Scientia Silvae Sinicae ›› 2020, Vol. 56 ›› Issue (8): 131-140.doi: 10.11707/j.1001-7488.20200815
Previous Articles Next Articles
Yanhe Liu1,Jianbo Zhou1,2,*,Wansi Fu1,Bin Zhang1,2,Feihu Chang1,Wen He3
Received:
2020-03-09
Online:
2020-08-25
Published:
2020-09-15
Contact:
Jianbo Zhou
CLC Number:
Yanhe Liu,Jianbo Zhou,Wansi Fu,Bin Zhang,Feihu Chang,Wen He. Preparation and Mechanical Property Evaluation of Glued Laminated Bamboo Based on High Frequency Heating[J]. Scientia Silvae Sinicae, 2020, 56(8): 131-140.
Table 2
Thermal pressure parameters and levels"
参数Parameter | 水平1 Level 1 | 水平2 Level 2 | 水平3 Level 3 | 水平4 Level 4 |
竹材含水率Moisture content(MC)(%) | 6 | 9 | 12 | 15 |
热压压力Hot pressing pressure(P)/MPa | 1.0 | 1.3 | 1.6 | 2.0 |
施胶量Glue consumption(V)/(g·m-2) | 200 | 240 | 260 | 300 |
热压温度Hot pressing temperature(T)/℃ | 115 | 120 | 125 | 130 |
Table 3
L16 orthogonal experiment"
试验序号 Experiment number | 热压参数水平Thermal pressure parameter level | ||||
竹材含水率 Moisture content(MC) | 热压压力 Hot pressing pressure(P) | 施胶量 Glue consumption (V) | 热压温度 Hot pressing temperature(T) | 误差 Error | |
1 | 1 | 1 | 1 | 1 | |
2 | 1 | 2 | 2 | 2 | |
3 | 1 | 3 | 3 | 3 | |
4 | 1 | 4 | 4 | 4 | |
5 | 2 | 1 | 2 | 3 | |
6 | 2 | 2 | 1 | 4 | |
7 | 2 | 3 | 4 | 1 | |
8 | 2 | 4 | 3 | 2 | |
9 | 3 | 1 | 3 | 4 | |
10 | 3 | 2 | 4 | 3 | |
11 | 3 | 3 | 1 | 2 | |
12 | 3 | 4 | 2 | 1 | |
13 | 4 | 1 | 4 | 2 | |
14 | 4 | 2 | 3 | 1 | |
15 | 4 | 3 | 2 | 4 | |
16 | 4 | 4 | 1 | 3 |
Table 4
Orthogonal experiment results"
试验序号 Experiment number | 竹材含水率 Moisture content(%) | 热压压力 Hot pressing pressure/MPa | 施胶量 Glue consumption/ (g·m-2) | 热压温度 Hot pressing temperature/℃ | 抗弯强度 Bending strength(σ)/MPa | 剪切强度 Shear strength(σc)/MPa |
1 | 6 | 1.0 | 200 | 115 | 131.13 | 107.11 |
2 | 6 | 1.3 | 240 | 120 | 73.10 | 96.26 |
3 | 6 | 1.6 | 260 | 125 | 95.76 | 92.58 |
4 | 6 | 2.0 | 300 | 130 | 113.26 | 92.14 |
5 | 9 | 1.0 | 240 | 125 | 115.74 | 103.24 |
6 | 9 | 1.3 | 200 | 130 | 87.34 | 63.25 |
7 | 9 | 1.6 | 300 | 115 | 59.63 | 59.87 |
8 | 9 | 2.0 | 260 | 120 | 95.50 | 107.67 |
9 | 12 | 1.0 | 260 | 130 | 116.00 | 80.58 |
10 | 12 | 1.3 | 300 | 125 | 88.86 | 92.81 |
11 | 12 | 1.6 | 200 | 120 | 83.00 | 72.10 |
12 | 12 | 2.0 | 240 | 115 | 107.09 | 82.16 |
13 | 15 | 1.0 | 300 | 120 | 130.16 | 83.90 |
14 | 15 | 1.3 | 260 | 115 | 110.76 | 99.70 |
15 | 15 | 1.6 | 240 | 130 | 117.60 | 99.72 |
16 | 15 | 2.0 | 200 | 125 | 136.49 | 75.64 |
Table 5
Range analysis"
参数 Parameter | 平均抗弯强度Mean bending strength | ||||
水平1 Level 1 | 水平2 Level 2 | 水平3 Level 3 | 水平4 Level 4 | 极差Range | |
竹材含水率 Moisture content | 103.313 | 89.552 | 98.738 | 1 223.752 | 34.200 |
热压压力 Hot pressing pressure | 123.257 | 90.015 | 88.998 | 113.085 | 34.259 |
施胶量 Glue consumption | 109.490 | 103.382 | 104.505 | 97.977 | 11.513 |
热压温度 Hot pressing temperature | 102.153 | 95.440 | 109.213 | 108.550 | 13.773 |
平均剪切强度Mean shear strength | |||||
竹材含水率 Moisture content | 97.022 | 83.508 | 81.912 | 89.740 | 15.110 |
热压压力 Hot pressing pressure | 93.708 | 88.005 | 81.067 | 89.403 | 12.641 |
施胶量 Glue consumption | 79.525 | 95.345 | 95.132 | 82.180 | 15.820 |
热压温度 Hot pressing temperature | 87.210 | 89.982 | 91.067 | 83.922 | 7.145 |
Table 6
Variance analysis of bending strength and shear strength"
参数 Parameter | 抗弯强度Bending strength | 剪切强度Shear strength | |||||||||
自由度 DF | 方差 SS | F | 均方差 Mean square | 贡献率 Contribution | 自由度 DF | 方差 SS | F | 均方差 Mean square | 贡献率 Contribution | ||
竹材含水率 Moisture content | 3 | 2 507.816 | 1.482 | 835.939 | 18.524 | 3 | 566.66 | 1.218 | 188.887 | 15.221 | |
热压压力 Hot pressing pressure | 3 | 3 495.759 | 2.066 | 1 165.253 | 25.821 | 3 | 330.375 | 0.71 | 110.125 | 8.874 | |
施胶量 Glue consumption | 3 | 267.772 | 0.158 | 89.257 | 1.978 | 3 | 842.045 | 1.809 | 280.682 | 22.618 | |
热压温度 Hot pressing temperature | 3 | 497.822 | 0.294 | 165.941 | 3.677 | 3 | 122.327 | 0.263 | 40.776 | 3.286 | |
误差Error | 12 | 6 769.17 | 564.098 | 50 | 12 | 1 861.41 | 155.118 | 50 | |||
总计Total | 24 | 13 538.339 | 100 | 24 | 3 722.817 | 100 |
常飞虎, 张彬, 傅万四, 等. 高频技术在竹材加工技术装备中的应用研究. 木材加工机械, 2018. 29 (5): 34- 36, 4. | |
Chang F H , Zhang B , Fu W S , et al. Application and research of high frequency technology in bamboo processing equipment. Wood Processing Machinery, 2018. 29 (5): 34- 36, 4. | |
陈勇平, 王金林, 李春生, 等. 高频介质加热在木材胶合中的应用. 木材加工机械, 2007. 18 (5): 37- 41. | |
Chen Y P , Wang J L , Li C S , et al. The application of high-frequency heating technology in wood bonding process. Wood Processing Machinery, 2007. 18 (5): 37- 41. | |
江泽慧, 常亮, 王正, 等. 结构用竹集成材物理力学性能研究. 木材工业, 2005. (4): 22- 24, 30. | |
Jiang Z F , Chang L , Wang Z , et al. Physical and mechanical properties of glued structural laminated bamboo. China Wood Industry, 2005. (4): 22- 24, 30. | |
李海涛, 张齐生, 吴刚, 等. 竹集成材研究进展. 林业工程学报, 2016. 1 (6): 10- 16. | |
Li H T , Zhang Q S , Wang G , et al. A review on development of laminated bamboo lumber. Journal of Forestry Engineering, 2016. 1 (6): 10- 16. | |
李文定, 王超, 张洋, 等. 豆胶胶合板的高频热压机理及胶合特性. 南京林业大学学报:自然科学版, 2014. 38 (3): 120- 124. | |
Li W D , Wang C , Zhang Y , et al. Hot-pressing mechanism and bonding characteristics of soy protein adhesive plywood under radio-frequency heating. Journal of Nanjing Forestry University:Natural Sciences Edition, 2014. 38 (3): 120- 124. | |
刘晓辉. 热塑性树脂胶合板板坯热压过程中影响温度变化的主要因素. 林业工程学报, 2018. 3 (2): 35- 39. | |
Liu X H . The main factors affecting temperature change of mat during the manufacturing process of thermoplastic resin plywood. Journal of Forestry Engineering, 2018. 3 (2): 35- 39. | |
阮氏香江, 张齐生, 蒋身学. 竹集成材高频热压胶合工艺及性能研究. 林业科技开发, 2014. 28 (4): 109- 112. | |
Nguyen T H G , Zhang Q S , Jiang S X . Technology of glued laminated bamboo laminated in high frequency hot press and the properties. Journal of Forestry Engineering, 2014. 28 (4): 109- 112. | |
NguyenThi Huong Giang, 张齐生. 竹集成材高频热压过程中板坯内温度的变化趋势. 浙江农林大学学报, 2015. 32 (2): 167- 172. | |
Nguyen T H G , Zhang Q S . Temperature inside mats of high-frequency, hot pressed, glued and laminated bamboo. Journal of Zhejiang A & F University, 2015. 32 (2): 167- 172. | |
王文静, 左宏亮, 郭楠, 等. 胶合竹顺纹受拉力学性能试验研究. 低温建筑技术, 2015. 37 (4): 38- 40. | |
Wang W J , Zuo H L , Guo N , et al. The mechanical property tests for structural glubam of the tensile strength parallel to grain. Low Temperature Architecture Technology, 2015. 37 (4): 38- 40. | |
叶张柠. 2019.竹集成材家具角部接合的力学性能研究.杭州:浙江农林大学硕士学位论文 | |
Ye Z N. 2019. Dissertaiton for the degree of master. Hangzhou: MS thesis of Zhejiang A & F University.[in Chinese] | |
詹先旭, 唐周梅, 程明娟, 等. 重组装饰材高频热压工艺的研究. 林产工业, 2018. 45 (1): 19- 23. | |
Zhan X X , Tang Z M , Cheng M J , et al. Study on high-frequency hot-pressing process of reconstituted decorative lumber. China Forest Products Industry, 2018. 45 (1): 19- 23. | |
张浩, 曹现雷, 唐刚, 等. 基于正交实验设计制备Cu-Ce/TiO2的多元非线性回归分析. 环境工程学报, 2015. 9 (7): 3368- 3372. | |
Zhang H , Cao X L , Tang G , et al. Multivariate nonlinear regression analysis for preparation of Cu-Ce/TiO2 based on orthogonal experimental design. Chinese Journal of Environmental Engineering, 2015. 9 (7): 3368- 3372. | |
张仲凤, 周先雁. 国产胶合木复合增强效应的非线性有限元分析. 建筑结构, 2014. 44 (9): 83- 88. | |
Zhang Z F , Zhou X Y . Nonlinear finite element analysis on reinforced effect of domestic laminated timber. Building Structure, 2014. 44 (9): 83- 88. | |
朱红兵, 席凯强. SPSS 17.0中的正交试验设计与数据分析. 首都体育学院学报, 2013. 25 (3): 283- 288. | |
Zhu H B , Xi K Q . The orthogonal experimental design in SPSS17.0 and data analysis. Journal of Capital University of Physical Education and Sports, 2013. 25 (3): 283- 288. | |
Aydin I , Colakoglu G , Colak S , et al. Effects of moisture content on formaldehyde emission and mechanical properties of plywood. Building and Environment, 2006. 41 (10): 1311- 1316.
doi: 10.1016/j.buildenv.2005.05.011 |
|
Kalawate A , Shahoo S C , Khatua P K , et al. Evaluation of mechanical properties of plywood treated with a new wood preservative(CEB)chemical. Journal of the Institution of Engineers(India):Series D, 2017. 98 (1): 37- 41.
doi: 10.1007/s40033-015-0108-2 |
|
Muhammad F S , Suffian M , Wan-Mohd-Nazri W A R , et al. Mechanical properties erties of plywood from batai(Paraserianthes falcataria), eucalyptus(Eucalyptus pellita)and kelempayan(Neolamarckia cadamba)with different layer and species arrangement. Journal of Tropical Forest Science, 2018. 30 (1): 58- 66.
doi: 10.26525/jtfs2018.30.1.5866 |
|
Sharma B , Gatóo A , Ramage M H . Effect of processing methods on the mechanical properties of engineered bamboo. Construction and Building Materials, 2015. 83, 98- 101. | |
Wei Y , Tang S F , Ji X W , et al. Stress-strain behavior and model of bamboo scrimber under cyclic axial compression. Engineering Structures, 2020. 209, 110279.
doi: 10.1016/j.engstruct.2020.110279 |
|
Xiao Z Q , Liao X P , Long Z H , et al. Effect of cutting parameters on surface roughness using orthogonal array in hard turning of AISI 1045 steel with YT5 tool. The International Journal of Advanced Manufacturing Technology, 2017. 93 (1/4): 273- 282. | |
Xu M , Cui Z Y , Tu L H , et al. The effect of elevated temperatures on the mechanical properties of laminated bamboo. Construction and Building Materials, 2019. 226, 32- 43.
doi: 10.1016/j.conbuildmat.2019.07.274 |
[1] | Chunmei Yang,Wen Qu,Ting Jiang,Jiuqing Liu,Yan Ma,Qian Miao,Wenji Yu. Mathematical Model and Recovery Theory of Small-Diameter Log Integrated by Half-Sectional Finger Joint [J]. Scientia Silvae Sinicae, 2020, 56(5): 143-149. |
[2] | An Shengnan, Ma Xiaojun, Zhu Lizhi. Preparation and Characterization of the P34HB Composite Reinforced by Wood Flour [J]. Scientia Silvae Sinicae, 2019, 55(3): 125-133. |
[3] | Wang Zheng, Lu Yao, Xie Wenbo, Gao Zizhen, Ding Yewei, Fu Haiyan. Shear Stress Analysis and Interlayer Shear Strength Test of Cross Laminated Timber(CLT) Beam [J]. Scientia Silvae Sinicae, 2019, 55(2): 152-158. |
[4] | Chunmei Yang,Qingwei Liu,Xiang Li,Qian Miao,Yan Ma,Bakary Doumbia,Changqing Ren. Theoretical Process Parameter Calculation and Test Verification of Laser Cutting Veneer [J]. Scientia Silvae Sinicae, 2019, 55(12): 173-180. |
[5] | Sun Xiaoting, Chang Liang, Tang Qiheng, Ren Yiping, Guo Wenjing. Effects of Isothermal Crystallization on the Properties of Wood Fiber/PLA Composites [J]. Scientia Silvae Sinicae, 2018, 54(3): 97-107. |
[6] | Zhou Xianwu, Gao Yulei, Su Minglei, Zhao Rongjun, Lü Jianxiong. Progress of Research on Improvement of Genetic Engineering to Wood Properties [J]. Scientia Silvae Sinicae, 2018, 54(3): 152-160. |
[7] | Liu Cangwei, Su Minglei, Wang Siqun, Wang Xinzhou, Zhao Rongjun, Ren Haiqing, Wang Yurong. Cell Wall Mechanical Properties and Microfibril Angle of Phyllostachys edulis in Different Growth Period [J]. Scientia Silvae Sinicae, 2018, 54(1): 174-180. |
[8] | Wang Zi, Wang Li, Wu Guofang, Ren Haiqing, Zhao Rongjun. Bearing Performance of Truss Plate Joint with Domestic Larch Dimension Lumber [J]. Scientia Silvae Sinicae, 2017, 53(11): 157-163. |
[9] | Zhang Junpei, Wang Zi, Zhou Xianwu, Zhao Rongjun, Xu Huige, Jia Zhiming, Pei Dong. Wood Physical and Mechanical Properties of American Black Walnut of Different Strains [J]. Scientia Silvae Sinicae, 2016, 52(6): 108-114. |
[10] | Wang Haigang, Zhang Jingfa, Wang Weihong, Wang Qingwen. Research of Fiber Reinforced Wood-Plastic Composites: a Review [J]. Scientia Silvae Sinicae, 2016, 52(6): 130-139. |
[11] | Ma Yan, Xu Honggang, Yang Chunmei, Xu Shixiang. Description of Small-Diameter Wood Sliced Veneer after Star-Sawing in Longitudinal Direction and Recombining by Mathematical Method [J]. Scientia Silvae Sinicae, 2016, 52(12): 106-111. |
[12] | Ren Hong, Shen Wenwen, Bai Jieyun, Guan Jun. Mathematical Models and Analysis of Particle Size of Coniferous Wood Flour Based on the Least Squares Method [J]. Scientia Silvae Sinicae, 2015, 51(4): 164-170. |
[13] | Ma Yan, Zhang Yaxin, Yuan Xu, Zhan Li, Yang Chunmei. JN-Type Micron-Sized Wood Fiber Shock Absorber [J]. Scientia Silvae Sinicae, 2015, 51(1): 112-118. |
[14] | Gai Xiaogang, Chen Lihua, Jiang Kunyun, Ji Wenxian. Shear Characteristic Research on Root-Soil Composite in Four Kinds of Roots of Trees and Different Root Buried Ways [J]. Scientia Silvae Sinicae, 2014, 50(9): 105-111. |
[15] | Liu Fangyan, Guo Minghui, Zhang Fan, Liu Yi, Zhang Yongming. Influence of Sugar Content of Ammonium Lignosulfonate on the Properties of Binderless Medium Density Fibreboard [J]. Scientia Silvae Sinicae, 2014, 50(6): 175-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||