|
程浙安. 2019. 基于深度卷积神经网络的内蒙古地区陆生野生动物自动识别. 北京: 北京林业大学.
|
|
Cheng Z A. 2019. Automatic recognition of terrestrial wildlife in inner mongolia based on deep convolution neural network. Beijing: Beijing Foresty University. [in Chinese]
|
|
宫一男, 谭孟雨, 王 震, 等. 基于深度学习的红外相机动物影像人工智能识别: 以东北虎豹国家公园为例. 兽类学报, 2019, 39 (4): 458- 465.
|
|
Gong Y N, Tan M Y, Wang Z, et al. Al recognition of infrared camera image of wild animals based on deep learning: Northeast Tiger and Leopard National Park for example. Acta Theriologoca Sinica, 2019, 39 (4): 458- 465.
|
|
李安琪. 2020. 基于卷积神经网络的野生动物监测图像自动识别方法研究. 北京: 北京林业大学.
|
|
Li A Q. 2020. Research on automatic recognition method of wildlife monitoring images based on convolutional neural network. Beijing: Beijing Forestry University. [in Chinese]
|
|
齐建东, 马鐘添, 张德怀, 等. 基于BS-ResNeXt-50的密云地区野生动物图像识别. 林业科学, 2023, 59 (8): 112- 122.
doi: 10.11707/j.1001-7488.LYKX20220378
|
|
Qi J D, Ma Z T, Zhang D H, et al. Wildlife image recognition in Miyun District based on BS-ResNeXt-50. Scientia Silvae Sinicae, 2023, 59 (8): 112- 122.
doi: 10.11707/j.1001-7488.LYKX20220378
|
|
肖治术, 肖文宏, 王天明, 等. 中国野生动物红外相机监测与研究: 现状及未来. 生物多样性, 2022, 30 (10): 234- 259.
doi: 10.17520/biods.2022451
|
|
Xiao Z S, Xiao W H, Wang T M, et al. Wildlife monitoring and research using camera-trapping technology across China: the current status and future issues. Biodiversity Science, 2022, 30 (10): 234- 259.
doi: 10.17520/biods.2022451
|
|
张长春, 李大方, 张军国. 基于Wasserstein距离和相关对齐迁移学习的野生动物图像识别方法. 林业科学, 2024, 60 (8): 25- 32.
doi: 10.11707/j.1001-7488.LYKX20230399
|
|
Zhang C C, Li D F, Zhang J G. Wildlife images recognition method based on Wasserstein distance and correlation alignment transfer learning. Scientia Silvae Sinicae, 2024, 60 (8): 25- 32.
doi: 10.11707/j.1001-7488.LYKX20230399
|
|
张军国, 程浙安, 胡春鹤, 等. 野生动物监测光照自适应Retinex图像增强算法. 农业工程学报, 2018, 34 (15): 183- 189.
doi: 10.11975/j.issn.1002-6819.2018.15.023
|
|
Zhang J G, Cheng Z A, Hu C H, et al. Adaptive image enhancement algorithm for wild animal monitoring based on Retinex theory. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34 (15): 183- 189.
doi: 10.11975/j.issn.1002-6819.2018.15.023
|
|
Ahn S, Kim S, Jeong D. Unsupervised domain adaptation for mitigating sensor variability and interspecies heterogeneity in animal activity recognition. Animals, 2023, 13 (20): 3276.
doi: 10.3390/ani13203276
|
|
Bakana S, Zhang Y, Twala B. WildARe-YOLO: a lightweight and efficient wild animal recognition model. Ecological Informatics, 2024, 80, 102541.
doi: 10.1016/j.ecoinf.2024.102541
|
|
Bohdal O, Li D, Hu S, et al. 2024. Feed-forward latent domain adaptation. IEEE Winter Conference on Applications of Computer Vision, 8490−8499.
|
|
Chen X, Wang S, Long M, et al. 2019. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. International Conference on Machine Learning, 1081−1090.
|
|
He K, Zhang X, Ren S, et al. 2016. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, 770−778.
|
|
Henrich M, Burgueño M, Hoyer J, et al. A semi-automated camera trap distance sampling approach for population density estimation. Remote Sensing in Ecology and Conservation, 2024, 10 (2): 156- 171.
doi: 10.1002/rse2.362
|
|
Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks. Journal of Machine Learning Research, 2016, 17 (1): 2096- 2030.
|
|
Long M, Cao Z, Wang J, et al. Conditional adversarial domain adaptation. Advances in Neural Information Processing Systems, 2018, 31, 1640- 1650.
|
|
Ma Z, Dong Y, Xia Y, et al. Wildlife real-time detection in complex forest scenes based on YOLOv5s deep learning network. Remote Sensing, 2024, 16 (8): 1350.
doi: 10.3390/rs16081350
|
|
Na J, Jung H, Chang H J, et al. 2021. Fixbi: Bridging domain spaces for unsupervised domain adaptation. IEEE Conference on Computer Vision and Pattern Recognition, 1094−1103.
|
|
Peng X, Bai Q, Xia X, et al. 2019. Moment matching for multi-source domain adaptation. IEEE International Conference on Computer Vision, 1406−1415.
|
|
Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, 1−14.
|
|
Sun B, Saenko K. 2016. Deep coral: correlation alignment for deep domain adaptation. European Conference on Computer Vision, 443−450.
|
|
Tabak M, Norouzzadeh M, Wolfson D, et al. Machine learning to classify animal species in camera trap images: applications in ecology. Methods in Ecology and Evolution, 2019, 10, 585- 590.
doi: 10.1111/2041-210X.13120
|
|
Whytock R, Świeżewski J, Zwerts J, et al. Robust ecological analysis of camera trap data labelled by a machine learning model. Methods in Ecology and Evolution, 2021, 12 (6): 1080- 1092.
doi: 10.1111/2041-210X.13576
|
|
Yousif H, Kays R, He Z. 2019. Dynamic programming selection of object proposals for sequence-level animal species classification in the wild. IEEE Transactions on Circuits and Systems for Video Technology, 20.
|
|
Zhang C C, Zhang J G. DJAN: Deep joint adaptation network for wildlife image recognition. Animals, 2023, 13 (21): 3333.
doi: 10.3390/ani13213333
|
|
Zhou L H, Ye M, Li X P, et al. Disentanglement then reconstruction: Unsupervised domain adaptation by twice distribution alignments. Expert Systems with Applications, 2024, 237, 121498.
doi: 10.1016/j.eswa.2023.121498
|