Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (8): 219-230.doi: 10.11707/j.1001-7488.LYKX20240427
• Scientific notes • Previous Articles Next Articles
Kaibo Wang,Guangze Jin,Zhili Liu*()
Received:
2024-07-09
Online:
2025-08-25
Published:
2025-09-02
Contact:
Zhili Liu
E-mail:liuzl2093@126.com
CLC Number:
Kaibo Wang,Guangze Jin,Zhili Liu. Changes of Resource Acquisition and Defense Capabilities of Temperate Broadleaf Tree Species at Different Life History Stages[J]. Scientia Silvae Sinicae, 2025, 61(8): 219-230.
Table 1
Functional traits and categories of leaves, new twigs and old branches of plants"
器官 Organ | 功能性状 Functional traits | 单位 Units | 生态学意义 Ecological meaning | 生态策略 Ecological strategy |
叶片 Leaf | 叶绿素含量 Chlorophyll content | — | 与植物光合速率相关,可表征植物的光合能力、生长状况以及胁迫状况 Correlates with plant photosynthetic rate and characterizes plant photosynthetic capacity, growth, and stress conditions | 资源获取 Resource acquisition |
比叶质量 Leaf mass per area | g·cm?2 | 叶片结构特征的综合指标,可表征植物的资源获取能力及对环境的响应策略 A composite index of leaf structural characteristics that characterizes the resource acquisition capacity of plants and their response strategies to the environment | 资源获取 Resource acquisition | |
碳含量 Carbon content | g·kg?1 | 构成生命体的基本元素,维持植物生长发育和代谢过程的关键元素,植物元素含量的变异及分配规律可表征植物对环境的响应与适应机制 The basic elements that constitute living organisms, the key elements that maintain plant growth, development and metabolic processes, and the variation and distribution patterns of plant elemental content can characterize the plant’s response and adaptation mechanisms to the environment | 资源获取 Resource acquisition | |
氮含量 Nitrogen content | g·kg?1 | 资源获取 Resource acquisition | ||
磷含量 Phosphorus content | g·kg?1 | 资源获取 Resource acquisition | ||
总酚含量 Total phenolic content | g·kg?1 | 能够抵御外界生物(草食动物啃食)和非生物(低温)胁迫,在植物生长、发育和防御中发挥重要作用 Able to withstand external biotic (herbivore nibbling) and abiotic (low temperatures) stresses and plays an important role in plant growth, development and defense | 防御 Defense | |
单宁含量 Tannin content | g·kg?1 | 防御 Defense | ||
类黄酮含量 Flavonoid content | g·kg?1 | 防御 Defense | ||
新枝 New twig | 碳含量 Carbon content | g·kg?1 | 构成生命体的基本元素,维持植物生长发育和代谢过程的关键元素,植物元素含量的变异及分配规律可表征植物对环境的响应与适应机制 The basic elements that constitute living organisms, the key elements that maintain plant growth, development and metabolic processes, and the variation and distribution patterns of plant elemental content can characterize the plant’s response and adaptation mechanisms to the environment | 资源获取 Resource acquisition |
氮含量 Nitrogen content | g·kg?1 | 资源获取 Resource acquisition | ||
磷含量 Phosphorus content | g·kg?1 | 资源获取 Resource acquisition | ||
总酚含量 Total phenolic content | g·kg?1 | 能够抵御外界生物(草食动物啃食)和非生物(低温)胁迫,在植物生长、发育和防御中发挥重要作用 Able to withstand external biotic (herbivore nibbling) and abiotic (low temperatures) stresses and plays an important role in plant growth, development and defense | 防御 Defense | |
单宁含量 Tannin content | g·kg?1 | 防御 Defense | ||
类黄酮含量 Flavonoid content | g·kg?1 | 防御 Defense | ||
老枝 Old branch | 碳含量 Carbon content | g·kg?1 | 构成生命体的基本元素,维持植物生长发育和代谢过程的关键元素,植物元素含量的变异及分配规律可表征植物对环境的响应与适应机制 The basic elements that constitute living organisms, the key elements that maintain plant growth, development and metabolic processes, and the variation and distribution patterns of plant elemental content can characterize the plant’s response and adaptation mechanisms to the environment | 资源获取 Resource acquisition |
氮含量 Nitrogen content | g·kg?1 | 资源获取 Resource acquisition | ||
磷含量 Phosphorus content | g·kg?1 | 资源获取 Resource acquisition | ||
总酚含量 Total phenolic content | g·kg?1 | 能够抵御外界生物(草食动物啃食)和非生物(低温)胁迫,在植物生长、发育和防御中发挥重要作用 Able to withstand external biotic (herbivore nibbling) and abiotic (low temperatures) stresses and plays an important role in plant growth, development and defense | 防御 Defense | |
单宁含量 Tannin content | g·kg?1 | 防御 Defense | ||
类黄酮含量 Flavonoid content | g·kg?1 | 防御 Defense |
Table 1
The status of sample trees and the basic information of leaf, new twig and old branch characters in different life history stages"
物种 Species | 生活史 Life history | 器官 Organ | SW/ (g·g?1) | SC/ (g·kg?1) | SN/ (g·kg?1) | SP / (g·kg?1) | pH | H / m | DBH/ cm | SPAD | LMA / (g·cm?2) | C / (g·kg?1) | N / (g·kg?1) | P / (g·kg?1) | TP/ (g·kg?1) | TA/ (g·kg?1) | FLA/ (g·kg?1) |
白桦 B. platyphylla | 幼苗 Seedling n=10 | L | 0.91±0.45 | 62.57±24.72 | 5.47±1.38 | 1.06±0.21 | 4.31±0.12 | 6.30±0.79 | 5.13±0.25 | 39.33±2.48 | 0.004±0.001 | 465.38±28.78 | 40.15±8.38 | 4.02±1.17 | 28.57±11.05 | 24.02±10.84 | 95.2±21.65 |
NT | — | — | 487.42±26.18 | 20.57±3.16 | 1.31±0.10 | 38.82±4.15 | 34.08±3.84 | 228.61±33.91 | |||||||||
OB | — | — | 410.21±27.13 | 11.12±1.83 | 1.16±0.14 | 39.76±4.37 | 36.06±3.98 | 193.55±21.90 | |||||||||
幼树 Sapling n=10 | L | 1.23±0.44 | 138.41±39.00 | 9.28±2.11 | 1.24±0.26 | 4.33±0.32 | 17.42±1.07 | 18.83±1.37 | 38.90±2.61 | 0.003±0.001 | 474.11±34.61 | 28.43±2.07 | 1.90±0.43 | 34.92±12.66 | 31.01±12.30 | 101.93±19.27 | |
NT | — | — | 484.72±18.64 | 18.61±5.92 | 1.11±0.10 | 43.69±5..26 | 38.56±4.81 | 223.20±30.81 | |||||||||
OB | — | — | 417.94±13.69 | 12.04±2.13 | 1.10±0.15 | 36.44±7.54 | 33.08±7.56 | 190.15±37.02 | |||||||||
成年树 Mature tree n=10 | L | 1.32±0.68 | 129.43±64.24 | 9.49±3.65 | 1.15±0.23 | 4.29±0.36 | 18.89±1.40 | 40.99±2.18 | 39.02±3.73 | 0.004±0.001 | 457.29±15.20 | 26.38±2.04 | 1.76±0.26 | 33.92±7.58 | 29.56±7.59 | 112.49±21.57 | |
NT | — | — | 493.88±14.06 | 17.43±2.55 | 1.20±0.20 | 48.20±8.91 | 43.72±8.83 | 254.45±51.42 | |||||||||
OB | — | — | 417.92±10.00 | 12.14±1.48 | 1.24±0.21 | 36.72±8.47 | 32.36±7.58 | 208.65±47.61 | |||||||||
水曲柳 F. mandshurica | 幼苗 Seedling n=10 | L | 1.13±0.63 | 107.74±45.24 | 7.68±2.37 | 1.43±0.34 | 4.51±0.60 | 7.04±0.88 | 4.83±0.66 | 54.18±27.19 | 0.011±0.003 | 411.74±20.60 | 32.43±4.51 | 2.24±0.44 | 8.79±3.76 | 7.34±3.01 | 36.42±16.86 |
NT | — | — | 468.04±18.10 | 11.53±1.44 | 0.75±0.24 | 32.44±6.39 | 21.51±4.76 | 86.41±29.79 | |||||||||
OB | — | — | 391.15±34.55 | 9.92±1.58 | 0.85±0.23 | 26.48±5.68 | 19.02±4.09 | 70.45±20.58 | |||||||||
幼树 Sapling n=10 | L | 1.07±0.37 | 99.11±47.56 | 6.73±1.55 | 1.46±0.25 | 4.42±0.37 | 16.82±2.06 | 17.83±1.12 | 46.17±20.10 | 0.012±0.002 | 415.91±40.76 | 29.17±3.48 | 2.25±0.36 | 29.17±3.48 | 8.67±4.00 | 43.62±20.41 | |
NT | — | — | 479.61±41.73 | 11.75±1.92 | 0.92±0.12 | 44.15±5.21 | 29.25±3.68 | 152.79±29.89 | |||||||||
OB | — | — | 401.62±17.26 | 9.35±1.23 | 0.70±0.15 | 33.44±5.34 | 24.06±3.98 | 87.94±18.47 | |||||||||
成年树 Mature tree n=10 | L | 1.04±0.37 | 91.12±31.88 | 7.33±1.93 | 1.39±0.30 | 4.69±0.54 | 21.72±1.24 | 42.05±1.42 | 38.84±2.45 | 0.012±0.002 | 419.17±9.54 | 29.31±3.09 | 2.34±0.23 | 14.54±8.21 | 11.17±6.05 | 58.15±36.27 | |
NT | — | — | 468.52±7.47 | 12.57±1.18 | 0.90±0.12 | 46.09±5.42 | 30.68±3.52 | 171.98±37.24 | |||||||||
OB | — | — | 401.57±11.20 | 10.68±1.31 | 0.86±0.12 | 35.20±5.99 | 24.82±4.59 | 103.38±15.06 | |||||||||
裂叶榆 U. laciniata | 幼苗 Seedling n=10 | L | 0.97±0.67 | 114.58±63.72 | 7.05±2.85 | 1.23±0.48 | 4.61±0.40 | 4.73±0.88 | 3.80±0.62 | 42.57±4.75 | 0.010±0.002 | 365.23±32.23 | 31.87±5.75 | 2.58±0.63 | 24.82±16.96 | 18.28±15.65 | 82.71±69.72 |
NT | — | — | 459.02±16.08 | 20.90±3.58 | 1.38±0.17 | 36.90±3.35 | 31.75±3.39 | 103.29±18.31 | |||||||||
OB | — | — | 389.63±19.15 | 13.91±1.20 | 1.52±0.15 | 30.02±3.18 | 23.80±2.81 | 90.00±19.61 | |||||||||
幼树 Sapling n=10 | L | 1.04±0.22 | 153.90±34.36 | 10.02±1.32 | 1.50±0.28 | 5.33±0.39 | 12.20±1.94 | 18.31±1.14 | 44.10±3.03 | 0.013±0.002 | 380.06±27.91 | 31.66±7.87 | 2.54±0.81 | 28.71±10.67 | 21.71±9.89 | 88.88±35.48 | |
NT | — | — | 448.07±21.71 | 22.94±2.89 | 1.55±0.16 | 39.42±3.74 | 33.98±2.95 | 125.44±39.78 | |||||||||
OB | — | — | 376.80±10.16 | 15.39±2.71 | 1.65±0.23 | 32.42±5.37 | 25.54±4.27 | 98.53±26.28 | |||||||||
成年树 Mature tree n=10 | L | 1.40±0.73 | 193.06±54.22 | 10..21±3.09 | 1.52±0.30 | 5.39±0.48 | 16.66±1.87 | 41.30±0.90 | 45.19±2.23 | 0.014±0.003 | 385.21±18.68 | 30.99±3.87 | 2.32±0.38 | 29.29±7.64 | 21.83±6.92 | 94.72±34.84 | |
NT | — | — | 446.03±9.05 | 21.81±1.71 | 1.52±0.07 | 33.21±8.00 | 27.67±7.87 | 121.83±26.41 | |||||||||
OB | — | — | 386.92±8.27 | 14.84±1.25 | 1.53±0.09 | 31.45±4.83 | 25.49±4.43 | 90.28±30.12 | |||||||||
紫椴 T. amurensis | 幼苗 Seedling n=10 | L | 1.10±0.56 | 92.53±43.39 | 7.12±1.96 | 1.34±0.29 | 4.49±0.49 | 4.58±0.94 | 4.37±0.61 | 32.51±2.61 | 0.008±0.002 | 465.42±21.21 | 34.03±3.13 | 2.93±0.60 | 27.26±17.39 | 23.52±16.77 | 113.79±87.03 |
NT | — | — | 460.06±16.32 | 13.72±1.61 | 0.94±0.15 | 10.93±5.15 | 7.91±4.46 | 159.47±37.81 | |||||||||
OB | — | — | 394.17±14.63 | 10.22±1.36 | 1.11±0.15 | 20.32±5.18 | 18.51±4.78 | 63.47±15.14 | |||||||||
幼树 Sapling n=10 | L | 0.83±0.17 | 87.77±26.62 | 6.88±1.43 | 1.25±0.22 | 4.34±0.51 | 12.60±2.41 | 17.70±1.48 | 40.77±3.42 | 0.011±0.003 | 460.19±30.84 | 33.83±5.95 | 2.51±0.31 | 25.93±11.59 | 23.02±10.88 | 107.63±43.09 | |
NT | — | — | 482.02±22.37 | 15.15±1.30 | 1.11±0.15 | 20.82±7.08 | 16.00±7.20 | 223.24±53.28 | |||||||||
OB | — | — | 395.44±19.37 | 11.35±1.43 | 1.22±0.13 | 21.99±6.10 | 20.21±6.01 | 74.27±22.69 | |||||||||
成年树 Mature tree n=10 | L | 1.09±0.26 | 142.34±55.45 | 9.30±2.09 | 1.24±0.29 | 5.56±0.38 | 18.92±2.60 | 43.04±2.80 | 41.70±4.71 | 0.011±0.002 | 448.10±14.76 | 33.41±3.42 | 2.62±0.23 | 29.58±8.08 | 26.11±7.11 | 102.48±35.54 | |
NT | — | — | 465.33±13.17 | 14.09±1.75 | 1.06±0.17 | 22.07±8.56 | 20.01±8.83 | 214.13±49.36 | |||||||||
OB | — | — | 397.20±7.93 | 11.07±1.44 | 1.24±0.08 | 25.00±7.94 | 23.11±7.65 | 92.00±31.89 | |||||||||
五角槭 A. pictum subsp. mono | 幼苗 Seedling n=5 | L | 0.70±0.13 | 102.59±27.80 | 6.24±1.09 | 1.13±0.17 | 5.18±0.43 | 4.62±1.15 | 4.04±0.72 | 39.75±2.50 | 0.007±0.001 | 444.38±26.59 | 36.01±3.04 | 2.22±0.52 | 39.62±12.83 | 33.41±11.96 | 108.61±46.61 |
NT | — | — | 479.64±20.50 | 12.25±3.90 | 0.81±0.26 | 49.30±7.13 | 42.30±7.41 | 168.66±30.97 | |||||||||
OB | — | — | 410.31±16.40 | 8.93±1.79 | 0.81±0.27 | 39.23±8.46 | 34.16±7.66 | 169.88±39.02 | |||||||||
幼树 Sapling n=7 | L | 1.22±0.46 | 142.65±50.19 | 8.57±1.29 | 1.49±0.25 | 4.69±0.67 | 11.26±1.09 | 17.51±1.74 | 42.11±3.94 | 0.010±0.002 | 426.09±19.81 | 39.03±6.63 | 2.49±0.74 | 65.03±21.48 | 57.17±21.05 | 217.57±69.75 | |
NT | — | — | 483.04±18.90 | 11.24±2.63 | 1.04±0.24 | 55.55±11.85 | 48.87±12.33 | 198.68±62.76 | |||||||||
OB | — | — | 411.66±15.94 | 8.92±1.65 | 0.93±0.21 | 37.76±7.19 | 32.98±7.25 | 156.23±36.49 | |||||||||
成年树 Mature tree n=10 | L | 1.13±0.21 | 113.06±28.57 | 6.36±1.40 | 1.08±0.20 | 5.74±0.34 | 14.00±3.00 | 41.32±2.20 | 42.21±2.56 | 0.010±0.002 | 430.62±20.17 | 35.32±4.78 | 2.63±0.25 | 59.71±15.70 | 52.29±14.72 | 175.79±35.81 | |
NT | — | — | 476.17±9.66 | 11.70±0.69 | 1.05±0.09 | 54.24±6.88 | 47.34±6.65 | 199.33±30.51 | |||||||||
OB | — | — | 402.10±6.90 | 9.81±0.51 | 0.96±0.05 | 41.60±5.67 | 36.61±5.43 | 177.85±39.22 |
何芸雨, 郭水良, 王 喆. 植物功能性状权衡关系的研究进展. 植物生态学报, 2019, 43 (12): 1021- 1035.
doi: 10.17521/cjpe.2019.0122 |
|
He Y Y, Guo S L, Wang Z. Research progress of trade-off relationships of plant functional traits. Chinese Journal of Plant Ecology, 2019, 43 (12): 1021- 1035.
doi: 10.17521/cjpe.2019.0122 |
|
刘晓娟, 马克平. 植物功能性状研究进展. 中国科学(生命科学), 2015, 45 (4): 325- 339.
doi: 10.1360/N052014-00244 |
|
Liu X J, Ma K P. Plant functional traits-concepts, applications and future directions. Scientia Sinica (Vitae), 2015, 45 (4): 325- 339.
doi: 10.1360/N052014-00244 |
|
解书文, 金光泽, 刘志理. 小兴安岭不同耐荫性树种枝叶性状变异及权衡. 生态学报, 2023, 43 (22): 9314- 9327. | |
Xie S W, Jin G Z, Liu Z L. Variation and trade-off of twig and leaf traits of different shade tolerance species in Xiaoxingan Mountains. Acta Ecologica Sinica, 2023, 43 (22): 9314- 9327. | |
徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 2012, 20 (4): 470- 481. | |
Xu L N, Jin G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, northeast China. Biodiversity Science, 2012, 20 (4): 470- 481. | |
Agrawal A A. A scale-dependent framework for trade-offs, syndromes, and specialization in organismal biology. Ecology, 2020, 101 (2): e02924.
doi: 10.1002/ecy.2924 |
|
Akram M A, Wang X T, Shrestha N, et al. Variations and driving factors of leaf functional traits in the dominant desert plant species along an environmental gradient in the drylands of China. Science of the Total Environment, 2023, 897, 165394.
doi: 10.1016/j.scitotenv.2023.165394 |
|
Albert A, Sareedenchai V, Heller W, et al. Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia, 2009, 160 (1): 1- 8.
doi: 10.1007/s00442-009-1277-1 |
|
Anderegg L D L, Berner L T, Badgley G, et al. Within-species patterns challenge our understanding of the leaf economics spectrum. Ecology Letters, 2018, 21 (5): 734- 744.
doi: 10.1111/ele.12945 |
|
Blumenthal D M, Mueller K E, Kray J A, et al. Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: the central roles of phenology and leaf dry matter content. Journal of Ecology, 2020, 108 (6): 2336- 2351.
doi: 10.1111/1365-2745.13454 |
|
Carlson J E, Adams C A, Holsinger K E. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a south African shrub. Annals of Botany, 2016, 117 (1): 195- 207.
doi: 10.1093/aob/mcv146 |
|
Chauvin K M, Asner G P, Martin R E, et al. Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community. Oecologia, 2018, 186 (3): 765- 782.
doi: 10.1007/s00442-017-4043-9 |
|
Coley P D. Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. New Phytologist, 1987, 106 (s1): 251- 263.
doi: 10.1111/j.1469-8137.1987.tb04693.x |
|
Coley P D, Bryant J P, Chapin F S III. Resource availability and plant antiherbivore defense. Science, 1985, 230 (4728): 895- 899.
doi: 10.1126/science.230.4728.895 |
|
Cornwell W K, Wright I J, Turner J, et al. Climate and soils together regulate photosynthetic carbon isotope discrimination within C3 plants worldwide. Global Ecology and Biogeography, 2018, 27 (9): 1056- 1067.
doi: 10.1111/geb.12764 |
|
Da R H, Fan C Y, Zhang C Y, et al. Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. New Phytologist, 2023, 239 (1): 75- 86.
doi: 10.1111/nph.18915 |
|
Delagrange S, Messier C, Lechowicz M J, et al. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability. Tree Physiology, 2004, 24 (7): 775- 784.
doi: 10.1093/treephys/24.7.775 |
|
Díaz S, Kattge J, Cornelissen J H C, et al. The global spectrum of plant form and function. Nature, 2016, 529 (7585): 167- 171.
doi: 10.1038/nature16489 |
|
Drake P L, Froend R H, Franks P J. Linking hydraulic conductivity and photosynthesis to water-source partitioning in trees versus seedlings. Tree Physiology, 2011, 31 (7): 763- 773.
doi: 10.1093/treephys/tpr068 |
|
Fajardo A, Siefert A. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology, 2018, 99 (5): 1024- 1030.
doi: 10.1002/ecy.2194 |
|
Grime J P, Hunt R. Relative growth-rate: its range and adaptive significance in a local flora. Journal of Ecology, 1975, 63 (2): 393- 422.
doi: 10.2307/2258728 |
|
Gross N, Bagousse-Pinguet Y, Liancourt P, et al. Functional trait diversity maximizes ecosystem multifunctionality. Nature Ecology & Evolution, 2017, 1 (5): 132. | |
Hahn P G, Agrawal A A, Sussman K I, et al. Population variation, environmental gradients, and the evolutionary ecology of plant defense against herbivory. The American Naturalist, 2019, 193 (1): 20- 34.
doi: 10.1086/700838 |
|
Hahn P G, Keefover-Ring K, Nguyen L M N, et al. Intraspecific correlations between growth and defence vary with resource availability and differ within and among populations. Functional Ecology, 2021, 35 (11): 2387- 2396.
doi: 10.1111/1365-2435.13878 |
|
Jiang F, Cadotte M W, Jin G Z. Size- and environment-driven seedling survival and growth are mediated by leaf functional traits. Proceedings of the Royal Society B: Biological Sciences, 2022, 289 (1983): 20221400.
doi: 10.1098/rspb.2022.1400 |
|
Koricheva J. Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology, 2002, 83 (1): 176- 190.
doi: 10.1890/0012-9658(2002)083[0176:MAOSOV]2.0.CO;2 |
|
Lajoie G, Vellend M. Understanding context dependence in the contribution of intraspecific variation to community trait–environment matching. Ecology, 2015, 96 (11): 2912- 2922.
doi: 10.1890/15-0156.1 |
|
Li L, Wei S G, Huang Z L, et al. Spatial patterns and interspecific associations of three canopy species at different life stages in a subtropical forest, China. Journal of Integrative Plant Biology, 2008, 50 (9): 1140- 1150.
doi: 10.1111/j.1744-7909.2008.00690.x |
|
Liu X L, Zhao M M, Wang J S, et al. Antioxidant activity of methanolic extract of Emblica fruit (Phyllanthus emblica L. ) from six regions in China. Journal of Food Composition and Analysis, 2008, 21 (3): 219- 228.
doi: 10.1016/j.jfca.2007.10.001 |
|
Liu Z L, Hikosaka K, Li F R, et al. Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors. Functional Ecology, 2020, 34 (2): 458- 467.
doi: 10.1111/1365-2435.13498 |
|
Liu Z L, Jiang F, Li F R, et al. Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances. Forest Ecology and Management, 2019, 434, 63- 75.
doi: 10.1016/j.foreco.2018.12.008 |
|
Makkar H P S, Blümmel M, Borowy N K, et al. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture, 1993, 61 (2): 161- 165.
doi: 10.1002/jsfa.2740610205 |
|
Martini F, Aluthwattha S T, Mammides C, et al. Plant apparency drives leaf herbivory in seedling communities across four subtropical forests. Oecologia, 2021, 195 (3): 575- 587.
doi: 10.1007/s00442-020-04804-8 |
|
Masaki T, Kitagawa R, Nakashizuka T, et al. Interspecific variation in mortality and growth and changes in their relationship with size class in an old-growth temperate forest. Ecology and Evolution, 2021, 11 (13): 8869- 8881.
doi: 10.1002/ece3.7720 |
|
Matsuo T, Martínez-Ramos M, Bongers F, et al. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. Journal of Ecology, 2021, 109 (8): 2871- 2884.
doi: 10.1111/1365-2745.13680 |
|
McIntyre S, Lavorel S, Landsberg J, et al. Disturbance response in vegetation–towards a global perspective on functional traits. Journal of Vegetation Science, 1999, 10 (5): 621- 630.
doi: 10.2307/3237077 |
|
Messier J, Lechowicz M J, McGill B J, et al. Interspecific integration of trait dimensions at local scales: the plant phenotype as an integrated network. Journal of Ecology, 2017, 105 (6): 1775- 1790.
doi: 10.1111/1365-2745.12755 |
|
Mohanbabu N, Veldhuis M P, Jung D, et al. Integrating defense and leaf economic spectrum traits in a tropical savanna plant. Frontiers in Plant Science, 2023, 14, 1185616.
doi: 10.3389/fpls.2023.1185616 |
|
Morrow C J, Jaeger S J, Lindroth R L. Intraspecific variation in plant economic traits predicts trembling aspen resistance to a generalist insect herbivore. Oecologia, 2022, 199 (1): 119- 128.
doi: 10.1007/s00442-022-05158-z |
|
Niinemets Ü. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytologist, 2015, 205 (1): 79- 96.
doi: 10.1111/nph.13001 |
|
Niinemets Ü, Valladares F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs, 2006, 76 (4): 521- 547.
doi: 10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2 |
|
Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 2002, 89 (5): 812- 819.
doi: 10.3732/ajb.89.5.812 |
|
Pang Z Q, Chen J, Wang T H, et al. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science, 2021, 12, 621276.
doi: 10.3389/fpls.2021.621276 |
|
Pellissier L, Descombes P, Hagen O, et al. Growth-competition-herbivore resistance trade-offs and the responses of alpine plant communities to climate change. Functional Ecology, 2018, 32 (7): 1693- 1703.
doi: 10.1111/1365-2435.13075 |
|
Pérez-Harguindeguy N, Díaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 2013, 61 (3): 167.
doi: 10.1071/BT12225 |
|
Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193 (1): 30- 50.
doi: 10.1111/j.1469-8137.2011.03952.x |
|
Reich P B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. Journal of Ecology, 2014, 102 (2): 275- 301.
doi: 10.1111/1365-2745.12211 |
|
Rosas T, Mencuccini M, Barba J, et al. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytologist, 2019, 223 (2): 632- 646.
doi: 10.1111/nph.15684 |
|
Rosas T, Mencuccini M, Batlles C, et al. 2021. Are leaf, stem and hydraulic traits good predictors of individual tree growth? Functional Ecology, 35(11): 2435−2447. | |
Shipley B, Lechowicz M J, Wright I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 2006, 87 (3): 535- 541.
doi: 10.1890/05-1051 |
|
Sitters J, Jasper Wubs E R, Bakker E S, et al. Nutrient availability controls the impact of mammalian herbivores on soil carbon and nitrogen pools in grasslands. Global Change Biology, 2020, 26 (4): 2060- 2071.
doi: 10.1111/gcb.15023 |
|
Song Y H, Jin G Z. 2023. Do tree size and tree shade tolerance affect the photosynthetic capacity of broad-leaved tree species? Plants, 12(3): 523. | |
Thomas S C. Photosynthetic capacity peaks at intermediate size in temperate deciduous trees. Tree Physiology, 2010, 30 (5): 555- 573.
doi: 10.1093/treephys/tpq005 |
|
Wang C N, Li X, Lu X M, et al. 2023a. Intraspecific trait variation governs grazing-induced shifts in plant community above- and below-ground functional trait composition. Agriculture, Ecosystems & Environment, 346: 108357. | |
Wang J F, Wang X X, Ji Y H, et al. Climate factors determine the utilization strategy of forest plant resources at large scales. Frontiers in Plant Science, 2022a, 13, 990441.
doi: 10.3389/fpls.2022.990441 |
|
Wang K B, Jin G Z, Liu Z L. Dynamic variation of non-structural carbohydrates in branches and leaves of temperate broad-leaved tree species over a complete life history. Frontiers in Forests and Global Change, 2023b, 6, 1130604.
doi: 10.3389/ffgc.2023.1130604 |
|
Wang X Z, Sun S W, Sedio B E, et al. Niche differentiation along multiple functional-trait dimensions contributes to high local diversity of Euphorbiaceae in a tropical tree assemblage. Journal of Ecology, 2022b, 110 (11): 2731- 2744.
doi: 10.1111/1365-2745.13984 |
|
Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33 (1): 125- 159.
doi: 10.1146/annurev.ecolsys.33.010802.150452 |
|
Wilson P J, Thompson K, Hodgson J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143 (1): 155- 162.
doi: 10.1046/j.1469-8137.1999.00427.x |
|
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428 (6985): 821- 827.
doi: 10.1038/nature02403 |
|
Wright S J, Kitajima K, Kraft N J B, et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology, 2010, 91 (12): 3664- 3674.
doi: 10.1890/09-2335.1 |
|
Yang D X, Song L, Jin G Z. The soil C: N: P stoichiometry is more sensitive than the leaf C: N: P stoichiometry to nitrogen addition: a four-year nitrogen addition experiment in a Pinus koraiensis plantation. Plant and Soil, 2019, 442 (1): 183- 198. | |
Zhang Q Y, Jia X X, Shao M A, et al. Unfolding non-structural carbohydrates from sapling to dying black locust on China’s Loess Plateau. Journal of Plant Growth Regulation, 2018, 37 (3): 794- 802.
doi: 10.1007/s00344-017-9774-7 |
|
Zhang S, Xu G R, Zhang Y X, et al. Canopy height, rather than neighborhood effects, shapes leaf herbivory in a tropical rainforest. Ecology, 2023, 104 (5): e4028.
doi: 10.1002/ecy.4028 |
|
Zhang X S, Jin G Z, Liu Z L. Contribution of leaf anatomical traits to leaf mass per area among canopy layers for five coexisting broadleaf species across shade tolerances at a regional scale. Forest Ecology and Management, 2019, 452, 117569.
doi: 10.1016/j.foreco.2019.117569 |
|
Zheng J, Jiang Y, Qian H, et al. Size-dependent and environment-mediated shifts in leaf traits of a deciduous tree species in a subtropical forest. Ecology and Evolution, 2022, 12 (1): e8516.
doi: 10.1002/ece3.8516 |
[1] | Shulei He,Yanmei Chen,Qianyuan Liu,Wenfang Guo. Phenotypic Characterizatics of Ziziphus jujuba var. spinosa Fruit in the Eastern Taihang Mountains and the Main Driving Factors [J]. Scientia Silvae Sinicae, 2025, 61(2): 101-112. |
[2] | Qing Zhou,Heng Zhang,Pengwu Zhao,Yong Zhou,Lin Zhang,Hongzhuo Mi,Jiafu Wang,Mengyu Zhao,Zehua Yang. Differences in the Orobability and Drivers of Forest Fires in the Daxing’an Mountains of Inner Mongolia before and after the Major Historical Event of the Forest Fire in 1987 [J]. Scientia Silvae Sinicae, 2024, 60(7): 81-94. |
[3] | Wanting Ge,Ying Liu,Zhijia Zhao,Shen Zhang,Jie Li,Guijuan Yang,Guanzheng Qu,Junhui Wang,Wenjun Ma. Prediction of Potential Distribution for Huangxin (Catalpa) in China under Different Climate Scenarios [J]. Scientia Silvae Sinicae, 2024, 60(11): 63-74. |
[4] | Zhang Xin, Zhang Qiuliang, Sun Shoujia, Wang Bing. CO2 Concentration and the δ13C Dynamics in Larix gmelinii Ecosystem in Response to Environmental Factors [J]. Scientia Silvae Sinicae, 2023, 59(9): 55-65. |
[5] | Kai Zhang,Yanli Sun,Jichao Wei,Yaqian Fan,Xiaoxue Han,Lin Li,Xiaoshuai Wei,Xinhao Li,Peng Liu,Tianshan Zha. Control of Environmental Factors on the Sap Flow at Daily and Seasonal Scales in Ulmus macrocarpa in Beijing, China [J]. Scientia Silvae Sinicae, 2023, 59(7): 24-34. |
[6] | Shuning Zhang,Junxing Chen,Dun Ao,Mei Hong,Yaqian Zhang,Fuhai Bao,Lin Wang,Tana Wuyun,Yu’e Bai,Wenquan Bao. Prediction of Potential Suitable Areas of Amygdalus pedunculata in China under Climate Change [J]. Scientia Silvae Sinicae, 2023, 59(12): 25-36. |
[7] | Lixuan Wang,Guang Yang,Jiaqi Gao,Xin Zheng,Zhaoguo Li,Yuetai Weng,Xueying Di,Hongzhou Yu. Changes in the Flammability of Post-Fire Aboveground Litter of Larix gmelinii [J]. Scientia Silvae Sinicae, 2022, 58(6): 110-121. |
[8] | Pengyu Zhao,Xue Bai,Pingmei Yan,Xiaodong Zhao,Xiaoying Wu,Baofeng Chai. Responses of Soil Bacterial Community Structure and Phenotype to Soil Heterogeneity in Larix principis-rupprechtii Forest [J]. Scientia Silvae Sinicae, 2021, 57(7): 101-110. |
[9] | Fengjuan Yin,Mingqi Wang,Guangze Jin,Zhili Liu. Trade-Off between Twig and Leaf of Pinus koraiensis at Different Life History Stages [J]. Scientia Silvae Sinicae, 2021, 57(4): 54-62. |
[10] | Wenbo Li,Zhengang Lü,Xuanrui Huang,Zhidong Zhang. Predicting Spatial Distribution of Site Index for Larix principis-rupprechtii Plantations in the Northern Hebei Province [J]. Scientia Silvae Sinicae, 2021, 57(3): 79-89. |
[11] | Fanqiang Ma,Quanshui Guo,Aili Qin,Zunji Jian,Jiyong Huang,Zhongbing Wang,Quan Yang,Shiqiang Zhang. Survival and Growth of Reintroduced Thuja sutchuenensis Seedlings in Relation to Environmental Factors [J]. Scientia Silvae Sinicae, 2021, 57(11): 1-12. |
[12] | Moshun Chen,Zexin Jin,Shisheng Ke,Zilin Chen,Deyue Pan. Community Characteristics and Their Relations with Environmental Variables of Critically Endangered Species Carpinus tientaiensis [J]. Scientia Silvae Sinicae, 2020, 56(9): 1-11. |
[13] | Qifan Wang,Jun Shen,Bin Zeng,Huiyu Wang,Tianyu Cao,Huajun Dong. VOCs and Odor Emission from Lacquer Veneer Particleboards [J]. Scientia Silvae Sinicae, 2020, 56(5): 130-142. |
[14] | Yulian Ren,Mei Lu,Qianbin Cao,Cong Li,Jun Feng,Zhisheng Wang. Response of Forest Soil Enzyme Activities to Elevation in Nangunhe Natural Reserve [J]. Scientia Silvae Sinicae, 2020, 56(4): 22-34. |
[15] | Xinwei Feng,Zhiqiang Zhang,Hang Xu,Jiang Lü,Haiquan Zhang,Xiangxue Meng. Time-Lag Responses of Net Ecosystem Carbon Exchange to Environmental Factors in a Populus×euramericana Plantation [J]. Scientia Silvae Sinicae, 2020, 56(2): 12-23. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||