Scientia Silvae Sinicae ›› 2024, Vol. 60 ›› Issue (7): 8-16.doi: 10.11707/j.1001-7488.LYKX20220803
Previous Articles Next Articles
Yan Zang,Yuxuan Xiang,Juan Liu*(),Peikun Jiang,Jiasen Wu,Yongfu Li
Received:
2022-11-18
Online:
2024-07-25
Published:
2024-08-19
Contact:
Juan Liu
E-mail:liujuan@zafu.edu.cn
CLC Number:
Yan Zang,Yuxuan Xiang,Juan Liu,Peikun Jiang,Jiasen Wu,Yongfu Li. Effects of Nitrogen and Phosphorus Addition on Soil Water-Stable Aggregates and Organic Carbon Distribution in Moso Bamboo Forests in Subtropical China[J]. Scientia Silvae Sinicae, 2024, 60(7): 8-16.
Table 1
Basic characteristics of sampling plots"
土层 Soil layer | 处理 Treatments | pH | 有机碳含量 Soil organic carbon content/(g·kg?1) | 有效磷含量 Available phosphorous content/(mg·kg?1) | 全氮含量 Total nitrogen content/(g·kg?1) | 全磷含量 Total phosphorus content/(g·kg?1) |
0~20 cm | CK | 5.19±0.13Aa | 28.64±0.33Aa | 2.10±0.20Ca | 1.80±0.01Ca | 0.28±0.01Ba |
N | 3.66±0.05Cb | 23.76±0.77Ba | 2.43±0.17BCa | 1.66±0.03Da | 0.27±0.02Ba | |
P | 3.81±0.02Cb | 25.53±1.12Ba | 12.57±1.01ABa | 1.94±0.02Ba | 0.32±0.01Aa | |
NP | 4.32±0.11Bb | 29.32±0.91Aa | 11.29±0.63Aa | 2.33±0.03Aa | 0.35±0.02Aa | |
20~40 cm | CK | 4.58±0.13Aa | 19.11±0.27Ab | 0.65±0.07Cb | 1.12±0.01Ab | 0.26±0.01Aa |
N | 4.04±0.07Ba | 12.80±0.25Cb | 0.92±0.20Cb | 0.98±0.02Ab | 0.22±0.01Bb | |
P | 4.52±0.24ABa | 16.11±0.22Bb | 1.64±0.17Bb | 1.06±0.08Ab | 0.27±0.01Ab | |
NP | 4.73±0.12Aa | 18.11±0.57Ab | 4.21±0.17Ab | 1.08±0.06Ab | 0.28±0.00Ab | |
40~60 cm | CK | 4.81±0.46ABa | 16.06±0.31Ac | 0.65±0.13Bb | 1.02±0.05Ab | 0.24±0.00Bb |
N | 4.30±0.15ABb | 12.25±0.21Cb | 0.19±0.07Cc | 0.77±0.02Bc | 0.20±0.00Cb | |
P | 3.90±0.04Bb | 13.04±0.47Bc | 1.38±0.13Ab | 0.81±0.03Bc | 0.26±0.02Bb | |
NP | 4.71±0.03Ab | 11.58±0.20Cc | 0.78±0.17Bb | 1.07±0.04Ab | 0.31±0.00Ab |
Table 2
Effects of N and P addition on the distribution of water-stable aggregates %"
土层 Soil layer | 处理 Treatment | 大团聚体Macro-aggregate | 微团聚体Micro-aggregate | |||||
>2 mm | 0.25~2 mm | 总和Sum | 0.053~0.25 mm | < 0.053 mm | 总和Sum | |||
0~20 cm | CK | 27.7±1.1ABa | 57.3±0.7Aa | 85.1±0.6Aa | 8.0±0.8Bc | 6.9±0.5Ac | 14.9±0.6Bc | |
N | 27.1±2.9Aab | 55.3±1.1Aa | 82.3±2.7Aab | 12.0±2.1ABc | 5.7±1.6Ab | 17.7±2.7Abc | ||
P | 35.1±6.5Aa | 52.3±6.7Aa | 87.3±0.5Aa | 7.4±0.2Bc | 5.3±0.4Ac | 12.7±0.5Bc | ||
NP | 20.5±0.7Ba | 58.9±2.3Aa | 79.4±1.6Ba | 13.8±1.7Ac | 6.7±0.1Ab | 20.6±1.6Ac | ||
20~40 cm | CK | 26.7±2.0Aa | 51.1±1.8ABb | 77.7±0.2Ab | 11.7±0.9Bb | 10.6±0.7Ab | 22.3±0.2Bb | |
N | 25.4±0.9ABa | 49.4±0.7Bb | 74.8±0.6ABb | 17.9±0.6Ab | 7.3±0.3Bb | 25.2±0.6ABb | ||
P | 21.7±1.4ABab | 51.3±1.6ABa | 73.0±1.2Bb | 16.3±1.2Ab | 10.7±1.2Ab | 27.0±1.2Ab | ||
NP | 20.6±1.4Ba | 54.5±0.7Aa | 75.1±0.8ABb | 17.7±0.7Ab | 7.2±0.3Bb | 24.9±0.8ABb | ||
40~60 cm | CK | 15.7±0.7Ab | 46.4±1.0Ac | 62.0±0.5Ac | 20.9±1.0Ca | 17.0±0.5Ca | 38.0±0.5Ca | |
N | 15.6±0.1Ab | 43.9±0.2ABc | 59.5±0.2Bc | 23.1±0.3BCa | 17.4±0.4Ca | 40.5±0.2Ba | ||
P | 13.4±0.4Bb | 41.5±0.6Ba | 54.9±0.8Cc | 26.1±0.6Aa | 19.0±0.5Ba | 45.1±0.8Aa | ||
NP | 10.8±0.4Cb | 43.3±0.7Bb | 54.0±0.7Cc | 24.6±0.5ABa | 21.3±0.3Aa | 46.0±0.7Aa |
Table 3
Effects of nitrogen and phosphorus addition and soil depth on composition, stability,and carbon content of soil aggregates: a three-factor analysis of variance (F value)"
项目 Item | MWD | GMD | SOC | 大团聚体含量Macro-aggregate content | 微团聚体含量 Micro-aggregate content | 大团聚体有机碳含量SOC content of macro-aggregate | 微团聚体有机碳含量SOC content of micro-aggregate | 大团聚体有机碳贡献率 SOC rate of macro-aggregate | 微团聚体有机碳贡献率SOC rate of micro-aggregate |
NA | 14.21*** | 15.11*** | 33.59*** | 15.11*** | 15.11*** | 42.74*** | 0.56 | 1.79 | 5.30* |
PA | 13.07*** | 20.96*** | 0.57 | 20.96*** | 20.96*** | 12.40** | 42.10*** | 9.83** | 37.67*** |
SL | 251.43*** | 573.01*** | 667.66*** | 573.01*** | 573.01*** | 731.24*** | 1.57 | 40.36*** | 154.75*** |
NA×PA | 2.07 | 0.01 | 106.73*** | 0.01 | 0.01 | 21.79*** | 83.92*** | 3.34 | 14.72*** |
NA×SL | 5.25* | 4.86* | 4.56* | 4.86* | 4.86* | 0.94 | 21.22*** | 1.63 | 4.79* |
PA×SL | 3.77* | 7.40** | 8.86*** | 7.40** | 7.40** | 3.74* | 17.45*** | 0.71 | 2.35 |
NA×PA×SL | 5.99*** | 5.60** | 9.14*** | 5.60** | 5.60** | 3.53* | 24.03*** | 2.69 | 11.87*** |
Table 4
Effects of N and P addition on SOC content of water-stable aggregates g·kg?1"
土层 Soil layer | 处理Treatment | 大团聚体Macro-aggregate | 微团聚体Micro-aggregate | |||||
>2 mm | 0.25~2 mm | 总和Sum | 0.053~0.25 mm | <0.053 mm | 总和Sum | |||
0~20 cm | CK | 8.19±0.16ABa | 15.98±0.30Aa | 24.17±0.17Aa | 2.15±0.11Bb | 2.32±0.66Ba | 4.47±0.70Ba | |
N | 6.40±1.13BCa | 14.57±0.18Aa | 20.97±1.16Ba | 1.56±0.30Ba | 1.23±0.19Ba | 2.79±0.42Bb | ||
P | 9.99±0.10Aa | 11.86±0.50Ba | 21.85±0.57ABa | 2.17±0.11Bb | 1.51±0.09Bb | 3.68±0.08Bb | ||
NP | 5.23±0.39Ca | 14.70±0.77Aa | 19.93±0.60Ba | 4.91±0.55Aa | 4.48±0.22Aa | 9.39±0.71Aa | ||
20~40 cm | CK | 5.50±0.24Ab | 8.21±0.42Ab | 13.71±0.22Ab | 2.46±0.20BCb | 2.94±0.14Aa | 5.40±0.06Aa | |
N | 3.67±0.10Bb | 5.94±0.14Bb | 9.61±0.22Cb | 1.87±0.07Ca | 1.31C±0.04a | 3.18±0.10Cb | ||
P | 4.93±0.35Ab | 6.35±0.25Bb | 11.27±0.13Bb | 2.72±0.26ABa | 2.11±0.23Ba | 4.84±0.26Ba | ||
NP | 5.50±0.42Ab | 6.76±0.16Bb | 12.26±0.55Bb | 3.24±0.14Ab | 2.61±0.01Ab | 5.85±0.14Ab | ||
40~60 cm | CK | 3.27±0.08Ab | 6.93±0.26Ac | 10.19±0.18Ac | 3.47±0.20Aa | 2.40±0.04Aa | 5.87±0.19Aa | |
N | 3.31±0.03Ab | 4.64±0.19Bc | 7.95±0.22Bb | 2.62±0.02Ba | 1.67±0.03Ba | 4.30±0.01Ca | ||
P | 2.63±0.22Bb | 4.81±0.31Bc | 7.44±0.48BCc | 3.22±0.09Aa | 2.38±0.17Aa | 5.60±0.20Aa | ||
NP | 2.45±0.13Bb | 4.21±0.07Bc | 6.67±0.19Cc | 2.56±0.05Bb | 2.35±0.03Ac | 4.91±0.03Bc |
Table 5
Effects of nitrogen and phosphorus addition on SOC contribution rate of water-stable aggregates %"
土层 Soil layer | 处理Treatment | 大团聚体Macro-aggregate | 微团聚体Micro-aggregate | |||||
>2 mm | 0.25~2 mm | 总和Sum | 0.053~0.25 mm | < 0.053 mm | 总和Sum | |||
0~20 cm | CK | 28.7±0.9Ba | 57.0±0.4Ba | 85.7±0.5Aa | 7.7±0.3Bc | 7.8±2.2Bb | 15.5±2.3Ba | |
N | 26.7±4.1Ba | 61.4±1.9Aa | 88.1±2.2Aa | 6.7±1.5Bb | 5.2±0.9Bb | 11.9±2.2Bb | ||
P | 39.3±2.2Aa | 46.8±3.8Ba | 86.1±5.8Aa | 8.4±0.4Bc | 6.0±0.6Bc | 14.2±0.8Bb | ||
NP | 17.8±1.1Cab | 50.2±2.9Ba | 68.0±1.8Ba | 16.7±1.6Ab | 15.3±0.3Ab | 32.0±1.8Aa | ||
20~40 cm | CK | 28.8±1.6Ab | 42.9±1.6ABa | 71.7±0.2Bb | 12.8±0.9Cb | 15.4±0.9Aa | 29.0±0.2Ba | |
N | 28.7±0.6Aa | 46.4±0.2Aa | 75.1±0.7Ab | 14.6±0.4BCa | 10.3±0.4Ba | 25.4±0.7Cab | ||
P | 30.6±2.0Ab | 39.4±2.0Ba | 70.0±1.3Cb | 16.9±1.4ABb | 13.1±1.5ABa | 32.1±1.3Ab | ||
NP | 30.3±1.5Ab | 37.4±0.4Ba | 67.7±1.1Ca | 17.9±0.8Aab | 14.5±0.5Ab | 35.2±1.1Ab | ||
40~60 cm | CK | 20.4±0.8Bb | 43.1±1.1Ab | 63.5±0.7Ac | 21.6±1.0Aa | 15.0±0.3Aa | 36.6±0.7Ba | |
N | 27.0±0.3Aa | 37.9±1.0Bb | 60.6±0.7Ac | 21.4±0.2Aa | 13.7±0.5Aa | 39.4±0.7Ba | ||
P | 20.1±1.0Bb | 36.9±1.6Bb | 57.0±1.9Bc | 24.8±1.5Aa | 18.2±1.0Aa | 43.0±2.0Aa | ||
NP | 21.2±0.8ABa | 36.4±0.3Bb | 57.6±0.7Bb | 22.1±0.6Aa | 20.3±0.2Aa | 42.4±0.7Aa |
董莉丽, 陈益娥, 李晓华. 吴起县退耕还林对土壤团聚体水稳性和养分含量的影响. 林业科学, 2014, 50 (5): 140- 146. | |
Dong L L, Chen Y E, Li X H. Effects of the returning farmland to forests on content of water stable soil aggregates and the nutrients in Wuqi county. Scientia Silvae Sinicae, 2014, 50 (5): 140- 146. | |
段 娜, 李清河, 多普增, 等. 植物响应大气氮沉降研究进展. 世界林业研究, 2019, 32 (4): 6- 11. | |
Duan N, Li Q H, Duo P Z, et al. Plant response to atmospheric nitrogen deposition: a research review. World Forestry Research, 2019, 32 (4): 6- 11. | |
方华军, 程淑兰, 于贵瑞, 等. 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制. 生态学报, 2014, 34 (17): 4799- 4806. | |
Fang H J, Cheng S L, Yu G R, et al. Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review. Acta Ecologica Sinica, 2014, 34 (17): 4799- 4806. | |
郭虎波, 袁颖红, 吴建平, 等. 氮沉降对杉木人工林土壤团聚体及其有机碳分布的影响. 水土保持学报, 2013, 27 (4): 268- 272. | |
Guo H B, Yuan Y H, Wu J P, et al. Distribution of water-stable aggregates and organic carbon in response to simulated nitrogen deposition in a Chinese fir plantation. Journal of Soil and Water Conservation, 2013, 27 (4): 268- 272. | |
黄凯平, 李永夫, 宋成芳, 等. 氮沉降和施生物质炭对毛竹林土壤N2O通量的影响. 应用生态学报, 2021, 32 (9): 3079- 3088. | |
Huang K P, Li Y F, Song C F, et al. Effects of nitrogen deposition and biochar application on soil N2O fluxes in a moso bamboo plantation. Chinese Journal of Applied Ecology, 2021, 32 (9): 3079- 3088. | |
冷延慧, 汪景宽, 薛菁芳, 等. 连续施肥20年后棕壤团聚体分布和碳储量变化. 土壤通报, 2008, 39 (4): 743- 747.
doi: 10.3321/j.issn:0564-3945.2008.04.006 |
|
Leng Y H, Wang J K, Xue J F, et al. Soil aggregation and carbon storage in brown earth after 20-years of fertilization. Chinese Journal of Soil Science, 2008, 39 (4): 743- 747.
doi: 10.3321/j.issn:0564-3945.2008.04.006 |
|
李 明, 秦 洁, 红 雨, 等. 氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响. 草业学报, 2019, 28 (12): 29- 40.
doi: 10.11686/cyxb2019297 |
|
Li M, Qin J, Hong Y, et al. Effects of nitrogen addition on ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in Stipa baicalensis grassland soil aggregates. Acta Prataculturae Sinica, 2019, 28 (12): 29- 40.
doi: 10.11686/cyxb2019297 |
|
李 霞, 田光明, 朱 军, 等. 不同磷肥用量对水稻土有机碳矿化和细菌群落多样性的影响. 土壤学报, 2014, 51 (2): 360- 372.
doi: 10.11766/trxb201307280354 |
|
Li X, Tian G M, Zhu J, et al. Effects of rate of phosphorus fertilizer on organic carbon mineralization and bacterial community diversity in paddy soil. Acta Pedologica Sinica, 2014, 51 (2): 360- 372.
doi: 10.11766/trxb201307280354 |
|
李应文. 2019. 氮磷添加对热带森林土壤有机碳主要过程的影响. 广州: 华南农业大学. | |
Li Y W. 2019. Effects of nitrogen and phosphorus addition on soil carbon processes in a tropical forest. Guangzhou: South China Agricultural University. [in Chinese] | |
刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展. 生态环境学报, 2020, 29 (6): 1277- 1284. | |
Liu H M, Li R Y, Gao J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics. Ecology and Environmental Sciences, 2020, 29 (6): 1277- 1284. | |
刘 杰, 马艳婷, 王宪玲, 等. 渭北旱塬土地利用方式对土壤团聚体稳定性及其有机碳的影响. 环境科学, 2019, 40 (7): 3361- 3368. | |
Liu J, Ma Y T, Wang X L, et al. Impact of land use type on the stability and organic carbon content of soil aggregates in the Weibei dryland. Environmental Science, 2019, 40 (7): 3361- 3368. | |
龙凤玲, 李义勇, 方 熊, 等. 大气CO2浓度上升和氮添加对南亚热带模拟森林生态系统土壤碳稳定性的影响. 植物生态学报, 2014, 38 (10): 1053- 1063.
doi: 10.3724/SP.J.1258.2014.00099 |
|
Long F L, Li Y Y, Fang X, et al. Effects of elevated CO2 concentration and nitrogen addition on soil carbon stability in southern subtropical experimental forest ecosystems. Chinese Journal of Plant Ecology, 2014, 38 (10): 1053- 1063.
doi: 10.3724/SP.J.1258.2014.00099 |
|
龙杰琦, 苗淑杰, 李 娜, 等. 施用生物炭对黑土各组分有机质结构的影响. 植物营养与肥料学报, 2022, 28 (5): 775- 785.
doi: 10.11674/zwyf.2021290 |
|
Long J Q, Miao S J, Li N, et al. Effects of biochar application on the structural properties of organic matter fractions in Mollisols. Journal of Plant Nutrition and Fertilizers, 2022, 28 (5): 775- 785.
doi: 10.11674/zwyf.2021290 |
|
吕思扬, 宋思意, 黎蕴洁, 等. 氮添加和凋落物增减对华西雨屏区常绿阔叶林土壤团聚体及其碳氮的影响. 水土保持学报, 2022, 36 (1): 277- 287. | |
Lü S Y, Song S Y, Li Y J, et al. Effects of nitrogen and litter increase or decrease on soil aggregates and their C and N in evergreen broad-leaved forest in rain screen area of west China. Journal of Soil and Water Conservation, 2022, 36 (1): 277- 287. | |
潘嘉琛, 刘 超, 董 智, 等. 黄泛沙地不同林龄杨树人工林土壤团聚体及有机碳特征. 水土保持研究, 2022, 29 (3): 25- 30,37.
doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203004 |
|
Pan J C, Liu C, Dong Z, et al. Distribution characteristics of soil aggregates and soil organic carbon in Populus artificial forest with different forest ages in Yellow River flood plain. Research of Soil and Water Conservation, 2022, 29 (3): 25- 30,37.
doi: 10.3969/j.issn.1005-3409.2022.3.stbcyj202203004 |
|
祁 瑜, Mulder J, 段 雷, 等. 模拟氮沉降对克氏针茅草原土壤有机碳的短期影响. 生态学报, 2015, 35 (4): 1104- 1113. | |
Qi Y, Mulder J, Duan L, et al. Short-term effects of simulating nitrogen deposition on soil organic carbon in a Stipa krylovii steppe. Acta Ecologica Sinica, 2015, 35 (4): 1104- 1113. | |
佘汉基, 郑欣颖, 薛 立, 等. 外源性氮和磷对尾叶桉凋落叶分解的影响. 安徽农业大学学报, 2017, 44 (3): 409- 414. | |
She H J, Zheng X Y, Xue L, et al. Effects of N and P additions on decomposition of leaf litter in a Eucalyptus urophylla stand. Journal of Anhui Agricultural University, 2017, 44 (3): 409- 414. | |
姚 旭, 景 航, 梁楚涛, 等. 人工油松林表层土壤团聚体活性有机碳含量对短期氮添加的响应. 生态学报, 2017, 37 (20): 6724- 6731. | |
Yao X, Jing H, Liang C T, et al. Response of labile organic carbon content in surface soil aggregates to short-term nitrogen addition in artificial Pinus tabulaeformis forests. Acta Ecologica Sinica, 2017, 37 (20): 6724- 6731. | |
张大鹏, 范少辉, 蔡春菊, 等. 川南不同退耕还竹林土壤团聚特征比较. 林业科学, 2013, 49 (1): 27- 32.
doi: 10.11707/j.1001-7488.20130105 |
|
Zhang D P, Fan S H, Cai C J, et al. Soil aggregates of returning farmland to different bamboo forests in Southern Sichuan Province. Scientia Silvae Sinicae, 2013, 49 (1): 27- 32.
doi: 10.11707/j.1001-7488.20130105 |
|
张秀兰, 王方超, 方向民, 等. 亚热带杉木林土壤有机碳及其活性组分对氮磷添加的响应. 应用生态学报, 2017, 28 (2): 449- 455. | |
Zhang X L, Wang F C, Fang X M, et al. Responses of soil organic carbon and its labile fractions to nitrogen and phosphorus additions in Cunninghamia lanceolata plantations in subtropical China. Chinese Journal of Applied Ecology, 2017, 28 (2): 449- 455. | |
Ackerman D, Millet D B, Chen X. Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 2019, 33 (1): 100- 107.
doi: 10.1029/2018GB005990 |
|
Batjes N H. 2014. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 65(1): 10−21. | |
Boot C M, Hall E K, Denef K, et al. Long-term reactive nitrogen loading alters soil carbon and microbial community properties in a subalpineforest ecosystem. Soil Biology and Biochemistry, 2016, 92, 211- 220.
doi: 10.1016/j.soilbio.2015.10.002 |
|
Chen H, Li D, Feng W, et al. Different responses of soil organic carbon fractions to additions of nitrogen. European Journal of Soil Science, 2018, 69 (6): 1098- 1104.
doi: 10.1111/ejss.12716 |
|
Dong X L, Hao Q Y, Li G T, et al. Contrast effect of long-term fertilization on SOC and SIC stocks and distribution in different soil particle-size fractions. Journal of Soils and Sediments, 2017, 17 (4): 1054- 1063.
doi: 10.1007/s11368-016-1615-y |
|
Du E Z, de Vries W, Han W X, et al. Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmospheric Chemistry and Physics, 2016, 16 (13): 8571- 8579.
doi: 10.5194/acp-16-8571-2016 |
|
Jia Y L, Yu G R, He N P, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity. Scientific Reports, 2014, 2014,4, 1- 7. | |
Li Y, Feng P. Bamboo resources in China based on the ninth national forest inventory data. World Bamboo Ratt, 2019, 17, 45- 48. | |
Ma S H, Chen G P, Tian D, et al. Effects of seven-year nitrogen and phosphorus additions on soil microbial community structures and residues in a tropical forest in Hainan Island, China. Geoderma, 2020, 361, 114034.
doi: 10.1016/j.geoderma.2019.114034 |
|
Mahowald N, Jickells T D, Baker A R, et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Global Biogeochemical Cycles, 2008, 22 (4): GB4026. | |
Matsuoka-Uno C, Uno T, Tajima R, et al. Liming and phosphate application influence soil carbon and nitrogen mineralization differently in response to temperature regimes in allophanic andosols. Agriculture, 2022, 12 (2): 142.
doi: 10.3390/agriculture12020142 |
|
Mori T, Wachrinrat C, Staporn D, et al. Contrastive effects of inorganic phosphorus addition on soil microbial respiration and microbial biomass in tropical monoculture tree plantation soils in Thailand. Agriculture and Natural Resources, 2016, 50 (5): 327- 330.
doi: 10.1016/j.anres.2016.04.004 |
|
Nottingham A T, Turner B L, Stott A W, et al. Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils. Soil Biology and Biochemistry, 2015, 80, 26- 33.
doi: 10.1016/j.soilbio.2014.09.012 |
|
Peñuelas J, Poulter B, Sardans J, et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 2013, 4, 2934.
doi: 10.1038/ncomms3934 |
|
Ratliff T J, Fisk M C. Phosphatase activity is related to N availability but not P availability across hardwood forests in the northeastern United States. Soil Biology and Biochemistry, 2016, 94, 61- 69.
doi: 10.1016/j.soilbio.2015.11.009 |
|
Scharlemann J P, Tanner E V, Hiederer R, et al. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Management, 2014, 5 (1): 81- 91.
doi: 10.4155/cmt.13.77 |
|
Schulte-Uebbing L F, Ros G H, de Vries W. Experimental evidence shows minor contribution of nitrogen deposition to global forest carbon sequestration. Global Change Biology, 2022, 28 (3): 899- 917.
doi: 10.1111/gcb.15960 |
|
Song W, Liu X Y, Hu C C, et al. Important contributions of non-fossil fuel nitrogen oxides emissions. Nature Communications, 2021, 12, 243.
doi: 10.1038/s41467-020-20356-0 |
|
Sullivan B W, Smith W K, Townsend A R, et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111 (22): 8101- 8106. | |
Vitousek P M, Howarth R W. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13(2): 87−115. | |
Vorontsova M S, Clark L G, Dransfield J, et al. 2017. World checklist of bamboos and rattans. Beijing: Science Press. | |
Wang R, Balkanski Y, Boucher O, et al. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nature Geoscience, 2015, 8, 48- 54.
doi: 10.1038/ngeo2324 |
|
Wen Z, Xu W, Li Q, et al. Changes of nitrogen deposition in China from 1980 to 2018. Environment International, 2020, 144, 106022.
doi: 10.1016/j.envint.2020.106022 |
|
Yu G R, Jia Y L, He N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade. Nature Geoscience, 2019, 12, 424- 429.
doi: 10.1038/s41561-019-0352-4 |
|
Zak D R, Freedman Z B, Upchurch R A, et al. Anthropogenic N deposition increases soil organic matter accumulation without altering its biochemical composition. Global Change Biology, 2017, 23 (2): 933- 944.
doi: 10.1111/gcb.13480 |
|
Zhang L Q, Wei X R, Hao M D, et al. Changes in aggregate-associated organic carbon and nitrogen after 27 years of fertilization in a dryland alfalfa grassland on the Loess Plateau of China. Journal of Arid Land, 2015, 7 (4): 429- 437.
doi: 10.1007/s40333-015-0003-6 |
[1] | Yang Yang, Wang Baorong, Sun Hui, Zhou Yuanyuan, Qiao Jiangbo, Song Yi, Zhang Pingping, Li Zimin, Wang Yunqiang, An Shaoshan. Review of Soil Microbes Mediating Organic Carbon Conversion Process of the Earth Critical Zone [J]. Scientia Silvae Sinicae, 2024, 60(7): 165-174. |
[2] | Bai Xuejuan, Zhai Guoqing, Liu Jingze. Application of 13C Stable Isotopes in Plant-Microbial-Soil Carbon Cycle in Terrestrial Ecosystem [J]. Scientia Silvae Sinicae, 2024, 60(7): 175-190. |
[3] | Ao Zhang,Wenting Li,Tianxiang Wang,Yaoxing Wu,Gang Lei,Lianghua Qi. Regional Differentiation and It’s Influencing Factors of Soil Easily-oxidized Organic Carbon in Subtropical Phyllostachys edulis Forests [J]. Scientia Silvae Sinicae, 2024, 60(6): 1-12. |
[4] | Chenchen Shen,Wenfa Xiao,Jianhua Zhu,Lixiong Zeng,Jizhen Chen,Zhilin Huang. Characterization of Soil Organic Carbon and Key Influencing Factors of Natural Forests in Central China Based on Machine Learning Algorithms [J]. Scientia Silvae Sinicae, 2024, 60(3): 65-77. |
[5] | Shi Wenzhu, Sun Xi, Shao Xusheng, Re Yousuomu, Wang Genmei, Zhang Huanchao, Xiang Jian. Effects of Exogenous Calcium Addition on Soil Carbon Sequestration Potential of Organic Amendments in Improving Coastal Saline-Alkali Soil [J]. Scientia Silvae Sinicae, 2024, 60(2): 32-41. |
[6] | Xinsheng Han,Guangquan Liu,Hao Xu,Liguo Dong,Yongzhong Guo,Yu An,Haixia Wan,Yueling Wang. Spatial Variation and Scale Effect of Surface Soil Organic Carbon Content on Typical Slopes in the Loess Region, Ningxia [J]. Scientia Silvae Sinicae, 2024, 60(1): 19-31. |
[7] | Xu Gai,Jian Zhang,Heng Lü,Zhiyuan Huang,Qiaoling Li,Zheke Zhong,Fangyuan Bian,Xiaoping Zhang. Effects of Chicken Farming on Soil Active Organic Carbon and Carbon Pool Management Index in the Lei Bamboo (Phyllostachys praecox) Forest [J]. Scientia Silvae Sinicae, 2023, 59(12): 78-86. |
[8] | Weibin You,Ying Li,Yan Zhou,Dongjin He. Edge Effect of Pinus massoniana Forest Converted into Tea Plantation on Topsoil Carbon Content in Wuyishan National Park [J]. Scientia Silvae Sinicae, 2023, 59(10): 41-49. |
[9] | Sisheng Luo,Bizhen Luo,Shujing Wei,Haiqing Hu,Xiaochuan Li,Zhenshi Wang,Yufei Zhou,Zhao Song,Yingxia Zhong. Characteristics of Soil Carbon Pool in Pinus massoniana Forest One Year after Moderate Forest Fires [J]. Scientia Silvae Sinicae, 2022, 58(9): 25-35. |
[10] | Longfei Hao,Tingyan Liu,Yongqin He,Shengxi Zhang,Yuan Zhao. Responses of Rhizosphere Soil Stoichiometry of Clematis fruticosa Inoculated with Arbuscular Mycorrhizal Fungi to Nitrogen Deposition [J]. Scientia Silvae Sinicae, 2022, 58(6): 151-160. |
[11] | Xiang Zheng,Minmin Cao,Xiaofang Ji,Wanli Fang,Shenglong Liu,Jiang Jiang. Progress in Studies of Responses to Phosphorus Addition of Soil Nitrous Oxide Emissions from Forest Soil [J]. Scientia Silvae Sinicae, 2021, 57(6): 150-157. |
[12] | Jie Fu,Weiwei She,Yuxuan Bai,Yuqing Zhang,Yangui Qiao,Shugao Qin. Effects of Nitrogen and Water Addition on Leaf N:P Stoichiometry of the Two Dominant Species in Artemisia ordosica Community [J]. Scientia Silvae Sinicae, 2020, 56(5): 12-18. |
[13] | Haiqing Hu,Bizhen Luo,Sisheng Luo,Shujing Wei,Zhenshi Wang,Xiaochuan Li,Fei Liu. Research Progress on Effects of Forest Fire Disturbance on Carbon Pool of Forest Ecosystem [J]. Scientia Silvae Sinicae, 2020, 56(4): 160-169. |
[14] | Zongda Hu,Shirong Liu,Xingliang Liu,Mingxia Luo,Jing Hu,Yafei Li,Hao Yu,Dinghua Ou,Deyong Wu. Characterization of Soil Organic Carbon and Nitrogen Components in Three Natural Secondary Forests in Subalpine Regions of Western Sichuan, China [J]. Scientia Silvae Sinicae, 2020, 56(11): 1-11. |
[15] | Tao Chenyue, Shao Shanlu, Shi Wenhui, Lin Lin, Tang Yilei, Ying Yeqing. Effects of Nitrogen Deposition on Biomass and Protective Enzyme Activities of Phyllostachys edulis Seedlings under Drought Stress [J]. Scientia Silvae Sinicae, 2019, 55(9): 31-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||