Scientia Silvae Sinicae ›› 2022, Vol. 58 ›› Issue (11): 49-60.doi: 10.11707/j.1001-7488.20221105
• Research papers • Previous Articles Next Articles
Chang Jia1,Lina Wang1,Yakun Tang1,2,*
Received:
2021-06-06
Online:
2022-11-25
Published:
2023-03-08
Contact:
Yakun Tang
CLC Number:
Chang Jia,Lina Wang,Yakun Tang. Sensitivity Analysis of Ecophysiological Parameters for the Simulated Carbon Flux Using the Biome-BGC Model in a Hippophae rhamnoides Plantation in the Loess Region[J]. Scientia Silvae Sinicae, 2022, 58(11): 49-60.
Table 2
Ecophysiological parameters for the H. rhamnoides plantation after optimization"
参数 Parameter | 取值 Values | 参数来源 Source | 参数 Parameter | 取值 Values | 参数来源Source | |
生长转化期天数占生长季天数比例 Transfer growth period as fraction of growing season | 0.337 | 优化 Optimized | 细根易分解物质质量占细根总质量的比例 Fine root labile proportion | 0.3 | 默认 Default | |
凋落期天数占生长季天数比例 Litterfall period as fraction of growing season | 0.179 | 优化 Optimized | 细根纤维素质量占细根总质量的比例 Fine root cellulose proportion | 0.45 | 默认 Default | |
叶和细根生物量的年变化比 Annual leaf and fine root turnoverfraction | 1 | 默认 Default | 细根木质素质量占细根总质量的比例 Fine root lignin proportion | 0.25 | 默认 Default | |
活木木质部生物量的年变化比 Annual live wood turnover fraction | 0.7 | 默认 Default | 枯木纤维素质量占死木总质量的比例 Dead wood cellulose proportion | 0.76 | 默认 Default | |
植物的年死亡率 Annual whole-plant mortality fraction | 5×10-6 | 优化 Optimized | 枯木木质素质量占死木总质量的比例 Dead wood lignin proportion | 0.24 | 默认 Default | |
植物受火灾影响的年死亡率 Annual fire mortality fraction | 0 | 实测 Measurement | 冠层水分截获系数 Canopy water interception coefficient/(LAI-1d-1) | 5×10-7 | 优化 Optimized | |
新生长的细根碳含量与新生长的叶碳含量比 New fine root C∶new leaf C | 1 | 优化 Optimized | 冠层消光系数 Canopy light extinction coefficient | 3.255 | 优化 Optimized | |
新生长的茎秆碳含量与新生长的叶碳含量比 New stem C∶new leaf C | 1.07 | 实测 Measurement | 投影叶面积与全部叶面积的比 Projected to all-sided leaf area ratio | 0.459 | 优化 Optimized | |
新生长的活木木质部碳含量与新生长的总木质部碳含量比 New live wood C∶new total wood C | 0.1 | 默认 Default | 冠层平均比叶面积 Canopy average specific leaf area/(m2·kg-1) | 2.825 | 优化 Optimized | |
新生长的根系碳含量与新生长的茎秆碳含量分配比 New root C∶new stem C | 0.23 | 默认 Default | 阴生叶与阳生叶比叶面积比 Ratio of shaded SLA∶sunlit SLA | 0.15 | 优化 Optimized | |
植物新增生物量占植物生物量的比 Current growth proportion | 0.287 | 优化 Optimized | 二磷酸核酮糖羧化酶中氮含量 Fraction of leaf N in Rubisco | 0.123 | 优化 Optimized | |
叶片碳氮含量比 C∶N of leaves | 36 | 实测 Measurement | 最大气孔导度 Maximum stomatal conductance/(m·s-1) | 0.005 | 优化 Optimized | |
凋落物碳氮含量比 C∶N of leaf litter after retranslocation | 64 | 实测 Measurement | 角质层导度 Cuticular conductance/(m·s-1) | 0.001 | 优化 Optimized | |
细根碳氮含量比 C∶N of fine roots | 62 | 实测 Measurement | 边界层导度 Boundary layer conductance/(m·s-1) | 0.04 | 优化 Optimized | |
活木木质部碳氮含量比 C∶N of live wood | 90 | 实测 Measurement | 叶水势传导上限(气孔导度开始降低时的值) Leaf water potential: start of conductance reduction/MPa | -0.6 | 优化 Optimized | |
枯木木质部碳氮含量比 C∶N of dead wood | 500 | 实测 Measurement | 叶水势传导下限(气孔导度关闭时的值) Leaf water potential: complete conductance reduction/MPa | -2.3 | 优化 Optimized | |
凋落物易分解物质质量占总质量的比例 Leaf litter labile proportion | 0.39 | 默认 Default | 水汽压差限制传导上限(气孔导度开始降低时的值) Vapor pressure deficit: start of conductance reduction/Pa | 930 | 优化 Optimized | |
凋落物纤维素质量占总质量的比例 Leaf litter cellulose proportion | 0.44 | 默认 Default | 水汽压差限制传导下限(气孔导度关闭时的值) Vapor pressure deficit: complete conductance reduction/Pa | 4.1×103 | 优化 Optimized | |
凋落物木质素质量占总质量的比例 Leaf litter lignin proportion | 0.17 | 默认 Default |
Table 3
Ranges of ecophysiological parameters for the H. rhamnoides plantation used for sensitivity analysis"
参数 Parameter | 取值范围 Values range | 参数 Parameter | 取值范围 Values range | |
生长转化期天数占生长季天数比例 Transfer growth period as fraction of growing season | (0.406, 0.271) | 冠层水分截获系数 Canopy water interception coefficient/(LAI-1d-1) | (6×10-7, 4×10-7) | |
凋落期天数占生长季天数比例 Litterfall period as fraction of growing season | (0.215, 0.143) | 冠层消光系数 Canopy light extinction coefficient | (3.906, 2.604) | |
叶和细根生物量的年变化比 Annual leaf and fine root turnover fraction | (1.2, 0.8) | 投影叶面积与全部叶面积的比 Projected to all-sided leaf area ratio | (0.55, 0.367) | |
活木木质部生物量的年变化比 Annual live wood turnover fraction | (0.84, 0.56) | 冠层平均比叶面积 Canopy average specific leaf area/(m2·kg-1) | (3.390 2.260) | |
新生长的细根碳含量与新生长的叶碳含量比 New fine root C∶new leaf C | (1.2, 0.8) | 阴生叶与阳生叶比叶面积比 Ratio of shaded SLA∶sunlit SLA | (0.18, 0.12) | |
新生长的茎秆碳含量与新生长的叶碳含量比 New stem C∶new leaf C | (1.284, 0.856) | 二磷酸核酮糖羧化酶中氮含量 Fraction of leaf N in rubisco | (0.148, 0.099) | |
新生长的活木木质部碳含量与新生长的总木质部碳含量比 New live wood C∶new total wood C | (0.12, 0.08) | 最大气孔导度 Maximum stomatal conductance/(m·s-1) | (0.006, 0.004) | |
新生长的根系碳含量与新生长的茎秆碳含量分配比 New root C∶new stem C | (0.276, 0.184) | 角质层导度 Cuticular conductance/(m·s-1) | (0.002, 0.001) | |
植物新增生物量占植物生物量的比 Current growth proportion | (0.343, 0.229) | 边界层导度 Boundary layer conductance/(m·s-1) | (0.048, 0.032) | |
叶片碳氮含量比 C∶N of leaves | (43.2, 28.8) | 叶水势传导上限(气孔导度开始降低时的值) Leaf water potential: start of conductance reduction/MPa | (-0.72, -0.48) | |
凋落物碳氮含量比 C∶N of leaf litter, after retranslocation | (76.8, 51.2) | 叶水势传导下限(气孔导度关闭时的值) Leaf water potential: complete conductance reduction/MPa | (-2.76, -1.84) | |
细根碳氮含量比 C∶N of fine roots | (74.4, 49.6) | 水汽压差限制传导上限(气孔导度开始降低时的值) Vapor pressure deficit: start of conductance reduction/Pa | (1 116, 744) | |
活木木质部碳氮含量比 C∶N of live wood | (108, 72) | 水汽压差限制传导下限(气孔导度关闭时的值) Vapor pressure deficit: complete conductance reduction/Pa | (4 920, 3 280) | |
枯木木质部碳氮含量比 C∶N of dead wood | (600, 400) |
Fig.3
Regression analysis between observed and estimated daily gross ecosystem productivity (GEP) in the growing season (from March 21 to November 11 in 2018), annual ecosystem respiration (RE), annual net ecosystem productivity (NEP) in the H. rhamnoides plantation, and values estimated using the Biome-BGC model before and after model optimization"
Fig.4
Sensitivity analysis of the ecophysiological parameters for gross ecosystem productivity (GEP), ecosystem respiration (RE), and net ecosystem productivity (NEP) in the H. rhamnoides plantation LWT, FRC: LC, GC, C: Ndw, SLA, SLAshade: sun, gmax, C: Nlw, and LWC: TWC represent the annual live wood turnover fraction, new fine root C : new leaf C, current growth proportion, C: N of dead wood, ratio of shaded SLA: sunlit SLA, maximum stomatal conductance, C: N of live wood, and new live wood C: new total wood C, respectively."
Table 4
Path coefficients for ecophysiological parameters based on gross ecosystem productivity (GEP), ecosystem respiration (RE), and net ecosystem productivity (NEP) in the H. rhamnoides plantation"
项目 Item | 参数 Parameter | 简单相关系数 Simple correlation coefficient | 直接通径系数 Direct bore coefficient | 间接通径系数 Indirect diameter coefficient | 决定系数 Determination coefficient | P |
新生长的细根碳与新生长的叶碳分配比 New fine root C∶new leaf C | -0.767 | -0.806 | -0.535 | |||
当前植物的生长比例 Current growth proportion | -0.071 | -0.203 | -0.088 | |||
GEP | 枯木木质部碳氮比 C∶N of dead wood | 0.116 | 0.089 | 0.012 | 0.61 | < 0.001 |
冠层平均比叶面积 Canopy average specific leaf area | 0.529 | 0.266 | 0.151 | |||
阴生叶与阳生叶比叶面积比例 Ratio of shaded SLA∶sunlit SLA | 0.306 | 0.267 | 0.037 | |||
新生长的细根碳与新生长的叶碳分配比 New fine root C∶new leaf C | -0.671 | -0.752 | -0.499 | |||
当前植物的生长比例 Current growth proportion | -0.313 | -0.226 | -0.098 | |||
RE | 枯木木质部碳氮比 C∶N of dead wood | 0.066 | 0.081 | 0.011 | 0.546 | < 0.001 |
冠层平均比叶面积 Canopy average specific leaf area | -0.007 | 0.280 | 0.158 | |||
阴生叶与阳生叶比叶面积比例 Ratio of shaded SLA∶sunlit SLA | 0.259 | 0.280 | 0.038 | |||
新生长的细根碳与新生长的叶碳分配比 New fine root C∶new leaf C | -0.818 | -0.815 | -0.220 | |||
NEP | 当前植物的生长比例 Current growth proportion | -0.204 | -0.080 | -0.030 | 0.703 | < 0.001 |
枯木木质部碳氮比 C∶N of dead wood | 0.094 | 0.126 | 0.016 | |||
阴生叶与阳生叶比叶面积比例 Ratio of shaded SLA∶sunlit SLA | 0.167 | 0.204 | 0.016 |
何丽鸿, 王海燕, 雷相东. 基于Biome-Bgc模型的长白落叶松林净初级生产力模拟参数敏感性. 应用生态学报, 2016, 27 (2): 412- 420. | |
He L H , Wang H Y , Lei X D . Parameter sensitivity of simulating net primary productivity of Larix olgensis forest based on Biome-BGC model. Chinese Journal of Applied Ecology, 2016, 27 (2): 412- 420. | |
李理渊, 李俊, 同小娟, 等. 黄河小浪底栓皮栎、刺槐叶片电子传递速率-光响应的模拟. 植物生态学报, 2018, 42 (10): 1009- 1021.
doi: 10.17521/cjpe.2018.0063 |
|
Li L Y , Li J , Tong X J , et al. Simulation on the light response curves of electron transport rate of Quercus variabilis and Robinia pseudoacacia leaves in the Xiaolangdi area. Chinese Journal of Plant Ecology, 2018, 42 (10): 1009- 1021.
doi: 10.17521/cjpe.2018.0063 |
|
李熙萌, 李征珍, 刘海鸥, 等. 北美地区温带针阔叶混交林5个常绿树种叶片呼吸特性. 林业科学, 2016, 52 (4): 1- 10. | |
Li X M , Li Z Z , Liu H O , et al. Foliage respiratory characteristics of 5 evergreen tree species native to the temperate deciduous evergreen mixed forest of north American. Scientia Silvae Sinicae, 2016, 52 (4): 1- 10. | |
李旭华, 孙建新. Biome-BGC模型模拟阔叶红松林碳水通量的参数敏感性检验和不确定性分析. 植物生态学报, 2018, 42 (12): 1131- 1144.
doi: 10.17521/cjpe.2018.0231 |
|
Li X H , Sun J X . Testing parameter sensitivities and uncertainty analysis of Biome-BGC model in simulating carbon and water fluxes in broadleaved-Korean pine forests. Chinese Journal of Plant Ecology, 2018, 42 (12): 1131- 1144.
doi: 10.17521/cjpe.2018.0231 |
|
李一哲, 张廷龙, 刘秋雨, 等. 生态过程模型敏感参数最优取值的时空异质性分析——以Biome-Bgc模型为例. 应用生态学报, 2018, 29 (1): 84- 92. | |
Li Y Z , Zhang T L , Liu Q Y , et al. Temporal and spatial heterogeneity analysis of optimal value of sensitive parameters in ecological process model: the BIOME BGC model as an example. Chinese Journal of Applied Ecology, 2018, 29 (1): 84- 92. | |
刘秋雨, 张廷龙, 孙睿, 等. Biome-BGC模型参数的敏感性和时间异质性. 生态学杂志, 2017, 36 (3): 869- 877. | |
Liu Q Y , Zhang T L , Sun R , et al. Sensibility and time heterogeneity of Biome-BGC model parameters. Chinese Journal of Ecology, 2017, 36 (3): 869- 877. | |
任博, 李俊, 同小娟, 等. 太行山南麓栓皮栎和刺槐叶片光合光响应模拟. 生态学杂志, 2017, 36 (8): 2206- 2216. | |
Ren B , Li J , Tong X J , et al. Simulation on photosynthetic light-response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang Mountain. Chinese Journal of Ecology, 2017, 36 (8): 2206- 2216. | |
邵思雅, 张晶, 周丽花, 等. 气溶胶直接辐射效应对全球陆地生态系统碳循环的影响. 自然资源学报, 2018, 33 (1): 27- 36. | |
Shao S Y , Zhang J , Zhou L H , et al. Impacts of aerosol direct radiative effect on carbon cycle in global terrestrial ecosystem. Journal of Natural Resources, 2018, 33 (1): 27- 36. | |
谭丽萍, 刘苏峡, 莫兴国, 等. 华北人工林水热碳通量环境影响因子分析. 植物生态学报, 2015, 39 (8): 773- 784. | |
Tan L P , Liu S X , Mo X G , et al. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China. Chinese Journal of Plant Ecology, 2015, 39 (8): 773- 784. | |
王建林, 钟志明, 王忠红, 等. 青藏高原高寒草原生态系统土壤碳氮比的分布特征. 生态学报, 2014, 34 (22): 6678- 6691. | |
Wang J L , Zhong Z M , Wang Z H , et al. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai Tibetan Plateau. Acta Ecologica Sinica, 2014, 34 (22): 6678- 6691. | |
魏书精, 罗碧珍, 魏书威, 等. 森林生态系统土壤呼吸测定方法研究进展. 生态环境学报, 2014, (3): 504- 514.
doi: 10.3969/j.issn.1674-5906.2014.03.021 |
|
Wei S J , Luo B Z , Wei S W , et al. Methods of measuring of soil respirationin forest ecosystems: a review. Ecology and Environment Sciences, 2014, (3): 504- 514.
doi: 10.3969/j.issn.1674-5906.2014.03.021 |
|
温永斌, 韩海荣, 程小琴, 等. 基于Biome-BGC模型的千烟洲森林水分利用效率研究. 北京林业大学学报, 2019, 41 (4): 69- 77. | |
Wen Y B , Han H R , Cheng X Q , et al. Forest water use efficiency in Qianyanzhou based on Biome-BGC model, Jiangxi Province of eastern China. Journal of Beijing Forestry University, 2019, 41 (4): 69- 77. | |
吴旭, 唐亚坤, 陈晨, 等. 黄土丘陵区沙棘、油松和刺槐光合生理特性及其环境适应性. 生态学报, 2019, 39 (21): 8111- 8125. | |
Wu X , Tang Y K , Chen C , et al. Photosynthesis light response characteristics and environmental adaptability of Hippophae rhamnoides, Pinus tabuliformis, and Robinia pseudoacacia in the Loess hilly region of China. Acta Ecologica Sinica, 2019, 39 (21): 8111- 8125. | |
解玉玲. 高温胁迫对植物生理影响的研究进展. 吉林农业, 2019, (8): 107- 108. | |
Xie Y L . Research progress on the effects of high temperature stress on plant physiology. Jilin Agriculture, 2019, (8): 107- 108. | |
Falge E , Baldocchi D , Olson R , et al. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107, 71- 77. | |
Li C , Sun H , Wu X , et al. An approach for improving soil water content for modeling net primary production on the Qinghai-Tibetan Plateau using Biome-BGC model. Catena, 2020, 184, 104253. | |
Mao F , Li P , Zhou G , et al. Development of the Biome-BGC model for the simulation of managed moso bamboo forest ecosystems. Journal of Environmental Management, 2016, 172, 29- 39. | |
Raj R , Hamm N A S , van der Tol C , et al. Variance-based sensitivity analysis of Biome-BGC for gross and net primary production. Ecological Modelling, 2014, 292, 26- 36. | |
Reichstein M , Falge E , Baldocchi D , et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 2005, 11, 1424- 1439. | |
Ruan C , Li D . Community characteristics of Hippophae Rhamnoides forest and water and nutrient condition of the woodland in Loess Hilly Region. China Journal of Applied Ecology, 2002, 13 (9): 1061- 1064. | |
Shi H , Shao M . Soil and water loss from the Loess Plateau in China. Journal of Arid Environments, 2000, 45 (1): 9- 20. | |
Tang Y K , Jiang J , Chen C , et al. Rainfall pulse response of carbon fluxes in a temperate grass ecosystem in the semiarid Loess Plateau. Ecology and Evolution, 2018a, 12, 1- 11. | |
Tang Y K , Wen X F , Sun X M , et al. The limiting effect of deep soil water on evapotranspiration of a subtropical coniferous plantation subjected to seasonal drought. Advances in Atmospheric Sciences, 2014, 31, 385- 395. | |
Tang Y K , Wu X , Chen Y M . Water use strategies for two dominant tree species in pure and mixed plantations of the semiarid Chinese Loess Plateau. Ecohydrology, 2018b, 11 (4): e1943. | |
Tatarinov F A , Cienciala E . Application of Biome-BGC model to managed forests. Forest Ecology and Management, 2006, 237 (1-3): 267- 279. | |
Tonkin M , Doherty J . A hybrid regularized inversion methodology for highly parameterized environmental models. Water Resources Research, 2005, 41 (10): Artn W10412. | |
Wainwright H M , Finsterle S , Zhou Q , et al. Modeling the performance of large-scale CO2 storage systems: a comparison of different sensitivity analysis methods. International Journal of Greenhouse Gas Control, 2013, 17, 189- 205. | |
Wang Q , Watanabe M , Ouyang Z . Simulation of water and carbon fluxes using Biome-BGC model over crops in China. Agricultural and Forest Meteorology, 2005, 131 (3): 209- 224. | |
Wang X , Ma L , Jia Z , et al. Root inclusion net method: novel approach to determine fine root production and turnover in Larix principis-rupprechtii mayr plantation in north China. Turkish Journal of Agriculture and Forestry, 2014, 38, 388- 398. | |
Wen X F , Wang H M , Wang J L , et al. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003-2007. Biogeosciences, 2010, 7 (1): 357- 369. | |
White M A , Thornton P E , Running S W , et al. Parameterization and sensitivity analysis of the Biome-BGC terrestrial ecosystem model: net primary production controls. Earth Interactions, 2000, 4 (3): 1- 85. |
[1] | Zhikang Hou,Songwei Zeng,Lufeng Mo,Yufeng Zhou. CO2 Concentration in Phyllostachys praecox Stand Inversion Based on GA-BP Neural Network [J]. Scientia Silvae Sinicae, 2022, 58(2): 42-48. |
[2] | Xiaoyun Xia,Yong Pang,Qingfeng Huang,Rong Wu,Dongsheng Chen,Yu Bai. Prediction of Biomass Growth of Larix olgensis Based on 3-PG Model [J]. Scientia Silvae Sinicae, 2021, 57(3): 67-78. |
[3] | Bin Wang,Xianglin Tian,Tianjian Cao. Uncertainty Analysis of Height Predictions for Young Pinus tabulaeformis Using a Bayesian Approach [J]. Scientia Silvae Sinicae, 2020, 56(11): 73-86. |
[4] | Tang Shupei, Li Chunhua, Liu Wei, Wuliji, Bao Weidong. Viability Analysis of Chinese Goral Population in Saihanwula National Nature Reserve,Inner Mongolia [J]. Scientia Silvae Sinicae, 2019, 55(3): 118-124. |
[5] | Xu Lin;Mo Lufeng;Xuan Ziwei;Xu Xiaojun;Wang Shenghui;Zhou Guomo. System of Measuring Soil Carbon Flux Based on Wireless Sensor Network [J]. , 2013, 49(2): 122-126. |
[6] | Li Haikui;Fa Lei. Height-Diameter Model for Major Tree Species in China Using the Classified Height Method [J]. Scientia Silvae Sinicae, 2011, 47(10): 83-90. |
[7] | Wang Yan;Peng Zhenghua;Jiang Zehui;Liu Xing’e;Zhang Xudong;Zhou Jingxing;Sun Qixiang. Characteristics of Carbon Flux of Populus Forest in the Reaches of Yangtze River in Hunan [J]. Scientia Silvae Sinicae, 2009, 12(11): 156-160. |
[8] | Qiu Rongzu;Huang Dehua;Weng Fajin;Wang Zhoujun;Wang Chaoqun. GIS-Based Decision System of Wood Landing Location [J]. Scientia Silvae Sinicae, 2005, 41(1): 211-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||