: 10.1139/cjb-78-10-1294 |
|
Ulrich K , Ulrich A , Ewald D . Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiology Ecology, 2008. 63 (2): 169- 180. | |
Vandenkoornhuyse P , Quaiser A , Duhamel M , et al. The importance of the microbiome of the plant holobiont. New Phytologist, 2015. 206 (4): 1196- 1206.
doi: 10.1111/nph.13312 |
|
Vandeputte O , Oden S , Mol A , et al. Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues. Applied and Enviromental Microbiology, 2005. 71 (3): 1169- 1177.
doi: 10.1128/AEM.71.3.1169-1177.2005 |
|
Whitaker B K , Reynolds H L , Applied and Enviromental Microbidogy , Clay K . Foliar fungal endophyte communities are structured by environment but not host ecotype in Panicum virgatum (switchgrass). Ecology, 2018. 99 (12): 2703- 2711.
doi: 10.1002/ecy.2543 |
|
Yaish M W , Alharrasi I , Alansari A S , et al. The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. International Microbiology, 2016a. 19, 143- 155. | |
Yaish M W , Al-Lawati A , Jana G A , et al. Impact of soil salinity on the structure of the bacterial endophytic community identified from the roots of caliph medic (Medicago truncatula). Plos One, 2016b. 11 (7): e0159007.
doi: 10.1371/journal.pone.0159007 |
|
Yu X , Yang J , Wang E , et al. Effects of growth stage and fulvic acid on the diversity and dynamics of endophytic bacterial community in Stevia rebaudiana Bertoni leaves. Front Microbiol, 2015. 6, 867. | |
Zhang L , Yue Q , Yang K , et al. Analysis of extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofloxacin. Chemosphere, 2018. 193, 645- 654.
doi: 10.1016/j.chemosphere.2017.11.056 |
|
Zloch M , Thiem D , Gadzala-Kopciuch R , et al. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd2+. Chemosphere, 2016. 156, 312- 325.
doi: 10.1016/j.chemosphere.2016.04.130 |
[1] | Sun Fangfang, Nie Yingbin, Ma Songmei, Wei Bo, Ji Wanquan. Species Differentiation of Haloxylon ammodendron and Haloxylon persicum Based on ITS and cpDNA Sequences [J]. Scientia Silvae Sinicae, 2019, 55(3): 43-53. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||