Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (9): 101-112.doi: 10.11707/j.1001-7488.LYKX20240680
• Research papers • Previous Articles
Rui Gu1,2,Shaohui Fan1,Songpo Wei1,Guanglu Liu1,2,*()
Received:
2024-11-12
Online:
2025-09-25
Published:
2025-10-10
Contact:
Guanglu Liu
E-mail:liuguanglu@icbr.ac.cn
CLC Number:
Rui Gu,Shaohui Fan,Songpo Wei,Guanglu Liu. Construction of a Core Germplasm of Moso Bamboo Based on Phenotypic Traits[J]. Scientia Silvae Sinicae, 2025, 61(9): 101-112.
Table 1
Genetic variation and genetic diversity of moso bamboo germplasm resources"
性状Traits | 均值 Mean | 标准差 Standard deviation | 变异系数 CV(%) | 变异幅度Variation range | H' | |
生长性状 Growth traits | DBH | 10.148 | 1.497 | 14.750 | 5.45~13.40 | 2.017 |
BD | 11.681 | 1.798 | 15.392 | 5.60~16.00 | 2.041 | |
TCH | 15.573 | 2.292 | 14.718 | 8.80~22.80 | 2.053 | |
TNN | 61.400 | 7.988 | 13.010 | 25.00~75.00 | 1.961 | |
HFB | 7.257 | 1.785 | 24.603 | 3.00~13.75 | 2.064 | |
NNFB | 27.100 | 4.037 | 14.895 | 14.00~37.00 | 2.063 | |
IL | 24.410 | 2.856 | 11.699 | 14.40~34.00 | 2.035 | |
CW | 2.269 | 0.347 | 15.293 | 1.17~3.60 | 2.058 | |
结构性状 Structural traits | ACWTB | 16.372 | 2.465 | 15.054 | 6.14~ | 2.030 |
AWTH | 10.045 | 1.516 | 15.088 | 5.38~18.18 | 1.963 | |
CCD | 79.410 | 12.918 | 16.267 | 39.46~116.15 | 2.013 | |
叶片性状 Leaf traits | LA | 10.419 | 2.055 | 19.721 | 4.87~18.72 | 2.042 |
LL | 10.004 | 1.018 | 10.176 | 6.51~13.70 | 2.048 | |
LW | 1.479 | 0.162 | 10.970 | 1.02~1.99 | 2.059 | |
LT | 1.288 | 0.158 | 12.297 | 0.86~1.99 | 2.038 |
Table 2
Evaluation parameters of core collection subset"
遗传距离 Genetic distance | 取样方法 Sampling methods | 聚类方法 Clustering methods | 均值差异 百分率 Mean difference percentage(%) | 方差差异 百分率 Variance difference percentage(%) | 极差符合率 Concordance rate of range(%) | 变异系数 Coefficient of variation(%) |
欧氏距离 Euclidean distance | 随机取样法 Random sampling | 最短距离法 Single linkage | 6.67 | 86.67 | 90.59 | 134.27 |
最长距离法 Complete linkage | 0.00 | 6.67 | 86.39 | 118.01 | ||
非加权类平均法 Unweighted average linkage method | 0.00 | 53.33 | 85.69 | 121.95 | ||
离差平方和法 Ward’s method | 0.00 | 26.67 | 83.05 | 116.30 | ||
中间距离法 Median method | 0.00 | 6.67 | 83.38 | 112.44 | ||
可变类平均法 Flexible beta method | 0.00 | 20.00 | 86.27 | 119.23 | ||
可变法 Ward’s flexible method | 0.00 | 26.67 | 87.35 | 119.25 | ||
优先取样法 Preferred sampling | 最短距离法 Single linkage | 0.00 | 100.00 | 100.00 | 154.03 | |
最长距离法 Complete linkage | 0.00 | 93.33 | 100.00 | 147.03 | ||
非加权类平均法Unweighted average linkage method | 0.00 | 100.00 | 100.00 | 150.00 | ||
离差平方和法 Ward’s method | 0.00 | 100.00 | 100.00 | 143.74 | ||
中间距离法 Median method | 0.00 | 100.00 | 100.00 | 144.74 | ||
可变类平均法 Flexible beta method | 0.00 | 100.00 | 100.00 | 144.88 | ||
可变法 Ward’s flexible method | 0.00 | 100.00 | 100.00 | 146.17 | ||
偏离度取样法 Deviation sampling | 最短距离法 Single linkage | 6.67 | 100.00 | 98.80 | 149.66 | |
最长距离法 Complete linkage | 0.00 | 80.00 | 92.98 | 131.20 | ||
非加权类平均法Unweighted average linkage method | 0.00 | 93.33 | 95.55 | 139.15 | ||
离差平方和法 Ward’s method | 0.00 | 100.00 | 96.74 | 140.65 | ||
中间距离法 Median method | 0.00 | 53.33 | 85.70 | 118.81 | ||
可变类平均法 Flexible beta method | 0.00 | 100.00 | 96.48 | 141.58 | ||
可变法 Ward’s flexible method | 0.00 | 100.00 | 95.14 | 135.93 | ||
马氏距离 Mahalanobis distance | 随机取样法 Random sampling | 最短距离法 Single linkage | 6.67 | 86.67 | 90.59 | 134.27 |
最长距离法 Complete linkage | 0.00 | 26.67 | 80.66 | 114.12 | ||
非加权类平均法 Unweighted average linkage method | 0.00 | 20.00 | 85.38 | 116.22 | ||
离差平方和法 Ward’s method | 0.00 | 6.67 | 83.84 | 116.60 | ||
中间距离法 Median method | 0.00 | 20.00 | 89.68 | 115.44 | ||
可变类平均法 Flexible beta method | 0.00 | 6.67 | 79.78 | 114.45 | ||
可变法 Ward’s flexible method | 0.00 | 13.33 | 80.77 | 110.45 | ||
优先取样法 Preferred sampling | 最短距离法 Single linkage | 0.00 | 93.33 | 100.00 | 148.15 | |
最长距离法 Complete linkage | 0.00 | 93.33 | 100.00 | 144.66 | ||
非加权类平均法 Unweighted average linkage method | 0.00 | 93.33 | 100.00 | 145.71 | ||
离差平方和法 Ward’s method | 0.00 | 100.00 | 100.00 | 146.87 | ||
中间距离法 Median method | 0.00 | 93.33 | 100.00 | 142.72 | ||
可变类平均法 Flexible beta method | 0.00 | 93.33 | 100.00 | 141.33 | ||
可变法 Ward’s flexible method | 0.00 | 93.33 | 100.00 | 140.47 | ||
偏离度取样法 Deviation sampling | 最短距离法 Single linkage | 6.67 | 93.33 | 95.41 | 145.42 | |
最长距离法 Complete linkage | 6.67 | 93.33 | 93.49 | 153.01 | ||
非加权类平均法Unweighted average linkage method | 0.00 | 93.33 | 97.07 | 156.30 | ||
离差平方和法 Ward’s method | 0.00 | 100.00 | 95.71 | 154.34 | ||
中间距离法 Median method | 6.67 | 86.67 | 92.93 | 139.87 | ||
可变类平均法 Flexible beta method | 0.00 | 86.67 | 92.51 | 149.91 | ||
可变法 Ward’s flexible method | 0.00 | 100.00 | 95.35 | 152.82 |
Table 3
Comparison of core collections evaluation parameters under different sampling ratios %"
取样比例 Sampling ratio | 均值差异百分率 Mean difference percentage | 方差差异百分率 Variance difference percentage | 极差符合率 Concordance rate of range | 变异系数 Coefficient of variation |
5 | 0.00 | 80.00 | 91.73 | 165.90 |
10 | 0.00 | 100.00 | 100.00 | 154.03 |
15 | 6.67 | 93.33 | 100.00 | 139.83 |
20 | 6.67 | 100.00 | 100.00 | 132.74 |
25 | 6.67 | 93.33 | 100.00 | 126.42 |
30 | 6.67 | 93.33 | 100.00 | 120.60 |
35 | 0.00 | 93.33 | 100.00 | 116.72 |
40 | 0.00 | 60.00 | 100.00 | 113.08 |
Table 4
Number of samples for 16 groups under a 10% sampling strategy of the total population"
组别 Group | 多样性指数 Shannon-Wiener index | 样本数 Sample number | 遗传多样性法Genetic diversity method | 简单比例法Simple proportional method | 对数比例法Logarithmic proportional method | 平方根比例法Square root proportional method | |||||||
多样性占比 Genetic ratio(%) | 10% | 样本数占比 Sample ratio(%) | 10% | 样本数占比 Sample ratio(%) | 10% | 样本数占比 Sample ratio(%) | 10% | ||||||
安徽 Anhui | 10.777 | 24 | 38.74 | 3 | 5.56 | 2 | 6.48 | 3 | 6.17 | 3 | |||
福建 Fujian | 11.052 | 30 | 39.73 | 3 | 6.94 | 3 | 6.94 | 3 | 6.90 | 3 | |||
河南 Henan | 10.039 | 12 | 36.09 | 3 | 2.78 | 1 | 5.07 | 2 | 4.36 | 2 | |||
云南 Yunnan | 9.583 | 6 | 34.45 | 2 | 1.39 | 1 | 3.65 | 2 | 3.09 | 1 | |||
广西 Guangxi | 10.959 | 27 | 39.40 | 3 | 6.25 | 3 | 6.72 | 3 | 6.55 | 3 | |||
湖南 Hunan | 11.846 | 47 | 42.59 | 3 | 10.88 | 5 | 7.85 | 4 | 8.64 | 4 | |||
江西 Jiangxi | 11.870 | 48 | 42.67 | 3 | 11.11 | 5 | 7.89 | 4 | 8.73 | 4 | |||
江苏 Jiangsu | 10.039 | 12 | 36.09 | 2 | 2.78 | 1 | 5.07 | 2 | 4.36 | 2 | |||
浙江 Zhejiang | 11.553 | 42 | 41.53 | 3 | 9.72 | 4 | 7.62 | 3 | 8.16 | 4 | |||
湖北 Hubei | 11.364 | 38 | 40.86 | 3 | 8.80 | 4 | 7.42 | 3 | 7.77 | 3 | |||
重庆Chongqing | 10.959 | 27 | 39.40 | 3 | 6.25 | 3 | 6.72 | 3 | 6.55 | 3 | |||
陕西 Shaanxi | 10.390 | 18 | 37.35 | 3 | 4.17 | 1 | 5.89 | 3 | 5.34 | 2 | |||
甘肃 Gansu | 9.040 | 2 | 32.50 | 1 | 0.46 | 1 | 1.41 | 1 | 1.78 | 1 | |||
广东Guangdong | 11.309 | 36 | 40.66 | 3 | 8.33 | 4 | 7.31 | 3 | 7.56 | 3 | |||
四川 Sichuan | 11.391 | 39 | 40.95 | 3 | 9.03 | 4 | 7.47 | 3 | 7.87 | 3 | |||
贵州 Guizhou | 10.777 | 24 | 38.74 | 3 | 5.56 | 2 | 6.48 | 3 | 6.17 | 3 |
Table 5
Comparison of core collections evaluation parameters under grouped and non-grouped sampling %"
核心种质 Core collection | 均值差异百分率 Mean difference percentage | 方差差异百分率 Variance difference percentage | 极差符合率 Concordance rate of range | 变异系数 Coefficient of variation |
PCore | 0.00 | 93.33 | 100.00 | 154.03 |
LCore | 0.00 | 93.33 | 100.00 | 154.03 |
SCore | 13.33 | 20.00 | 81.43 | 106.71 |
GCore | 0.00 | 6.67 | 80.94 | 106.18 |
NGCore | 0.00 | 100.00 | 100.00 | 154.03 |
Table 6
Basic eigenvalues and t-test in traits of the initial and core collection"
性状Traits | 种质Collection | 最小值 Min. | 最大值 Max. | 均值Mean | 变异系数CV(%) | 多样性指数 Shannon-Wiener index | t |
DBH | OC | 5.45 | 13.40 | 10.15 | 14.75 | 2.02 | 0.51 |
CC | 5.45 | 13.40 | 9.90 | 24.30 | 1.80 | ||
BD | OC | 5.60 | 16.00 | 11.68 | 15.39 | 2.04 | 0.85 |
CC | 5.60 | 16.00 | 11.59 | 25.11 | 1.94 | ||
TCH | OC | 8.80 | 22.80 | 15.57 | 14.72 | 2.05 | 0.61 |
CC | 8.80 | 22.80 | 15.27 | 25.04 | 1.98 | ||
TNN | OC | 25.00 | 75.00 | 61.40 | 13.01 | 1.96 | 0.16 |
CC | 25.00 | 75.00 | 58.65 | 20.89 | 1.94 | ||
HFB | OC | 3.00 | 13.75 | 7.26 | 24.60 | 2.06 | 0.68 |
CC | 3.00 | 13.75 | 7.44 | 38.55 | 2.03 | ||
NNFB | OC | 14.00 | 37.00 | 27.10 | 14.90 | 2.06 | 0.43 |
CC | 14.00 | 37.00 | 26.35 | 22.96 | 2.04 | ||
IL | OC | 14.40 | 34.00 | 24.41 | 11.70 | 2.03 | 0.42 |
CC | 14.40 | 34.00 | 24.96 | 17.13 | 2.01 | ||
CW | OC | 1.17 | 3.60 | 2.27 | 15.29 | 2.06 | 0.63 |
CC | 1.17 | 3.60 | 2.30 | 17.56 | 1.92 | ||
ACWB | OC | 6.14 | 24.45 | 16.37 | 15.05 | 2.03 | 0.28 |
CC | 6.14 | 24.45 | 15.70 | 25.00 | 1.99 | ||
AWTH | OC | 5.38 | 18.18 | 10.05 | 15.09 | 1.96 | 0.87 |
CC | 5.38 | 18.18 | 10.11 | 25.38 | 1.92 | ||
CCD | OC | 39.46 | 116.15 | 79.41 | 16.27 | 2.01 | 0.76 |
CC | 39.46 | 116.15 | 78.43 | 26.52 | 1.88 | ||
LA | OC | 4.87 | 18.72 | 10.42 | 19.72 | 2.04 | 0.28 |
CC | 4.87 | 18.72 | 10.96 | 29.01 | 1.97 | ||
LL | OC | 6.51 | 13.70 | 10.00 | 10.18 | 2.05 | 0.42 |
CC | 6.51 | 13.70 | 10.20 | 15.09 | 2.02 | ||
LW | OC | 1.02 | 1.99 | 1.48 | 10.97 | 2.06 | 0.39 |
CC | 1.02 | 1.99 | 1.51 | 16.08 | 2.06 | ||
LT | OC | 0.86 | 1.99 | 1.29 | 12.30 | 2.04 | 0.24 |
CC | 0.86 | 1.99 | 1.33 | 17.27 | 1.94 |
Table 7
Coincidence rate test of phenotypic traits between core collection and original collection %"
性状Traits | 最小值符合率 Min. coincidence rate | 最大值符合率 Max. coincidence rate | 均值符合率 Mean coincidence rate | 多样性指数符合率 Coincidence rate of Shannon-Wiener index |
DBH | 100.00 | 100.00 | 97.56 | 89.15 |
BD | 100.00 | 100.00 | 99.25 | 95.20 |
TCH | 100.00 | 100.00 | 98.05 | 96.19 |
TNN | 100.00 | 100.00 | 95.52 | 98.90 |
HFB | 100.00 | 100.00 | 97.44 | 98.51 |
NNFB | 100.00 | 100.00 | 97.23 | 99.07 |
IL | 100.00 | 100.00 | 97.77 | 98.91 |
CW | 100.00 | 100.00 | 98.62 | 93.30 |
ACWB | 100.00 | 100.00 | 95.88 | 98.24 |
AWTH | 100.00 | 100.00 | 99.34 | 97.88 |
CCD | 100.00 | 100.00 | 98.77 | 93.33 |
LA | 100.00 | 100.00 | 94.82 | 96.67 |
LL | 100.00 | 100.00 | 98.03 | 98.85 |
LW | 100.00 | 100.00 | 97.79 | 99.96 |
LT | 100.00 | 100.00 | 96.72 | 95.18 |
Table 8
Principal component analysis of phenotypic traits for original germplasm and core germplasm"
主成分 Component | 原始种质Original collection | 核心种质 Core collection | |||||||
特征根 Eigen value | 贡献率 Contribution percentage(%) | 累积贡献率 Cumulative contribution percentage(%) | 前3名主要 贡献性状 The top three contributing traits | 特征根 Eigen value | 贡献率 Contribution percentage(%) | 累积贡献率 Cumulative contribution percentage(%) | 前3名主要 贡献性状 The top three contributing traits | ||
PC1 | 2.391 | 38.10 | 38.10 | DBH,CCD,BD | 2.484 | 41.12 | 41.12 | DBH,CCD,BD | |
PC2 | 1.797 | 21.53 | 59.63 | LA,LW,LL | 1.942 | 25.14 | 66.26 | LA,LW,LL | |
PC3 | 1.094 | 7.97 | 67.61 | CW,HFB,IL | 1.075 | 7.71 | 73.97 | LT,ACWTB,CW | |
PC4 | 1.049 | 7.331 | 74.94 | IL,CW,NNFB | 1.041 | 7.22 | 81.19 | CW,AWTH,ACWTB |
艾 叶, 陈 璐, 兰思仁, 等. 基于形态学性状构建建兰品种核心种质. 分子植物育种, 2019, 17 (23): 7924- 7934. | |
Ai Y, Chen L, Lan S R, et al. Construction of core collection of Cymbidium ensifolium varieties based on morphological traits. Molecular Plant Breeding, 2019, 17 (23): 7924- 7934. | |
陈建华, 曲凯伦, 张云程, 等. 基于表型性状的酸枣核心种质构建. 沈阳农业大学学报, 2024, 55 (2): 176- 186.
doi: 10.3969/j.issn.1000-1700.2024.02.005 |
|
Chen J H, Qu K L, Zhang Y C, et al. Construction of Ziziphus jujuba var. spinosa core collection based on phenotypic traits. Journal of Shenyang Agricultural University, 2024, 55 (2): 176- 186.
doi: 10.3969/j.issn.1000-1700.2024.02.005 |
|
董英山, 庄炳昌, 赵丽梅, 等. 2000. 中国野生大豆遗传多样性中心. 作物学报, 26(5): 521−527. | |
Dong Y S, Zhuang B C, Zhao L M, et al. 2000. The genetic diversity centers of annual wild soybean in China. Acta Agronomica Sinica, 26(5): 521−527. [in Chinese] | |
董玉琛, 曹永生, 张学勇, 等. 中国普通小麦初选核心种质的产生. 植物遗传资源学报, 2003, 4 (1): 1- 8.
doi: 10.3969/j.issn.1672-1810.2003.01.002 |
|
Dong Y C, Cao Y S, Zhang X Y, et al. Establishment of candidate core collections in Chinese common wheat germplasm. Journal of Plant Genetic Resources, 2003, 4 (1): 1- 8.
doi: 10.3969/j.issn.1672-1810.2003.01.002 |
|
董玉慧. 2008. 枣树农艺性状遗传多样性评价与核心种质构建. 保定: 河北农业大学. | |
Dong Y H. 2008. Evaluation of genetic diversity of agronomic traits of jujube and construction of core germplasm. Baoding: Hebei Agricultural University.[in Chinese] | |
郭 琪. 2019. 刺槐种质资源的遗传多样性评价及核心种质构建. 北京: 北京林业大学. | |
Guo Q. 2019. Genetic diversity evaluation and core collection construction of Robinia pseudoacacia germplasm resources. Beijing:Beijing Forestry University.[in Chinese] | |
胡建斌, 马双武, 王吉明, 等. 基于表型性状的甜瓜核心种质构建. 果树学报, 2013, 30 (3): 404- 411. | |
Hu J B, Ma S W, Wang J M, et al. Establishment of a melon (Cucumis melo) core collection based on phenotypic characters. Journal of Fruit Science, 2013, 30 (3): 404- 411. | |
蒋维昕. 2013. 毛竹的遗传结构及群体演化. 南京: 南京林业大学. | |
Jiang W X. 2013. Genetic structure and population evolution of Phyllostachys pubescens. Nanjing: Nanjing Forestry University.[in Chinese] | |
郎彬彬, 黄春辉, 朱 博, 等. 基于果实相关性状的江西野生毛花猕猴桃初级核心种质的构建方法研究. 果树学报, 2016, 33 (7): 794- 803. | |
Lang B, Huang C H, Zhu B, et al. Study on the method of constructing a primary core collection of Jiangxi wild Actinidia eriantha based on fruit traits. Journal of Fruit Science, 2016, 33 (7): 794- 803. | |
李国强, 李锡香, 沈 镝, 等. 基于形态数据的大白菜核心种质构建方法的研究. 园艺学报, 2008, 35 (12): 1759- 1766.
doi: 10.3321/j.issn:0513-353X.2008.12.006 |
|
Li G Q, Li X X, Shen D, et al. Studies on the methods of constructing Chinese cabbage core germplasm based on the morphological data. Acta Horticulturae Sinica, 2008, 35 (12): 1759- 1766.
doi: 10.3321/j.issn:0513-353X.2008.12.006 |
|
李洪果, 陈达镇, 劳庆祥, 等. 基于表型性状初步构建格木核心种质. 分子植物育种, 2019, 17 (20): 6881- 6890. | |
Li H G, Chen D Z, Lao Q X, et al. Preliminary construction of core collection of Erythrophleum fordii based on phenotypic traits. Molecular Plant Breeding, 2019, 17 (20): 6881- 6890. | |
李洪果, 杜红岩, 贾宏炎, 2018. 利用表型性状构建杜仲雄性资源核心种质. 分子植物育种, 16(2): 591−601. | |
Li H G, Du H Y, Jia H Y, et al. 2018. Establishment of male core collection of Eucommia ulmoides based on phenotypic traits. Molecular Plant Breeding, 16(2): 591−601. [in Chinese] | |
李洪果, 杜庆鑫, 王 淋, 等. 2017. 利用表型数据构建杜仲雌株核心种质. 分子植物育种, 15(12): 5197−5209. | |
Li H G, Du Q X, Wang L, et al. 2017. Establishment of female core collection of Eucommia ulmoides oliv. based on phenotypic characters. Molecular Plant Breeding, 15(12): 5197−5209. [in Chinese] | |
李慧峰, 陈天渊, 黄咏梅, 等. 2013. 基于形态性状的甘薯核心种质取样策略研究. 植物遗传资源学报, 14(1) : 91−96. | |
Li H F, Chen T Y, Huang Y M, et al. 2013. Sampling strategies of sweet potato core collection based on morphological traits. Journal of Plant Genetic Resources, 14(1): 91−96. [in Chinese] | |
李 娟, 江昌俊. 中国茶树核心种质的初步构建. 安徽农业大学学报, 2004, 31 (3): 282- 287.
doi: 10.3969/j.issn.1672-352X.2004.03.007 |
|
Li J, Jiang C J. Preliminary construction of core germplasm of Chinese tea plants. Journal of Anhui Agricultural University, 2004, 31 (3): 282- 287.
doi: 10.3969/j.issn.1672-352X.2004.03.007 |
|
李秀兰, 贾继文, 王军辉, 等. 灰楸形态多样性分析及核心种质初步构建. 植物遗传资源学报, 2013, 14 (2): 243- 248.
doi: 10.3969/j.issn.1672-1810.2013.02.009 |
|
Li X L, Jia J W, Wang J H, et al. Morphological diversity analysis and preliminary construction of core collection of Catalpa fargesii Bureau. Journal of Plant Genetic Resources, 2013, 14 (2): 243- 248.
doi: 10.3969/j.issn.1672-1810.2013.02.009 |
|
李自超, 张洪亮, 曹永生, 等. 中国地方稻种资源初级核心种质取样策略研究. 作物学报, 2003, 29 (1): 20- 24.
doi: 10.3321/j.issn:0496-3490.2003.01.004 |
|
Li Z C, Zhang H L, Cao Y S, et al. Studies on the sampling strategy for primary core collection of Chinese ingenious rice. Acta Agronomica Sinica, 2003, 29 (1): 20- 24.
doi: 10.3321/j.issn:0496-3490.2003.01.004 |
|
刘德浩, 张方秋, 张卫华. 基于地理种源分组和表型数据构建尾叶桉核心种质. 西南林业大学学报, 2013, 33 (5): 1- 8.
doi: 10.3969/j.issn.2095-1914.2013.05.001 |
|
Liu D H, Zhang F Q, Zhang W H. Construction of core germplasm of Eucalyptus urophylla based on geographical origin grouping and phenotypic data. Journal of Southwest Forestry University, 2013, 33 (5): 1- 8.
doi: 10.3969/j.issn.2095-1914.2013.05.001 |
|
刘子记, 曹振木, 朱 婕, 等. 甜椒核心种质资源比较构建研究. 东北农业大学学报, 2016, 47 (1): 21- 29.
doi: 10.3969/j.issn.1005-9369.2016.01.004 |
|
Liu Z J, Cao Z M, Zhu J, et al. Comparative study on the construction of sweet pepper core collection. Journal of Northeast Agricultural University, 2016, 47 (1): 21- 29.
doi: 10.3969/j.issn.1005-9369.2016.01.004 |
|
刘子记, 牛 玉, 朱 婕, 等. 苦瓜核心种质资源构建法的比较. 华南农业大学学报, 2017, 38 (1): 31- 37.
doi: 10.7671/j.issn.1001-411X.2017.01.006 |
|
Liu Z J, Niu Y, Zhu J, et al. Comparison of different methods to construct core collections of Momordica charantia. Journal of South China Agricultural University, 2017, 38 (1): 31- 37.
doi: 10.7671/j.issn.1001-411X.2017.01.006 |
|
刘遵春, 张春雨, 张艳敏, 等. 利用数量性状构建新疆野苹果核心种质的方法. 中国农业科学, 2010, 43 (2): 358- 370.
doi: 10.3864/j.issn.0578-1752.2010.02.017 |
|
Liu Z C, Zhang C Y, Zhang Y M, et al. Study on method of constructing core collection of Malus sieversii based on quantitative traits. Scientia Agricultura Sinica, 2010, 43 (2): 358- 370.
doi: 10.3864/j.issn.0578-1752.2010.02.017 |
|
马玉敏. 2009. 中国野生板栗(Castanea mollissim Blume)群体遗传结构和核心种质构建方法. 泰安: 山东农业大学. | |
Ma Y M. 2009. Population genetic structure and method of constructing core collection for Castanea mollissima Blume. Tai'an: Shandong Agricultural University.[in Chinese] | |
施建敏, 杨光耀, 郭起荣, 等. 2008. 江西毛竹表型特征地理变异研究. 江西农业大学学报, (5): 824−828. | |
Shi J M, Yang G Y, Guo Q R, et al. 2008. Geographic variation in phenotypic traits of moso bamboo (Phyllostachys edulis) in Jiangxi Province. Journal of Jiangxi Agricultural University, 30(5): 824−828. [in Chinese] | |
魏志刚, 高玉池, 刘桂丰, 等. 白桦核心种质初步构建. 林业科学, 2009, 45 (10): 74- 80.
doi: 10.11707/j.1001-7488.20091013 |
|
Wei Z G, Gao Y C, Liu G F, et al. Preliminary construction of core collection of Betula platyphylla germplasm. Scientia Silvae Sinicae, 2009, 45 (10): 74- 80.
doi: 10.11707/j.1001-7488.20091013 |
|
吴河饶, 任青艳, 陈 莹, 等. 基于农艺性状的榕江茶核心种质构建. 西北植物学报, 2023, 43 (11): 1931- 1941.
doi: 10.7606/j.issn.1000-4025.2023.11.1931 |
|
Wu H R, Ren Q Y, Chen Y. et al. Construction of core germplasm of Camellia yungkiangensis based on agronomic traits. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43 (11): 1931- 1941.
doi: 10.7606/j.issn.1000-4025.2023.11.1931 |
|
徐海明, 邱英雄, 胡 晋, 等. 不同遗传距离聚类和抽样方法构建作物核心种质的比较. 作物学报, 2004, 30 (9): 932- 936.
doi: 10.3321/j.issn:0496-3490.2004.09.016 |
|
Xu H M, Qiu Y X, Hu J, et al. Methods of constructing core collection of crop germplasm by comparing different genetic distances cluster methods and sampling strategies. Acta Agronomica Sinica, 2004, 30 (9): 932- 936.
doi: 10.3321/j.issn:0496-3490.2004.09.016 |
|
于晓池, 李 凤, 欧 阳, 等. 基于表型的灰楸核心种质构建. 林业科学研究, 2021, 34 (6): 38- 45. | |
Yu X C, Li F, Ou Y, et al. Construction of core collection of Catalpa fargesii bur. based on phenotype. Forest Research, 2021, 34 (6): 38- 45. | |
于秀明, 杜 雨, 汪 鹏, 等. 基于表型性状的新疆野生黄花苜蓿核心种质构建. 草地学报, 2023, 31 (10): 3032- 3039. | |
Yu X M, Du Y, Wang P, et al. Construction of Xinjiang wild alfalfa core collection based on phenotypic traits. China Industrial Economics, 2023, 31 (10): 3032- 3039. | |
张 欢, 王 东, 段 帆, 等. 基于水青树叶表型性状的核心种质资源库构建策略. 林业科学研究, 2019, 32 (2): 166- 173. | |
Zhang H, Wang D, Duan F, et al. Construction strategy of core collection based on leaf phenotypic traits of Tetracentron sinense. Forest Research, 2019, 32 (2): 166- 173. | |
张 婷, 闫伟红, 李志勇, 2024. 基于表型探讨 76 份沙芦草核心种质构建策略. 中国种业, (2): 93−102. | |
Zhang T, Yan W H, Li Z Y, et al. 2024. Exploring the construction strategies of core collection in 76 Agropyron mongolicum based on phenotype. China Seed Industry, (2): 93−102. [in Chinese] | |
张闻博, 费本华, 田根林, 等. 不同地区毛竹生长和表型性状的比较. 东北林业大学学报, 2019, 47 (1): 1- 5.
doi: 10.3969/j.issn.1000-5382.2019.01.001 |
|
Zhang W B, Fei B H, Tian G L, et al. Comparison of growth and phenotypic traits of moso mamboo (Phyllostachys edulis) from different regions. Journal of Northeast Forestry University, 2019, 47 (1): 1- 5.
doi: 10.3969/j.issn.1000-5382.2019.01.001 |
|
郑轶琦, 郭 琰, 房淑娟, 等. 利用表型数据构建狗牙根初级核心种质. 草业学报, 2014, 23 (4): 49- 60.
doi: 10.11686/cyxb20140406 |
|
Zheng Y Q, Guo Y, Fang S J, et al. Constructing pre-core collection of Cynodondactylon based on phenotypic data. Acta Prataculturae Sinica, 2014, 23 (4): 49- 60.
doi: 10.11686/cyxb20140406 |
|
Chen W, Hou L, Zhang Z Y, et al. Genetic diversity, population structure, and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR markers. Frontiers in Plant Science, 2017, 8, 575. | |
Coan M M D, Senhorinho H J C, Pinto R J B. 2018. Genome-wide association study of resistance to ear rot by in a tropical field maize and popcorn core collection. Crop Science, 58: 564−578. | |
Ellstrand N C, Roose M L. Patterns of genetypic diversity in clonal plants species. America Journal of Botany, 1987, 74, 123- 131.
doi: 10.1002/j.1537-2197.1987.tb08586.x |
|
Esselman E J, Jianqiang L, Crawford D J, et al. Clonal diversity in the rare Calamagrostis Porteri ssp. insperata (Poaceae): comparative results for allozymes and random amplified polymorphic DNA (RAPD) and intersimple sequence repeat (ISSR) markers. Molecular Ecology, 1999, 8 (3): 443- 451.
doi: 10.1046/j.1365-294X.1999.00585.x |
|
Frankel O H, Brown A H D. 1984. Current plant genetic resources: a critical appraisal//Chopra V L. Genetics: New Frontier. New Delhi: Oxford and IBH Publishing, 1−11. | |
Gu R, Fan S H, Wei S P, et al. 2023. Developments on core collections of plant genetic resources: do we know enough? Forests, 14(5): 926. | |
Hamerick J L, Golt M J. 1990. Allozyme diversity in plant species// Brown A H, Clegg M J, et al(eds): Plant population on genetics, breeding and genetic resources. Sunderland: Sinauser Associate, 43−63. | |
Hu J, Zhu J, Xu H M. Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theoretical and Applied Genetics, 2000, 101 (1): 264- 268. | |
Jiang W X, Zhang W J, Ding Y L. 2013. Development of polymorphicmicrosatellite markers for Phyllostachys edulis (Poaceae), an importantbamboo species in China. Applications in Plant Sciences, 1(7): 1200012. | |
Li X N, Zhou Y, Bu Y P, et al. Genome-wide association analysis for yield-related traits at the R6 stage in a Chinese soybean mini core collection. Genes & Genomics, 2021, 43 (8): 897- 912. | |
Lv J, Li C, Zhou C, et al. Genetic diversity analysis of a breeding population of Eucalyptus cloeziana F. Muell. (Myrtaceae) and extraction of a core germplasm collection using microsatellite markers. Industrial Crops and Products, 2020, 145 (3): 112- 157. | |
Song X M, Ge T T, Li Y, et al. Genome-wide identification of SSR and SNP markers from the non-heading Chinese cabbage for comparative genomic analyses. BMC Genomics, 2015, 16 (1): 328.
doi: 10.1186/s12864-015-1534-0 |
[1] | Jiangfei Wang,Hui Li,Chenglei Zhu,Xiaolin Di,Ying Li,Qingnan Wang,Huiru Wan,Huayu Sun,Zhimin Gao. Functions of PeBAM3 of Moso Bamboo Involved in Leaf Starch Degradation [J]. Scientia Silvae Sinicae, 2025, 61(8): 231-240. |
[2] | Xiaoling Yan,Qin Hao,Zi Shen,Yujia Zhang,Xiaoqin Guo. Expression, Protein Interaction and Biological Function Analysis of PheFT1 Gene in Moso Bamboo [J]. Scientia Silvae Sinicae, 2025, 61(4): 140-152. |
[3] | Shulei He,Yanmei Chen,Qianyuan Liu,Wenfang Guo. Phenotypic Characterizatics of Ziziphus jujuba var. spinosa Fruit in the Eastern Taihang Mountains and the Main Driving Factors [J]. Scientia Silvae Sinicae, 2025, 61(2): 101-112. |
[4] | Xinxin Ma,You Wang,Jiajun Wang,Long Feng,Jianfeng Ma. Changes in Ash Composition of Bamboo during Pyrolysis and the Distribution Pattern of Silicon Transformation [J]. Scientia Silvae Sinicae, 2025, 61(2): 172-179. |
[5] | Ao Zhang,Wenting Li,Tianxiang Wang,Yaoxing Wu,Gang Lei,Lianghua Qi. Regional Differentiation and It’s Influencing Factors of Soil Easily-oxidized Organic Carbon in Subtropical Phyllostachys edulis Forests [J]. Scientia Silvae Sinicae, 2024, 60(6): 1-12. |
[6] | Yi Wang,Junwei Luan,Chen Chen,Shirong Liu. Asymmetric Response of Soil Respiration and Its Components to Nitrogen and Phosphorus Addition in Phyllostachys edulis Forest [J]. Scientia Silvae Sinicae, 2023, 59(7): 54-64. |
[7] | Jinling Yuan,Jinjun Yue,Jingxia Ma,Lei Yu,Lei Liu. Culm Form Characteristics of Phyllostachys edulis ‘Yuanbao’ [J]. Scientia Silvae Sinicae, 2023, 59(5): 71-80. |
[8] | Wei Zhang,Yuyou He,Ziwu Guo,Sheping Wang,Shuanglin Chen. Characteristics of Arbor Species Community Structure and Diversity in the Succession of Out-of-Management Phyllostachys edulis Forest [J]. Scientia Silvae Sinicae, 2022, 58(12): 12-20. |
[9] | Jiamin Xie,Mingbing Zhou. Identification and Bioinformatics Analysis of Mariner-Like Element Autonomous Transposons in Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2022, 58(1): 175-184. |
[10] | Wenjie Hu,Hongdong Pang,Xingyi Hu,Faxin Huang,Jiawei Yang,Lijun Xu,Miao Gong. Effects of Bamboo Forest Density and Fertilizer Types on the Yield and Quality of Phyllostachys edulis Bamboo Shoots and Soil Physicochemical Properties in Mufu Mountain Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 32-42. |
[11] | Chenglei Zhu,Kebin Yang,Xiurong Xu,Shuang Ma,Xiaopei Li,Zhimin Gao. Molecular Characteristics of NIP Genes in Phyllostachys edulis and Their Expression Patterns in Response to Stresses [J]. Scientia Silvae Sinicae, 2021, 57(1): 64-76. |
[12] | Linxin Fang,Shouke Zhang,Kefeng Jia,Bihuan Ye,Wei Zhang,Jinping Shu,Haojie Wang,Tiansen Xu. Oviposition Preference of Eutomostethus deqingensis (Hymenoptera: Tenthredinidae) on Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2021, 57(1): 131-139. |
[13] | Chenglei Zhu,Caili Li,Xiaopei Li,Jingjing Shi,Zhimin Gao. Molecular Characteristics of Tubulins and Preliminary Function Analysis of PeTUA3 in Phyllostachys edulis [J]. Scientia Silvae Sinicae, 2020, 56(7): 44-54. |
[14] | Qianyong Shen,Mengping Tang. Stem Volume Models of Phyllostachys edulis in Zhejiang Province [J]. Scientia Silvae Sinicae, 2020, 56(5): 89-96. |
[15] | Tao Chenyue, Shao Shanlu, Shi Wenhui, Lin Lin, Tang Yilei, Ying Yeqing. Effects of Nitrogen Deposition on Biomass and Protective Enzyme Activities of Phyllostachys edulis Seedlings under Drought Stress [J]. Scientia Silvae Sinicae, 2019, 55(9): 31-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||