Scientia Silvae Sinicae ›› 2022, Vol. 58 ›› Issue (1): 127-137.doi: 10.11707/j.1001-7488.20220114
• Reviews • Previous Articles Next Articles
Ge Wang1,Shanyu Han1,Fuming Chen1,*,Xiaoyu Ma2,Xueyong Ren3
Received:
2021-04-02
Online:
2022-01-25
Published:
2022-03-08
Contact:
Fuming Chen
CLC Number:
Ge Wang,Shanyu Han,Fuming Chen,Xiaoyu Ma,Xueyong Ren. Vibration Damping Performance of Bamboo and Its Application in Bamboo-Based Composite[J]. Scientia Silvae Sinicae, 2022, 58(1): 127-137.
Table 1
Effect of temperature and humidity on vibration damping characteristics of bamboo"
影响因子 Impact factor | 作用机理 Mechanism of action | 影响规律 Influence law | |
温度 Temperature | 玻璃化转变点(160 ℃)以下Below glass transition point (160 ℃) | 竹材中的大分子链处于静止状态,相应的能量内耗较少The macromolecular chain in bamboo is at rest, and the corresponding internal energy consumption is less | 竹材的储能模量呈现出随温度升高而降低的趋势,而损耗模量与损耗因子均随温度升高而增大The storage modulus of bamboo decreases with the increase of temperature, while the loss modulus and loss factor increase with the increase of temperature |
玻璃化转变温度以上Above glass transition temperature | 链段开始运动,内摩擦阻力变大,损耗因子大幅提高( | ||
湿度 Humidity | 纤维饱和点以下 Below fiber saturation point | 水分子与细胞壁纤维素链段中的羟基极易形成氢键结合,形成单分子水膜,起到一定润滑作用,表现为损耗模量和损耗因子降低Water molecules and hydroxyl groups in cellulose chain segments of cell wall are easy to form hydrogen bonds to form a single molecule water film, which plays a certain lubricating role, showing the decrease of loss modulus and loss factor | 随着含水率增高,竹材振动阻尼性能总体呈上升趋势With the increase of moisture content, the vibration damping performance of bamboo shows an upward trend |
纤维饱和点以上 Above fiber saturation point | 细胞腔中存在液态水,提高其塑性,使振动阻尼性能随之增大( |
Table 2
Types and characteristics of typical bamboo composite damping materials"
种类 Species | 复合方式 Composite way | 特点 Characteristics | 振动阻尼作用机理 Damping mechanism |
竹木复合材料 Bamboo wood composite | 将不同形式的竹单板与木质单板进行黏结( 将竹纤维与木纤维通过胶黏剂混合( | 保留了生物质材料的天然纹理、质量轻、力学性能优异、应用范围广泛、吸水膨胀率低、不易变形Bamboo fiber, bamboo powder or bamboo chips are used as reinforcement or filler and molded by melt blending with thermoplastic | 复合材料经热压密实化处理,内部气孔密闭,当声波到达材料表面时,很难进入材料内部,使得复合材料振动阻尼性能增强( |
竹质橡胶复合材料 Bamboo rubber composite | 天然橡胶通过喷涂黏附于竹纤维表面Natural rubber is adhered to the surface of bamboo fiber by spraying竹纤维作为增强材料直接填充于天然橡胶中,通过施加胶黏剂增加热压制得Bamboo fiber is directly filled in natural rubber as reinforcement, which is obtained by applying adhesive to increase thermal pressing | 具有较宽的功能区(-33~60 ℃)和较大的振动阻尼比(0.93),阻尼性能优越It has a wide functional area (- 33-60 ℃) and a large vibration damping ratio (0.93), and has excellent damping performance | 天然橡胶通过喷涂黏附于竹纤维表面,组成了一个弹性体,复合材料可以看作由数千万个复合弹性体串并联所构成,各弹性体形变摩擦产生的热量较高,内耗较多,振动阻尼性能增强( |
竹塑复合材料 Bamboo plastic composite | 竹纤维、竹粉或竹屑作为增强体或填料,与热塑性塑料经熔融共混模压成型( | 材料表面光洁,质地密实、吸水性小The material has smooth surface, dense texture, and low water absorption | 竹材的加入破坏了树脂基体的连续性和均匀性,在界面处形成大量空隙。当声波入射至材料时,空气与材料的摩擦加剧,复合材料整体的吸声性能得到增强The addition of bamboo destroys the continuity and uniformity of the resin matrix and forms a large number of voids at the interface. When the sound wave is incident on the material, the friction between air and material intensifies, and the overall sound absorption performance of the composite is enhanced |
Table 3
Structural optimization design schemes of four representative bamboo composite damping material"
复合结构 Damping structure | 组坯方式 Group embryo mode | 结构特点 Structural characteristics | 结构模型 Structural model |
类型1:基础性阻尼结构 Type1:basic damping structure | 竹束单元作为表层,木单板作为次表层,橡胶板作为芯层组坯而成 The bamboo bundle unit is used as the surface layer, the wooden single layer is used as the sub surface layer, and the rubber plate is used as the core layer | 弥补竹束单元横向连接强度不足 Make up for the insufficient transverse connection strength of bamboo bundle unit 增加复合板材的胶合强度和力学强度 Increase the bonding strength and mechanical strength of composite plates | ![]() |
类型2:抗冲击型阻尼结构 Type2: impact resistant damping structure | 竹束单元层之间加入木单板,竹束单元与木单板呈平行排列 A wooden veneer is added between the bamboo bundle unit layers, and the bamboo bundle unit and the wooden veneer are arranged in parallel | 提高材料横向拉伸强度和剪切强度 Improve the transverse tensile strength and shear strength of the material 具有分层吸能机制 It has a layered energy absorption mechanism 可抑制竹单板层纵向裂纹扩展 It can inhibit the longitudinal crack propagation of bamboo veneer | ![]() |
类型3:轻量型阻尼结构 Type 3: lightweight damping structure | 使用轻质软木单板代替橡胶板压制而成 It is made of light cork veneer instead of rubber plate | 复合材料的密度降低 The density of composites decreases 具有较好的弹性和内聚性 It has good elasticity and cohesion | ![]() |
类型4:静音型阻尼结构 Type 4: silent damping structure | 将多孔性吸声材料覆贴于复合材料表面 The porous sound-absorbing material is coated on the surface of the composite material | 复合材料表面孔隙率增大 The surface porosity of composites increases 吸声系数提高,振动阻尼性能增强 The sound absorption coefficient is increased and the vibration damping performance is enhanced | ![]() |
程瑞香, 张齐生. 密闭高温软化处理竹材的玻璃化转变温度. 林业科学, 2006, 42 (7): 87- 89. | |
Cheng R X , Zhang Q S . Glass transition temperature of bamboo after softening treatment at high temperature. Scientia Silvae Sinicae, 2006, 42 (7): 87- 89. | |
陈欣. 农业机械领域中自动控制技术应用与发展趋势. 民营科技, 2014, (7): 246.
doi: 10.3969/j.issn.1673-4033.2014.07.235 |
|
Chen X . Application and development trend of automatic control technology in agricultural machinery field. Private Science and Technology, 2014, (7): 246.
doi: 10.3969/j.issn.1673-4033.2014.07.235 |
|
方晓明. 噪声污染的危害及防治措施. 科学技术创新, 2019, (15): 41- 42.
doi: 10.3969/j.issn.1673-1328.2019.15.025 |
|
Fang X M . Noise pollution hazards and prevention measures. Scientific and Technological Innovation, 2019, (15): 41- 42.
doi: 10.3969/j.issn.1673-1328.2019.15.025 |
|
关明杰, 张齐生. 竹材湿热效应的动态热机械分析. 南京林业大学学报(自然科学版), 2006, 30 (1): 65- 68.
doi: 10.3969/j.issn.1000-2006.2006.01.016 |
|
Guan M J , Zhang Q S . Hygrothermal effects of bamboo by dynamic mechanical analysis. Journal of Nanjing Forestry University (Natural Sciences Edition), 2006, 30 (1): 65- 68.
doi: 10.3969/j.issn.1000-2006.2006.01.016 |
|
顾健, 武高辉. 新型阻尼材料的研究进展. 材料导报, 2006, (12): 53- 56, 61. | |
Gu J , Wu G H . Research progress in novel damping materials. Materials Review, 2006, (12): 53- 56, 61. | |
郭伟峰, 孙正军. 竹木层积材层间剪切强度的研究. 木材加工机械, 2012, 23 (2): 19- 20, 8. | |
Guo W F , Sun Z J . Interlaminar shear strength of bamboo-poplar epoxy laminates. Wood Processing Machinery, 2012, 23 (2): 19- 20, 8. | |
胡够英, 姚迟强, 杜兰星, 等. 毛竹动态粘弹性研究. 浙江林业科技, 2012, 32 (4): 24- 27.
doi: 10.3969/j.issn.1001-3776.2012.04.006 |
|
Hu G Y , Yao C Q , Du L X , et al. Study on dynamic mechanical properties of bamboo culm. Journal of Zhejiang Forestry Science and Technology, 2012, 32 (4): 24- 27.
doi: 10.3969/j.issn.1001-3776.2012.04.006 |
|
黄梦雪, 张文标, 张晓春, 等. 毛竹材玻璃化转变温度的影响因素. 浙江农林大学学报, 2015, 32 (6): 897- 902. | |
Huang M X , Zhang W B , Zhang X C , et al. Factors for Phyllostachys edulis timber glass transition temperatures. Journal of Zhejiang A&F University, 2015, 32 (6): 897- 902. | |
黄梦雪, 张文标, 张晓春, 等. 毛竹材的动态热机械性能分析. 南京林业大学学报(自然科学版), 2016, 40 (1): 123- 128. | |
Huang M X , Zhang W B , Zhang X C , et al. Dynamic mechanical analysis of moso bamboo timber. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40 (1): 123- 128. | |
黄晓东, 江泽慧, 程海涛, 等. 毛竹竹青片的动态热机械分析. 林业科技开发, 2008a, (5): 45- 47. | |
Huang X D , Jiang Z H , Cheng H T , et al. Study on dynamic mechanical thermal analysis for green covering of bamboo. China Forestry Science and Technology, 2008a, (5): 45- 47. | |
黄晓东, 江泽慧, 陈玲, 等. 不同竹龄毛竹增强相的动态热机械研究. 世界竹藤通讯, 2008b, (4): 10- 13. | |
Huang X D , Jiang Z H , Chen L , et al. Study on bamboo samples of various ages tested by dynamic mechanical thermal analysis instruments as reinforcement materials. World Bamboo and Rattan, 2008b, (4): 10- 13. | |
黄艳文, 吴夏华, 钱俊. 不同竹龄、部位竹材经软化后的力学性能比较研究. 竹子研究汇刊, 2015, 34 (2): 40- 46.
doi: 10.3969/j.issn.1000-6567.2015.02.008 |
|
Huang Y W , Wu X H , Qian J . The comparison of mechanical properties of the softening treated bamboos at various position and different age. Journal of Bamboo Research, 2015, 34 (2): 40- 46.
doi: 10.3969/j.issn.1000-6567.2015.02.008 |
|
蒋兴华, 李锋华. 聚合物基泡体复合材料的隔声原理与加工性能. 合成材料老化与应用, 2002, (3): 32- 35.
doi: 10.3969/j.issn.1671-5381.2002.03.009 |
|
Jiang X H , Li F H . Sound insulation principle and processing property of polymer matrix bubble composites. Synthetic Materials Aging and Application, 2002, (3): 32- 35.
doi: 10.3969/j.issn.1671-5381.2002.03.009 |
|
李红晨, 何盛, 张仲凤, 等. 竹材显微构造与孔隙结构研究进展. 竹子学报, 2019, 38 (3): 52- 58, 77.
doi: 10.3969/j.issn.1000-6567.2019.03.008 |
|
Li H C , He S , Zhang Z F , et al. Research progress of microstructure and porous structure of bamboo. Journal of Bamboo Research, 2019, 38 (3): 52- 58, 77.
doi: 10.3969/j.issn.1000-6567.2019.03.008 |
|
李珈骐. 体育设施和运动器械用塑料及复合材料的选材. 粘接, 2019, 40 (6): 68- 71.
doi: 10.3969/j.issn.1001-5922.2019.06.019 |
|
Li J X . The Selection of plastics and composites for sports facilities and sports instruments. Adhesion, 2019, 40 (6): 68- 71.
doi: 10.3969/j.issn.1001-5922.2019.06.019 |
|
刘晓玲, 邱仁辉, 杨文斌, 等. 竹粉粒径对竹/聚丙烯复合材料力学性能的影响. 东北林业大学学报, 2009, 37 (12): 72- 74.
doi: 10.3969/j.issn.1000-5382.2009.12.023 |
|
Liu X L , Qiu R H , Yang W B , et al. Effect of particle size of bamboo flour on mechanical properties of bamboo/polypropylene composites. Journal of Northeast Forestry University, 2009, 37 (12): 72- 74.
doi: 10.3969/j.issn.1000-5382.2009.12.023 |
|
骆东亮. 2018. 隔音隔振技术在建筑中的应用措施研究. 青岛: 青岛理工大学. | |
Luo D L. 2018. Application of vibration and sound isolation technology in building. Qingdao: Qingdao University of Technology. [in Chinese] | |
裴高林, 米志安, 苏正涛, 等. 约束阻尼材料性能测试方法的探讨. 噪声与振动控制, 2008, (3): 156- 159.
doi: 10.3969/j.issn.1006-1355.2008.03.045 |
|
Pei G L , Mi Z A , Su Z T , et al. Study on the testing method of constrained layer damping materials. Noise and Vibration Control, 2008, (3): 156- 159.
doi: 10.3969/j.issn.1006-1355.2008.03.045 |
|
孙启祥, 张齐生, 彭镇华. 木质环境学的研究进展与趋势. 世界林业研究, 2001, 14 (4): 25- 31.
doi: 10.3969/j.issn.1001-4241.2001.04.004 |
|
Sun Q X , Zhang Q S , Peng Z H . Research progress and trend on wooden environment science. World Forestry Research, 2001, 14 (4): 25- 31.
doi: 10.3969/j.issn.1001-4241.2001.04.004 |
|
孙伟圣. 2009. 木材—橡胶复合材料及其在静音地板中的应用研究. 北京: 中国林业科学研究院. | |
Sun W S. 2009. Study on wood-rubber composite and application in soundproof flooring. Beijing: Chinese Academy of Forestry. [in Chinese] | |
田昭鹏, 王朝晖, 张忠利, 等. 结构用竹木复合层积材的制备及其力学性能评价. 安徽农业大学学报, 2017, 44 (3): 404- 408. | |
Tian Z P , Wang Z H , Zhang Z L , et al. Research on preparation and mechanical properties of structural bamboo-wood composite LVL. Journal of Anhui Agricultural University, 2017, 44 (3): 404- 408. | |
汪仁斌, 杜春贵. 竹材径向动态力学性能研究. 林产工业, 2018, 45 (8): 14- 16, 22. | |
Wang R B , Du C G . Dynamic mechanical properties of radial direction of bamboo. China Forest Products Industry, 2018, 45 (8): 14- 16, 22. | |
王戈, 陈复明, 程海涛, 等. 中国竹产业的特色优势与创新发展. 世界竹藤通讯, 2020a, 18 (6): 6- 13, 29. | |
Wang G , Chen F M , Cheng H T , et al. Special advantage and innovative development of bamboo industry in china. World Bamboo and Rattan, 2020a, 18 (6): 6- 13, 29. | |
王戈, 陈复明, 费本华, 等. 竹缠绕复合管创新技术在"一带一路"沿线推广与应用的可行性分析. 世界林业研究, 2020b, 33 (1): 105- 109. | |
Wang G , Chen F M , Fei B H , et al. Application feasibility of manufacturing technology of bamboo-based winding composite pipe in "belt and road" countries. World Forestry Research, 2020b, 33 (1): 105- 109. | |
杨家富. 2013. 木竹复合材料动态力学性能尧物理性能试验研究分析. 南京: 南京林业大学. | |
Yang J F. 2013. Experimental research on dynamic mechanical properties and characteristics of wood composite. Nanjing: Nanjing Forestry University. [in Chinese] | |
殷丽萍, 金勇男, 王云芳, 等. 竹龄与竹材部位对毛竹材动态黏弹性的影响. 林业机械与木工设备, 2015, 43 (1): 26- 28.
doi: 10.3969/j.issn.2095-2953.2015.01.010 |
|
Yin L P , Jin Y N , Wang Y F , et al. Effect of bamboo age and different bamboo wood parts on the dynamic viscoelasticity of bamboo wood. Forestry Machinery & Woodworking Equipment, 2015, 43 (1): 26- 28.
doi: 10.3969/j.issn.2095-2953.2015.01.010 |
|
于海鹏, 刘一星, 刘迎涛. 国内外木质环境学的研究概述. 世界林业研究, 2003, 16 (6): 20- 26.
doi: 10.3969/j.issn.1001-4241.2003.06.005 |
|
Yu H P , Liu Y X , Liu Y T . Wood environment science research status and development at domestic and abroad. World Forestry Research, 2003, 16 (6): 20- 26.
doi: 10.3969/j.issn.1001-4241.2003.06.005 |
|
于文吉, 江泽慧, 叶克林. 竹材特性研究及其进展. 世界林业研究, 2002, 15 (2): 50- 55.
doi: 10.3969/j.issn.1001-4241.2002.02.008 |
|
Yu W J , Jiang Z H , Ye K L . Characteristics research of bamboo and its development. World Forestry Research, 2002, 15 (2): 50- 55.
doi: 10.3969/j.issn.1001-4241.2002.02.008 |
|
于子绚, 江泽慧, 王戈, 等. 重组竹的耐冲击性能. 东北林业大学学报, 2012, 40 (4): 46- 48.
doi: 10.3969/j.issn.1000-5382.2012.04.011 |
|
Yu Z X , Jiang Z H , Wang G , et al. Impact resistance properties of bamboo scrambler. Journal of Northeast Forestry University, 2012, 40 (4): 46- 48.
doi: 10.3969/j.issn.1000-5382.2012.04.011 |
|
张爱珍, 余观夏, 阮锡根. 竹材动态杨氏模量影响因子的分析. 南京林业大学学报(自然科学版), 2003, 27 (5): 43- 46.
doi: 10.3969/j.issn.1000-2006.2003.05.010 |
|
Zhang A Z , Yu G X , Ruan X G . Analysis of effect factors of dynamic Young's modulus in bamboo. Journal of Nanjing Forestry University (Natural Sciences Edition), 2003, 27 (5): 43- 46.
doi: 10.3969/j.issn.1000-2006.2003.05.010 |
|
张国胜. 体育器材中碳纤维增强塑料的应用研究. 塑料工业, 2019, 47 (6): 166- 169.
doi: 10.3969/j.issn.1005-5770.2019.06.036 |
|
Zhang G S . Research on the application of carbon fiber reinforced plastics in sports equipment. China Plastics Industry, 2019, 47 (6): 166- 169.
doi: 10.3969/j.issn.1005-5770.2019.06.036 |
|
张齐生, 关明杰, 纪文兰. 毛竹材质生成过程中化学成分的变化. 南京林业大学学报(自然科学版), 2002, 26 (2): 7- 10.
doi: 10.3969/j.issn.1000-2006.2002.02.002 |
|
Zhang Q S , Guan M J , Ji W L . Variation of moso bamboo chemical compositions during mature growing period. Journal of Nanjing Forestry University (Natural Sciences Edition), 2002, 26 (2): 7- 10.
doi: 10.3969/j.issn.1000-2006.2002.02.002 |
|
张珊. 2015. 竹质复合材料在房屋建筑中的应用研究. 重庆: 重庆交通大学. | |
Zhang S. 2015. Research on the application of bamboo-based composites material in the building. Chongqing: Chongqing Jiaotong University. [in Chinese] | |
张少辉, 陈花玲. 国外纤维增强树脂基复合材料阻尼研究综述. 航空材料学报, 2002, 22 (1): 58- 62.
doi: 10.3969/j.issn.1005-5053.2002.01.013 |
|
Zhang S H , Chen H L . Development of research on damping of fiber reinforced composite-a review. Journal of Aeronautical Materials, 2002, 22 (1): 58- 62.
doi: 10.3969/j.issn.1005-5053.2002.01.013 |
|
张友南, 杨军, 贺才春, 等. 阻尼材料的研究与应用. 噪声与振动控制, 2006, (2): 38- 41.
doi: 10.3969/j.issn.1006-1355.2006.02.012 |
|
Zhang Y N , Yang J , He C C . Such as. 2006. Research and application of damping materials. Noise and Vibration Control, 2006, (2): 38- 41.
doi: 10.3969/j.issn.1006-1355.2006.02.012 |
|
张忠明, 刘宏昭, 王锦程, 等. 材料阻尼及阻尼材料的研究进展. 功能材料, 2001, 32 (3): 227- 230. | |
Zhang Z M , Liu H Z , Wang J C , et al. Damping of materials and progress in the damping materials. Journal of Functional Materials, 2001, 32 (3): 227- 230. | |
张新. 塑料复合材料在体育设施中的应用. 粘接, 2019, 40 (12): 49- 52.
doi: 10.3969/j.issn.1001-5922.2019.12.014 |
|
Zhang X . Application of plastic composites in sports facilities. Adhesion, 2019, 40 (12): 49- 52.
doi: 10.3969/j.issn.1001-5922.2019.12.014 |
|
赵方, 徐正东, 张亚卓, 等. 竹结构材料在建筑领域的应用前景. 建设科技, 2012, (3): 47- 49. | |
Zhao F , Xu Z D , Zhang Y Z . The application prospect of bamboo structure materials in the field of construction. Construction Science and Technology, 2012, (3): 47- 49. | |
赵云峰. 高性能黏弹性阻尼材料及其应用. 宇航材料工艺, 2009, 39 (5): 1- 6.
doi: 10.3969/j.issn.1007-2330.2009.05.001 |
|
Zhao Y F . Properties and application of advanced viscoelastic damping materials. Aerospace Materials & Technology, 2009, 39 (5): 1- 6.
doi: 10.3969/j.issn.1007-2330.2009.05.001 |
|
周超. 2018. 天然橡胶竹纤维复合材料的制备及其弹性性能研究. 杭州: 浙江农林大学. | |
Zhou C. 2018. The Fabrication and elastic performance study of natural rubber bamboo fiber composites. Hangzhou: Zhejiang A & F University. [in Chinese] | |
Aizenberg J , Weaver J C , Thanawala M S , et al. Skeleton of Euplectella sp. : structural hierarchy from the nanoscale to the macroscale. Science, 2005, 309 (5732): 275- 278. | |
Akerholm M, Salmen L. 2003. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FTIR spectroscopy, 57(5): 459-465. | |
Chen F M , Jiang Z H , Wang G , et al. Bamboo bundle corrugated lami-nated composites. part Ⅰ. three-dimensional stability in response to corrugating effect. The Journal of Adhesive, 2013, 89 (3): 225- 238.
doi: 10.1080/00218464.2013.739044 |
|
Chung M J , Wang S Y . Physical and mechanical properties of composites made from bamboo and woody wastes in Taiwan. Journal of Wood Science, 2019, 65, 57.
doi: 10.1186/s10086-019-1833-1 |
|
Fang L , Chang L , Guo W , et al. Influence of silane surface modification of veneer on interfacial adhesion of wood-plastic plywood. Applied Surface Science, 2014, 288, 682- 689.
doi: 10.1016/j.apsusc.2013.10.098 |
|
Habibi M K , Tam L , Lau D , et al. Viscoelastic damping behavior of structural bamboo material and its microstructural origins. Mechanics of Materials, 2016, 97 (6): 184- 198. | |
Ismail H , Edyham M R , Wirjosentono B . Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent. Polymer Testing, 2002, 21 (2): 139- 144.
doi: 10.1016/S0142-9418(01)00060-5 |
|
Ku I , Yordaniansyah H , Purwanto T . Acoustical properties of petung bamboo for the top plate of guitars. Applied Acoustics, 2016, 112, 123- 130.
doi: 10.1016/j.apacoust.2016.05.016 |
|
Kumar N , Mireja S , Khandelwal V , et al. Light-weight high-strength hollow glass microspheres and bamboo fiber based hybrid polypropylene composite: a strength analysis and morphological study. Composites Part B: Engineering, 2017, 109, 277- 285.
doi: 10.1016/j.compositesb.2016.10.052 |
|
Lee B H , Kim J J , Jeong D S , et al. Effects of silane modification of bamboo fiber (BF) on the physical properties of PP/ethylene-octene rubber/BF composites. Polymer-Korea, 2017, 41 (4): 592- 598.
doi: 10.7317/pk.2017.41.4.592 |
|
Liang J Z , Li R K , Tjong S C . Effects of glass bead size and content on the viscoelasticity of filled polypropylene composites. Polymer Testing, 2000, 19 (2): 213- 220.
doi: 10.1016/S0142-9418(99)00005-7 |
|
Liu W , Chen T , Xie T , et al. Oxygen plasma treatment of bamboo fibers (BF) and its effects on the static and dynamic mechanical properties of BF-unsaturated polyester composites. Holzforschung, 2015, 69 (4): 449- 455.
doi: 10.1515/hf-2014-0097 |
|
Liu Z J , Jiang Z H , Cai Z Y . Dynamic mechanical thermal analysis of moso bamboo(Phyllostachys heterocycla) at different moisture content. Bioresources, 2012, 7 (2): 1548- 1557. | |
Muhammad A , Rahman M R , Hamdan S , et al. Recent developments in bamboo fiber-based composites: a review. Polymer Bulletin, 2019, 76 (5): 2655- 2682.
doi: 10.1007/s00289-018-2493-9 |
|
Okenwa U C , Obiozo E V , Faisal A M , et al. Investigation of molecular and supramolecular assemblies of cellulose and lignin of lignocellulosic materials by spectroscopy and thermal analysis. International Journal of Biological Macromolecules, 2020, 146 (5): 916- 921. | |
Peter F , Weinkamer R . Nature's hierarchical materials. Progress in Material Science, 2007, 52 (8): 1263- 1334.
doi: 10.1016/j.pmatsci.2007.06.001 |
|
Putra A , Khair F A , Nor M J . Utilizing hollow-structured bamboo as natural sound absorber. Archives of Acoustics, 2015, 40 (4): 601- 608.
doi: 10.1515/aoa-2015-0060 |
|
Shi S Q . Diffusion model based on Fick's second law for the moisture absorption process in wood fiber-based composites: is it suitable or not?. Wood Science and Technology, 2007, 41 (8): 645- 658.
doi: 10.1007/s00226-006-0123-4 |
|
Thite A N , Gerguri S , Coleman F , et al. Development of an experimental methodology to evaluate the influence of a bamboo frame on the bicycle ride comfort. Vehicle System Dynamics, 2013, 51 (9): 1287- 1304.
doi: 10.1080/00423114.2013.797591 |
|
Wegst U G . Bamboo and wood in musical instruments. Annual Review of Materials Research, 2008, 38 (1): 323- 349.
doi: 10.1146/annurev.matsci.38.060407.132459 |
|
Xu Q , Leng Y , Chen X , et al. Experimental study on flexural performance of glued-laminated-timber-bamboo beams. Materials and Structures, 2018, 51 (1): 1- 14.
doi: 10.1617/s11527-017-1129-0 |
|
Yu W K , Chung K F , Chan S L . Axial buckling of bamboo columns in bamboo scaffolds. Engineering Structures, 2005, 27 (1): 61- 73.
doi: 10.1016/j.engstruct.2004.08.011 |
|
Zhou H Y , Wei X , Chen F M , et al. Effect of laminated structure on the mechanical properties of reclaimed bamboo chopsticks-wood veneer hybrid laminated composite. Fibers and Polymers, 2019, 20 (7): 1486- 1494.
doi: 10.1007/s12221-019-8997-6 |
|
Zhou H Y , Wei X , Chen F M , et al. Effect of laminated structure on the mechanical properties of reclaimed bamboo chopsticks-wood veneer hybrid laminated composite. Fibers and Polymers, 2019, 20 (7): 1486- 1494.
doi: 10.1007/s12221-019-8997-6 |
[1] | Shunong Li,Yamei Zhang,Yanglun Yu,Wenji Yu. Study on the Hygroscopicity and Chemical Compositions of Boiling-Treated Moso Bamboo [J]. Scientia Silvae Sinicae, 2022, 58(1): 119-126. |
[2] | Sen Xu,Rui Gu,Shuanglin Chen,Ziwu Guo,Liting Yang. Changes and Correlation of Sheath Leaf Traits and Taste Quality of Phyllostachys violascens 'Prevernalis' Shoots under Mulching [J]. Scientia Silvae Sinicae, 2021, 57(9): 34-41. |
[3] | Xiazhen Li,Haiqing Ren,Xianjun Li,Yong Zhong,Kang Xu,Xiaofeng Hao. The Bearing Properties and Failure Mode of Bolted Steel-Bamboo Scrimber-Steel Connections [J]. Scientia Silvae Sinicae, 2021, 57(8): 157-166. |
[4] | Xuan Hu,Ruijing Xu,Ze'an Shang,Qi Shu,Lianghua Qi. Spatial Distribution Characteristics of Dinochloa orenuda and Bonia levigata in Ganshiling, Hainan Island [J]. Scientia Silvae Sinicae, 2021, 57(8): 189-194. |
[5] | Siqian Yang,Sijia Sun,Xianmiao Liu,Yu Zhang,Wenzhu Li,Qin Li,Wenbiao Zhang. Calorific Value and Proximate Analysis of Carbonized Materials Derived from 24 Bamboo Speaes [J]. Scientia Silvae Sinicae, 2021, 57(7): 175-183. |
[6] | Jingen Peng,Xueru Jiang,Lijuan Xie,Yan Liu. Influence of Temperature and Light on Leaf Coloration of Buxus microphylla During Overwintering [J]. Scientia Silvae Sinicae, 2021, 57(2): 49-61. |
[7] | Jin Rao,Hui Wang,Kakwara Prosper Nayebare,Jie Wang,Jun Jiang,Xiushu Yang,Tingsong Liu,Fangli Sun. Anti-Decay Performance of Bamboo Treated By Laccase Catalyzing Iodide [J]. Scientia Silvae Sinicae, 2021, 57(2): 160-167. |
[8] | Wenjie Hu,Hongdong Pang,Xingyi Hu,Faxin Huang,Jiawei Yang,Lijun Xu,Miao Gong. Effects of Bamboo Forest Density and Fertilizer Types on the Yield and Quality of Phyllostachys edulis Bamboo Shoots and Soil Physicochemical Properties in Mufu Mountain Area [J]. Scientia Silvae Sinicae, 2021, 57(12): 32-42. |
[9] | Yamei Zhang,Yanglun Yu,Wenji Yu. Processes and Properties of Anti-Blue Stain Bamboo Scrimber for Outdoor Application [J]. Scientia Silvae Sinicae, 2021, 57(12): 140-146. |
[10] | Ruijing Xu,Xuan Hu,Guanglu Liu,Wen Guo,Changqiang Liang,Xianghe Kong. Differences of Leaf Functional Traits Between Two Climbing Bamboo Species in Tropical Lowland Rainforest of Hainan Island [J]. Scientia Silvae Sinicae, 2021, 57(12): 155-166. |
[11] | Enbin Liu,Hongwen Yao,Zexi Ren,Guomo Zhou,Huaqiang Du. Bivariate Joint Distribution of DBH and Age of Moso Bamboo Based on Copula Density Function [J]. Scientia Silvae Sinicae, 2021, 57(11): 94-104. |
[12] | Wenjuan Wu,Chunyang Zou,Lijing Huang,Yongcan Jin. Dissolution and Regeneration of Bamboo in LiCl/DMSO Solvent System [J]. Scientia Silvae Sinicae, 2020, 56(9): 201-206. |
[13] | Yanhe Liu,Jianbo Zhou,Wansi Fu,Bin Zhang,Feihu Chang,Wen He. Preparation and Mechanical Property Evaluation of Glued Laminated Bamboo Based on High Frequency Heating [J]. Scientia Silvae Sinicae, 2020, 56(8): 131-140. |
[14] | Jialu Su,Wushuang Shi,Yayun Yang,Xing Wang,Yulong Ding,Shuyan Lin. Comparison of Leaf Color and Pigment Content and Observation of Leaf Structure at Different Growth Stages from Six Bamboo Species [J]. Scientia Silvae Sinicae, 2020, 56(7): 194-203. |
[15] | Anke Wang,Yufang Bi,Xing Wen,Yukui Wang,Hanjiang Cai. Antifungal Activity of 4 Kinds of Aromatic Essential Oil Derived from Plants to Pathogenic Fungi of Bamboo [J]. Scientia Silvae Sinicae, 2020, 56(6): 59-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||