Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (12): 61-71.doi: 10.11707/j.1001-7488.LYKX20250236
• Research papers • Previous Articles
Lemei Yang,Baogang Zhang*(
),Youchao Chen,Yanjiang Cai
Received:2025-04-14
Revised:2025-08-24
Online:2025-12-25
Published:2026-01-08
Contact:
Baogang Zhang
E-mail:baogang@zafu.edu.cn
CLC Number:
Lemei Yang,Baogang Zhang,Youchao Chen,Yanjiang Cai. Leaf Functional Traits of Understory Plants in a Moso Bamboo Forests in Response to Simulated Nitrogen Deposition[J]. Scientia Silvae Sinicae, 2025, 61(12): 61-71.
Table 1
Leaf functional traits of understory plants under different nitrogen deposition treatments (mean±SD)"
| 植物种类 Plant species | 处理 Treatment | 比叶面积 Specific leaf area (SLA)/ (m2·kg?1) | 叶片干物质含量Leaf dry matter content (LDMC)/ (g·kg?1) | 叶片厚度 Leaf thickness (LT)/ mm | 株高 Plant height (H)/ cm | 全氮含量Total nitrogen content (TN)/ (g·kg?1) | 全磷含量Total phosphorus content (TP)/ (g·kg?1) | 全钾含量Total potassium content (TK)/ (g·kg?1) | 叶片氮磷比 Leaf N∶P ratio (N/P) |
| 寒莓 Rubus buergeri | CCK | 378.1±40.7bc | 287.2±18.4c | 0.43±0.03a | 90.4±41.2a | 19.7±1.0bc | 0.80±0.30a | 13.2±2.3a | 27.5±10.2a |
| CIN | 441.8±60.8ab | 249.9±44.3bc | 0.38±0.08a | 86.3±42.9a | 23.2±1.2a | 0.69±0.13a | 10.4±2.9ab | 34.5±6.2a | |
| CON | 347.5±39.9c | 241.9±40.1abc | 0.36±0.02a | 93.6±28.1a | 20.4±3.2abc | 0.60±0.18a | 9.4±2.2b | 35.0±5.7a | |
| UCK | 355.9±12.0bc | 290.7±17.3ab | 0.39±0.04a | 78.7±38.8a | 18.2±0.8c | 0.67±0.11a | 13.8±2.1a | 27.7±4.9a | |
| UIN | 508.2±107.9a | 268.4±15.5ab | 0.39±0.03a | 69.8±18.7a | 22.6±1.4ab | 0.82±0.11a | 12.4±1.7ab | 28.0±3.9a | |
| UON | 380.2±32.6bc | 305.2±7.7a | 0.37±0.06a | 47.6±25.2a | 23.4±2.9a | 0.70±0.11a | 11.0±2.1ab | 33.8±4.3a | |
| 山莓 Rubus corchorifolius | CCK | 566.4±28.4a | 366.2±66.3a | 0.29±0.04a | 58.8±17.5a | 20.6±0.7a | 0.68±0.05a | 13.7±2.4ab | 30.7±2.0a |
| CIN | 617.3±87.2a | 307.9±39.7a | 0.27±0.10a | 65.1±11.0a | 21.9±2.7a | 0.75±0.18a | 14.5±2.1ab | 30.0±6.0a | |
| CON | 475.8±89.6a | 347.2±144.0a | 0.29±0.05a | 79.5±20.0a | 24.6±5.0a | 0.74±0.13a | 14.9±4.1ab | 33.1±0.1a | |
| UCK | 574.4±49.9a | 299.0±74.8a | 0.25±0.05a | 60.5±14.5a | 22.4±3.5a | 0.73±0.06a | 17.3±1.7a | 30.9±3.7a | |
| UIN | 557.9±224.7a | 318.6±34.3a | 0.29±0.06a | 62.7±6.1a | 22.7±1.6a | 0.86±0.27a | 15.0±0.1ab | 28.2±8.0a | |
| UON | 635.7±31.7a | 280.9±11.9a | 0.29±0.10a | 70.3±13.5a | 25.2±3.0a | 0.74±0.10a | 12.0±0.1b | 34.3±3.0a | |
| 紫金牛 Ardisia japonica | CCK | 322.3±22.7a | 366.0±17.6a | 0.28±0.06a | 7.9±1.9a | 16.1±1.9c | 0.74±0.15a | 13.4±3.4a | 21.9±2.5a |
| CIN | 349.4±23.0a | 360.0±31.1a | 0.22±0.02a | 9.9±5.2a | 18.5±1.6abc | 0.77±0.03a | 15.6±1.6a | 24.3±1.3a | |
| CON | 327.2±27.2a | 375.4±23.0a | 0.35±0.09a | 10.2±4.3a | 18.8±1.2ab | 0.87±0.17a | 15.0±2.0a | 22.3±4.5a | |
| UCK | 305.4±23.7a | 333.9±64.3a | 0.27±0.07a | 9.8±1.7a | 18.3±1.9bc | 0.78±0.08a | 14.4±2.4a | 23.3±1.4a | |
| UIN | 339.0±52.3a | 362.0±8.3a | 0.25±0.02a | 9.5±1.5a | 19.8±1.1ab | 0.81±0.01a | 15.3±1.0a | 24.7±1.1a | |
| UON | 330.1±63.3a | 365.1±32.8a | 0.33±0.15a | 9.5±3.2a | 21.0±1.8a | 0.84±0.07a | 14.8±0.6a | 25.0±0.4a | |
| 紫藤 Wisteria sinensis | CCK | 604.8±20.6b | 296.4±36.7a | 0.21±0.01ab | 40.8±4.2a | 32.9±1.3a | 1.10±0.11ab | 9.2±6.6a | 30.2±1.7a |
| CIN | 693.3±148.9ab | 254.0±129.1a | 0.18±0.03b | 48.3±23.5a | 33.9±1.2a | 1.05±0.02bc | 8.3±3.1a | 19.4±15.6a | |
| CON | 537.7±65.3b | 329.8±55.2a | 0.28±0.11a | 72.4±15.4a | 30.9±3.7a | 1.05±0.05bc | 8.0±2.5a | 29.6±4.1a | |
| UCK | 939.6±379.5a | 273.4±62.5a | 0.20±0.02b | 54.4±31.1a | 33.5±0.5a | 1.24±0.13a | 8.6±0.4a | 27.2±3.3a | |
| UIN | 616.6±76.5b | 310.4±32.3a | 0.22±0.01ab | 52.5±17.2a | 28.3±7.0a | 0.92±0.14c | 7.4±1.2a | 30.5±4.0a | |
| UON | 624.8±26.6b | 317.7±30.1a | 0.19±0.04b | 65.9±10.5a | 32.9±2.6a | 1.12±0.10ab | 7.3±1.4a | 29.7±4.5a | |
| 绵穗苏 Chelonopsis chekiangensis | CCK | 572.5±124.4a | 253.9±21.0a | 0.37±0.14a | 78.6±26.3a | 26.8±6.9b | 0.80±0.36a | 24.1±6.7a | 38.3±16.8a |
| CIN | 558.0±33.8a | 239.9±17.8a | 0.29±0.10a | 68.9±21.2a | 31.7±5.6ab | 0.84±0.42a | 20.4±11.2a | 41.9±10.7a | |
| CON | 571.4±73.4a | 175.8±55.1b | 0.28±0.05a | 67.0±9.7a | 36.6±5.1a | 0.65±0.02a | 22.3±5.9a | 56.3±7.7a | |
| UCK | 544.8±40.9a | 241.5±26.0b | 0.29±0.11a | 57.4±24.9a | 29.5±0.8ab | 0.81±0.11a | 22.1±3.0a | 37.1±4.8a | |
| UIN | 637.5±78.3a | 212.5±35.4ab | 0.32±0.08a | 64.3±16.5a | 35.3±5.7ab | 0.83±0.18a | 25.0±1.9a | 44.1±11.3a | |
| UON | 622.1±96.0a | 211.5±32.0ab | 0.31±0.12a | 52.7±20.5a | 33.6±6.1ab | 0.73±0.31a | 24.0±5.4a | 52.5±22.3a | |
| 淡竹叶 Lophatherum gracile | CCK | 942.8±92.3a | 224.9±30.0a | 0.17±0.04a | 27.8±4.5a | 27.2±0.9b | 0.91±0.12ab | 23.4±4.8a | 30.2±3.6b |
| CIN | 215.7±35.9a | 0.18±0.07a | 28.8±9.3a | 32.0±1.5a | 1.03±0.17a | 23.8±2.9a | 31.7±4.8b | ||
| CON | 986.6±292.9a | 172.1±75.9a | 0.18±0.05a | 24.8±7.3a | 30.6±3.4ab | 0.81±0.08b | 22.1±2.7a | 38.1±3.1a | |
| UCK | 862.3±155.7a | 235.2±33.2a | 0.21±0.14a | 26.1±2.1a | 29.0±2.8ab | 1.03±0.21a | 26.7±5.5a | 28.6±3.5b | |
| UIN | 911.2±82.6a | 225.3±15.7a | 0.12±0.02a | 25.6±4.1a | 30.2±2.6ab | 0.99±0.10ab | 24.0±3.6a | 30.6±3.2b | |
| UON | 968.5±54.0a | 217.4±20.0a | 0.14±0.02a | 24.1±6.9a | 33.1±3.5a | 0.96±0.03ab | 23.7±1.6a | 34.6±4.6ab | |
| 金星蕨 Parathelypteris glanduligera | CCK | 336.8±53.6a | 0.27±0.09a | 26.3±1.6ab | 19.1±1.2a | 0.78±0.09a | 9.2±1.9bc | 24.6±1.3a | |
| CIN | 306.6±52.4a | 0.20±0.07a | 25.2±6.0ab | 22.3±2.6ab | 0.82±0.12a | 10.5±2.0abc | 27.9±7.1a | ||
| CON | 282.2±68.0a | 0.18±0.01a | 32.5±6.5a | 24.8±7.1a | 0.99±0.33a | 15.8±5.7a | 25.8±6.6a | ||
| UCK | 320.3±42.8a | 0.27±0.08a | 29.9±3.1ab | 19.0±0.8b | 0.74±0.03a | 7.7±2.1c | 25.7±1.9a | ||
| UIN | 315.8±15.7a | 0.25±0.12a | 27.2±8.2ab | 21.9±1.5ab | 0.80±0.07a | 14.2±5.3ab | 27.5±0.9a | ||
| UON | 310.2±25.0a | 0.20±0.08a | 23.0±4.1b | 21.2±1.1ab | 0.75±0.13a | 11.1±2.0abc | 28.7±5.1a | ||
| 苔草Carex spp. | CCK | 336.1±56.2b | 377.2±31.5ab | 0.33±0.03a | 58.6±4.6a | 16.2±1.3bc | 0.86±0.21a | 19.7±1.5a | 19.4±3.8a |
| CIN | 340.9±45.7b | 360.8±19.1ab | 0.34±0.08a | 58.4±4.9a | 17.4±1.1b | 0.82±0.33a | 18.2±0.6a | 24.2±10.0a | |
| CON | 315.0±79.5b | 385.6±51.8a | 0.34±0.09a | 63.00±24.3a | 15.5±1.3c | 0.68±0.07a | 20.2±0.7a | 18.2±11.1a | |
| UCK | 437.4±165.9ab | 357.4±42.2ab | 0.28±0.05a | 64.8±8.6a | 16.5±1.3bc | 0.72±0.16a | 20.3±1.4a | 23.6±4.9a | |
| UIN | 522.0±122.1a | 323.6±12.1b | 0.27±0.10a | 59.8±2.3a | 17.4±1.2bc | 0.98±0.27a | 17.9±5.1a | 18.8±5.0a | |
| UON | 399.7±82.7ab | 336.4±40.5ab | 0.30±0.06a | 55.7±16.6a | 20.5±0.7a | 0.95±0.36a | 18.9±1.9a | 24.2±9.5a |
Table 2
Differences of response of leaf functional traits of understory plants to nitrogen deposition among nitrogen deposition methods, nitrogen forms and plant species"
| 叶片功能性状 Leaf functional traits | 氮沉降方法 N deposition approach | 沉降氮形态 Deposited N form | 植物种类 Plant species | 草本或灌木 Herbs or shrubs | 豆科或非豆科 Fabaceae or non-Fabaceae | |||||||||
| df | P | df | P | df | P | df | P | df | P | |||||
| 比叶面积Specific leaf area (SLA) | 1, 122 | 0.849 | 1, 122 | 0.593 | 7, 115 | 0.378 | 1, 121 | 0.178 | 1, 57 | 0.003 | ||||
| 叶片干物质含量Leaf dry matter content (LDMC) | 1, 125 | 0.010 | 1, 125 | 0.871 | 7, 118 | 0.038 | 1, 124 | 0.012 | 1, 57 | 0.104 | ||||
| 叶片厚度Leaf thickness (LT) | 1, 122 | 0.353 | 1, 122 | 0.283 | 7, 115 | 0.426 | 1, 121 | 0.130 | 1, 57 | 0.742 | ||||
| 株高Plant height (H) | 1, 125 | 0.785 | 1, 125 | 0.843 | 7, 118 | 0.017 | 1, 124 | 0.026 | 1, 60 | 0.009 | ||||
| 全氮含量Total nitrogen content (TN) | 1, 122 | 0.511 | 1, 122 | 0.278 | 7, 115 | <0.001 | 1, 124 | 0.007 | 1, 60 | <0.001 | ||||
| 全磷含量Total phosphorus content (TP) | 1, 122 | 0.408 | 1, 122 | 0.307 | 7, 115 | 0.157 | 1, 121 | 0.531 | 1, 57 | 0.010 | ||||
| 全钾含量Total potassium content (TK) | 1, 125 | 0.628 | 1, 125 | 0.813 | 7, 118 | <0.001 | 1, 124 | 0.016 | 1, 60 | 0.968 | ||||
| 叶片氮磷比 Leaf N∶P ratio (N/P) | 1, 122 | 0.496 | 1, 122 | 0.094 | 7, 115 | 0.026 | 1, 121 | 0.157 | 1, 57 | 0.096 | ||||
| 白 涵, 郝珉辉, 何怀江, 等. 2025. 东北主要树种幼树叶片功能性状对模拟氮沉降的响应. 林业科学, 2025, 61(5): 23–32. | |
| Bai H, Hao M H, He H J, et al. 2025. Response of leaf functional traits of saplings of main tree species in northeast China to simulated nitrogen deposition. Scientia Silvae Sinicae, 2025, 61(5): 23–32. [in Chinese] | |
| 段 娜, 李清河, 多普增, 等. 植物响应大气氮沉降研究进展. 世界林业研究, 2019, 32 (4): 6- 11. | |
| Duan N, Li Q H, Duo P Z, et al. Research progress on plant response to atmospheric nitrogen deposition. World Forestry Research, 2019, 32 (4): 6- 11. | |
| 冯鹏飞, 李玉敏. 2021年中国竹资源报告. 世界竹藤通讯, 2023, 21 (2): 100- 103. | |
| Feng P F, Li Y M. Report on bamboo resources in China 2021. World Bamboo and Rattan, 2023, 21 (2): 100- 103. | |
| 方运霆, 莫江明, 周国逸, 等. 鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应. 热带亚热带植物学报, 2005, 13 (3): 198- 204. | |
| Fang Y T, Mo J M, Zhou G Y, et al. The initial response of DBH growth of main forest types to the increase of nitrogen deposition in Dinghu Mountain. Journal of Tropical and Subtropical Botany, 2005, 13 (3): 198- 204. | |
| 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 2010, 34 (1): 2- 6. | |
| He J S, Han X G. Ecological stoichiometry: Exploring the unified theory from individual to ecosystem. Journal of Plant Ecology, 2010, 34 (1): 2- 6. | |
| 蒋文婷, 田立斌, 朱高荻, 等. 不同形态氮添加对毛竹林土壤N2O排放的影响. 植物营养与肥料学报, 2022, 28 (5): 857- 868. | |
| Jiang W T, Yang X D, Zhu G D, et al. Effects of different forms of nitrogen addition on soil N2O emission in moso bamboo forest. Plant Nutrition and Fertilizer Science, 2022, 28 (5): 857- 868. | |
| 柯丹霞, 徐勤朕, 杨 娜, 等. 高氮抑制豆科植物结瘤固氮机制研究进展. 生物技术通报, 2019, 35 (10): 40- 45. | |
| Ke D X, Xu Q L, Yang N, et al. Research progress on mechanism of high nitrogen inhibiting nodulation and nitrogen fixation in leguminous plants. Biotechnology Bulletin, 2019, 35 (10): 40- 45. | |
|
李修鹏, 杨晓东, 余树全, 等. 基于功能性状的常绿阔叶植物防火性能评价. 生态学报, 2013, 33 (20): 6604- 6613.
doi: 10.5846/stxb201301030010 |
|
|
Li X P, Yang X D, Yu S Q, et al. Fire resistance evaluation of evergreen broad-leaved plants based on functional traits. Acta Ecologica Sinica, 2013, 33 (20): 6604- 6613.
doi: 10.5846/stxb201301030010 |
|
| 刘亚栋, 王晓霞, 和璐璐, 等. 北京地区油松人工林不同演替类型空间结构对林下植被及土壤的影响. 生态学报, 2023, 43 (5): 1959- 1970. | |
| Liu Y D, Wang X X, He L L, et al. Effects of spatial structure of different succession types of Pinus tabuliformis plantation on understory vegetation and soil in Beijing area. Acta Ecologica Sinica, 2023, 43 (5): 1959- 1970. | |
| 庞世龙, 欧芷阳, 凌福诚, 等. 桂西南岩溶区18种适生植物叶性状变异及其经济谱. 生态学杂志, 2021, 40 (10): 3041- 3049. | |
| Pang S L, Ou Z Y, Ling F C, et al. Leaf trait variation and economic spectrum of 18 species of suitable plants in karst area of southwest Guangxi. Ecological Frontiers, 2021, 40 (10): 3041- 3049. | |
| 邵雪蓉, 陈世仁, 陈应群, 等. 植物水分利用效率与植物功能性群落结构的关系研究综述. 世界林业研究, 2024, 37 (1): 37- 44. | |
| Shao X R, Chen S R, Chen Y Q, et al. The relationship between plant water use efficiency and plant functional community structure was reviewed. World Forestry Research, 2024, 37 (1): 37- 44. | |
| 王常顺, 汪诗平. 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 2015, 39 (2): 206- 216. | |
| Wang C S, Wang S P. Research progress on the response of plant leaf traits to climate change. Journal of Plant Ecology, 2015, 39 (2): 206- 216. | |
| 王军强, 刘 彬, 常 凤, 等. 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析. 植物生态学报, 2022, 46 (8): 961- 970. | |
| Wang J Q, Liu B, Chang F, et al. Analysis of plant functional traits and ecological stoichiometric characteristics under water and salt gradients in the lakeside zone of Bosten Lake. Journal of Plant Ecology, 2022, 46 (8): 961- 970. | |
| 王乔姝怡, 郑成洋, 张歆阳, 等. 氮添加对武夷山亚热带常绿阔叶林植物叶片氮磷化学计量特征的影响. 植物生态学报, 2016, 40 (11): 1124- 1135. | |
| Wang-Qiao S Y, Zheng C Y, Zhang X Y, et al. Effects of nitrogen addition on stoichiometric characteristics of nitrogen and phosphorus in leaves of subtropical evergreen broad-leaved forest in Wuyi Mountain. Journal of Plant Ecology, 2016, 40 (11): 1124- 1135. | |
| 王秀荣, 严小龙, 卢仁骏. 磷素营养对菜豆叶片解剖结构的影响. 华南农业大学学报, 1999, 20 (1): 60- 65. | |
| Wang X R, Yan X L, Lu R J. Effect of phosphorus nutrition on anatomical structure of bean leaves. Journal of South China Agricultural University, 1999, 20 (1): 60- 65. | |
| 王毅焕, 靳一丹, 姜铭楷, 等. 短期氮沉降改变毛竹林凋落物和土壤有机质化学组成. 应用生态学报, 2023, 34 (10): 2593- 2600. | |
| Wang Y H, Jin Y D, Jiang M K, et al. Short-term nitrogen deposition changed the chemical composition of litter and soil organic matter in moso bamboo forest. Applied Ecology, 2023, 34 (10): 2593- 2600. | |
| 魏经纬, 肖向前, 卓寿佳, 等. 林冠氮沉降对毛竹林土壤磷组分的影响. 土壤学报, 2025, 62 (1): 233- 245. | |
| Wei J W, Xiao X Q, Zhuo S J, et al. Effects of canopy nitrogen deposition on soil phosphorus fractions in moso bamboo forest. Acta Pedologica Sinica, 2025, 62 (1): 233- 245. | |
| 肖春艳, 胡情情, 陈晓舒, 等. 基于文献计量的大气氮沉降研究进展. 生态学报, 2023, 43 (3): 1294- 1307. | |
| Xiao C Y, Hu Q Q, Chen X S, et al. Research progress of atmospheric nitrogen deposition based on bibliometrics. Acta Ecologica Sinica, 2023, 43 (3): 1294- 1307. | |
| 肖 迪, 王晓洁, 张 凯, 等. 氮添加对山西太岳山天然油松林主要植物叶片性状的影响. 植物生态学报, 2016, 40 (7): 686- 701. | |
| Xiao D, Wang X J, Zhang K, et al. Effects of nitrogen addition on leaf traits of main plants in natural Pinus tabuliformis forest in Taiyue Mountain of Shanxi Province. Journal of Plant Ecology, 2016, 40 (7): 686- 701. | |
| 夏霁晖, 冶佩霞, 杨 海, 等. 大别山北缘不同生活型木本植物叶功能性状及其耦合关系. 浙江农林大学学报, 2024, 41 (5): 970- 977. | |
| Xia J H, Ye P X, Yang H, et al. Leaf functional traits and their coupling relationships of woody plants with different life forms in the northern margin of Dabie Mountains. Journal of Zhejiang A& F University, 2024, 41 (5): 970- 977. | |
| 俞月凤, 韦建华, 胡钧铭, 等. 桂西北喀斯特地区退化群落灌草不同器官N、P生态化学计量内稳性特征. 生态学报, 2024, 44 (12): 5367- 5376. | |
| Yu Y F, Wei J H, Hu J M, et al. Characteristics of N and P ecological stoichiometry stability in different organs of shrub and grass in degraded communities in karst area of northwest Guangxi. Acta Ecologica Sinica, 2024, 44 (12): 5367- 5376. | |
| Clark D L, Wilson M, Roberts R, et al. 2012. Plant traits a tool for restoration? Applied Vegetation Science, 15(4): 449–458. | |
| Cornelissen C H J, Cerabolini B, Castro-Dí P, et al. 2003. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory-grown seedlings? Journal of Vegetation Science, 14(3): 311–322. | |
|
Deng Q, Hui D F, Dennis S, et al. Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis. Global Ecology and Biogeography, 2017, 26 (6): 713- 728.
doi: 10.1111/geb.12576 |
|
|
Elser James J, Bracken Matthew E S, Cleland Elsa E, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology letters, 2007, 10 (12): 1135- 42.
doi: 10.1111/j.1461-0248.2007.01113.x |
|
|
Garnier E, Vile D, Debain S, et al. Photosynthesis, water-use and nitrogen relate to both plant height and leaf structure in 60 species from the Mediterranean. Functional Ecology, 2025, 39 (2): 567- 582.
doi: 10.1111/1365-2435.14737 |
|
|
Gilliam F S. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience, 2007, 57 (10): 845- 858.
doi: 10.1641/B571007 |
|
| Gillam F S, May J D, Adams M B. Response of foliar nutrients of Rubus allegheniensis to nutrient amendments in a central Appalachian hardwood forest. Forest Ecology and Managent, 2018 (411): 101- 107. | |
|
He J S, Wang L, Flynn D F B, et al. Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 2008, 155 (2): 301- 310.
doi: 10.1007/s00442-007-0912-y |
|
|
He J S, Wang Z, Wang X, et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist, 2006, 170 (4): 835- 848.
doi: 10.1111/j.1469-8137.2006.01704.x |
|
| Jiang W T, Zhang H K, Fang Y Y, et al. Understory N application overestimates the effect of atmospheric N deposition on soil N2O emissions. Geoderma, 2023, 437, 116611. | |
|
Kerkhoof A J, Fagan W F, Elser J J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. The American Naturalist, 2006, 168 (4): E103- E122.
doi: 10.1086/507879 |
|
| Li D J, Mo J M, Fang Y T, et al. Effects of simulated nitrogen deposition on biomass production and allocation in Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Phytoecologica Sinica, 2005, 29 (4): 543- 549. | |
|
Liu X J, Zhang Y, Han W X, et al. Enhanced nitrogen deposition over China. Nature, 2013, 494 (7438): 459- 462.
doi: 10.1038/nature11917 |
|
|
Lu X K, Mo J M, Dong S F. Effects of nitrogen deposition on forest biodiversity. Acta Ecologica Sinica, 2008, 28 (11): 5532- 5548.
doi: 10.1016/S1872-2032(09)60012-3 |
|
|
Meziane D, Shipley B. Interacting components of interspecific relative growth rate: constancy and change under differing conditions of light and nutrient supply. Functional Ecology, 1999, 13 (5): 611- 622.
doi: 10.1046/j.1365-2435.1999.00359.x |
|
|
Rivaie A A. The effects of understory vegetation on P availability in Pinus radiata forest stands: a review. Journal of Forestry Research, 2014, 25 (3): 489- 500.
doi: 10.1007/s11676-014-0488-4 |
|
|
Rose L, Rubarth M C, Hertel D, et al. Management alters interspecific leaf trait relationships and trait-based species rankings in permanent meadows. Journal of Vegetation Science, 2013, 24 (2): 239- 250.
doi: 10.1111/j.1654-1103.2012.01455.x |
|
|
Scoffoni C, Rawls M, McKown A, et al. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiology, 2011, 156 (2): 832- 843.
doi: 10.1104/pp.111.173856 |
|
|
Talhelm A F, Pregitzer K S, Burton A J. No evidence that chronic nitrogen additions photosynthesis in mature sugar maple forests. Ecological Applications, 2011, 21 (7): 2413- 2424.
doi: 10.1890/10-2076.1 |
|
| Tamm CO. 1990. Nitrogen in terrestrial ecosystems: Questions of productivity, vegetational change, and ecological stability (Vol. 81). Berlin: Springer-Verlag. | |
| Vitousek M P, Cassman K, Cleveland C, et al. 2002. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry, 57/58(1): 1–45. | |
|
Witte C. Urea metabolism in plants. Plant Science, 2011, 180 (3): 431- 438.
doi: 10.1016/j.plantsci.2010.11.010 |
|
|
Wright I J, Reich P B, Cornelissen J H C, et al. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 2005, 14 (5): 411- 421.
doi: 10.1111/j.1466-822x.2005.00172.x |
|
| Wright J I, Reich B P, Westoby M, et al. The worldwide leaf economics spectrum. Nature: International Weekly Journal of Science, 2004, 428 (6985): 821- 827. | |
| Zou Y, Li B, Penuelas J, et al. Response of functional traits in Machilus pauhoi to nitrogen addition is influenced by differences of provenances. Forest Ecology and Management, 2022, 513, 120- 207. |
| [1] | Xiaorong Wang,Miao Gong,Zhongchun Gu,Xingyi Hu,Lianghua Qi,Haishan Tan,Xue Dai,Qingping Liu,Shaodan Xia,Hu Zhao. Characteristics of Fine Root Decomposition and Nutrient Release during Phyllostachys edulis Expansion into Cunninghamia lanceolata Forest and Broad-Leaved Forest in Mufu Mountain Area [J]. Scientia Silvae Sinicae, 2025, 61(8): 46-57. |
| [2] | Han Bai,Minhui Hao,Huaijiang He,Xinna Zhang,Chunyu Zhang,Xiuhai Zhao. Response of Seedling Leaf Functional Traits to Simulated Nitrogen Deposition for the Major Tree Species of Northeast China [J]. Scientia Silvae Sinicae, 2025, 61(5): 23-32. |
| [3] | Yingjie Sun,Denan Zhang,Yuyi Shen,Guangping Xu,Yang Cao,Kechao Huang,Yunshuang Chen,Xinyue Mao,Qiumei Teng,Shihong Lü,Junzhi Chu. Effects of Simulated Nitrogen Deposition on Soil Microbial Community Structure and Enzyme Activities in Eucalyptus Plantations in Mid-subtropical Region [J]. Scientia Silvae Sinicae, 2025, 61(5): 46-60. |
| [4] | Xinxin Ma,You Wang,Jiajun Wang,Long Feng,Jianfeng Ma. Changes in Ash Composition of Bamboo during Pyrolysis and the Distribution Pattern of Silicon Transformation [J]. Scientia Silvae Sinicae, 2025, 61(2): 172-179. |
| [5] | Yan Zang,Yuxuan Xiang,Juan Liu,Peikun Jiang,Jiasen Wu,Yongfu Li. Effects of Nitrogen and Phosphorus Addition on Soil Water-Stable Aggregates and Organic Carbon Distribution in Moso Bamboo Forests in Subtropical China [J]. Scientia Silvae Sinicae, 2024, 60(7): 8-16. |
| [6] | Zongming Cai,Zhiwen Deng,Bingjun Li,Shikun Li,Weiqing Wen,Jundong Rong,Yushan Zheng,Liguang Chen. Effects of Strip-cutting Width on the Structural Characteristics of Underground Bamboo Rhizome in Moso Bamboo Forests [J]. Scientia Silvae Sinicae, 2023, 59(4): 79-87. |
| [7] | Yaxiong Zheng,Shaohui Fan,Xuan Zhang,Xiao Zhou,Fengying Guan. Productivity Dynamics of Moso Bamboo (Phyllostachys edulis) Forest after Strip Clearcutting [J]. Scientia Silvae Sinicae, 2023, 59(2): 22-29. |
| [8] | Linxin Dai,Zhihui Wang,Zhenrui Li,Jiajun Wang,Xing’e Liu,Jialong Wen,Jianfeng Ma. Pyrolysis Characteristics of the Main Components of Bamboo Cell Wall Using TG-FTIR [J]. Scientia Silvae Sinicae, 2023, 59(11): 85-94. |
| [9] | Caixia Liu,Junhui Chen,Hua Qin,Chenfei Liang,Qiufang Xu. Effects of Long-Term Combined Application of Organic and Inorganic Fertilizers on Soil CO2- and N2-Fixing Microorganisms in a Subtropical Bamboo Forest [J]. Scientia Silvae Sinicae, 2022, 58(7): 82-92. |
| [10] | Ruixiang Ma,Manchang Huang,Jiajia Zhang,Aoshun Zhao,Xingcui Ding,Zisheng Luo,Shenghui Liu,Zizhang Xiao,Kai Shen. Variation in Respiration Pathways of Post-Harvested Treatment Shoots of Moso Bamboo and the Effect of Hyperoxia Treatment [J]. Scientia Silvae Sinicae, 2022, 58(6): 33-46. |
| [11] | Longfei Hao,Tingyan Liu,Yongqin He,Shengxi Zhang,Yuan Zhao. Responses of Rhizosphere Soil Stoichiometry of Clematis fruticosa Inoculated with Arbuscular Mycorrhizal Fungi to Nitrogen Deposition [J]. Scientia Silvae Sinicae, 2022, 58(6): 151-160. |
| [12] | Shunong Li,Yamei Zhang,Yanglun Yu,Wenji Yu. Study on the Hygroscopicity and Chemical Compositions of Boiling-Treated Moso Bamboo [J]. Scientia Silvae Sinicae, 2022, 58(1): 119-126. |
| [13] | Ruijing Xu,Xuan Hu,Guanglu Liu,Wen Guo,Changqiang Liang,Xianghe Kong. Differences of Leaf Functional Traits Between Two Climbing Bamboo Species in Tropical Lowland Rainforest of Hainan Island [J]. Scientia Silvae Sinicae, 2021, 57(12): 155-166. |
| [14] | Enbin Liu,Hongwen Yao,Zexi Ren,Guomo Zhou,Huaqiang Du. Bivariate Joint Distribution of DBH and Age of Moso Bamboo Based on Copula Density Function [J]. Scientia Silvae Sinicae, 2021, 57(11): 94-104. |
| [15] | Jie Fu,Weiwei She,Yuxuan Bai,Yuqing Zhang,Yangui Qiao,Shugao Qin. Effects of Nitrogen and Water Addition on Leaf N:P Stoichiometry of the Two Dominant Species in Artemisia ordosica Community [J]. Scientia Silvae Sinicae, 2020, 56(5): 12-18. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||