|
曹 林, 周 凯, 申 鑫, 等. 智慧林业发展现状与展望. 南京林业大学学报(自然科学版), 2022, 46 (6): 83- 95.
|
|
Cao L, Zhou K, Shen X, et al. The status and prospects of smart forestry. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46 (6): 83- 95.
|
|
陈 洁, 李艳朋, 许 涵, 等. 海南热带雨林国家公园生态监测与管理评估指标体系初探. 陆地生态系统与保护学报, 2022, 2 (6): 106- 111.
|
|
Chen J, Li Y P, Xu H, et al. Exploration of the ecological monitoring and management evaluation indicator system for Hainan tropical rainforest national park. Terrestrial Ecosystem and Conservation, 2022, 2 (6): 106- 111.
|
|
陈振升, 罗陶然, 段佳丽, 等. 智慧林业科技前沿与创新发展研究. 西南林业大学学报(自然科学), 2025, 45 (6): 1- 11.
|
|
Chen Z S, Luo T R, Duan J L, et al. Research on the technological frontiers and innovative development of smart forestry. Journal of Southwest Forestry University (Natural Sciences), 2025, 45 (6): 1- 11.
|
|
戈晓宇, 翟哲然, 黄子玲, 等. 智能算法在生态学研究多元场景中的应用进展. 生态学报, 2025, 45 (2): 1013- 1047.
|
|
Ge X Y, Zhai Z R, Huang Z L, et al. Progress in the application of intelligent algorithms in multiple ecological scenarios. Acta Ecologica Sinica, 2025, 45 (2): 1013- 1047.
|
|
胡天宇, 赵 旦, 曾 源, 等. 面向生态系统评估的多源数据融合体系. 生态学报, 2023, 43 (2): 542- 553.
|
|
Hu T Y, Zhao D, Zeng Y, et al. Advances in multi-source data fusion for ecosystem assessment. Acta Ecologica Sinica, 2023, 43 (2): 542- 553.
|
|
李德仁, 王 密, 肖 晶, 等. 论无所不在的时空智能. 遥感学报, 2025, 29 (6): 1388- 1398.
|
|
Li D R, Wang M, X J, et al. On ubiquitous spatio-temporal intelligence. National Remote Sensing Bulletin, 2025, 29 (6): 1388- 1398.
|
|
李 辉, 张群艳, 蒲冠桦, 等. 2024. 马边大风顶保护区森林砍伐后大熊猫栖息地恢复过程. 林业科学, 60(12): 191–200.
|
|
Li H, Zhang X Y, Pu G H, et al. 2024. Recovery process of Giant Panda habitat after deforestation in the Mabian Dafengding Nature Reserve. Scientia Silvae Sinicae, 60(12): 191–200. [in Chinese]
|
|
刘 畅, 任小丽, 张 黎, 等. 三江源国家公园NPP长时序时空变化多模型集成分析. 地理学报, 2024, 79 (9): 2356- 2371.
|
|
Liu C, Ren X L, Zhang L, et al. Spatio-temporal variation of net primary productivity in Three-River-Source National Park using a multi-model integration method. Acta Geographica Sinica, 2024, 79 (9): 2356- 2371.
|
|
刘世侠, 李卫军, 刘雪洋, 等. 基于强化学习的知识图谱推理研究综述. 计算机应用研究, 2024, 41 (9): 2561- 2572.
|
|
Liu S X, Li W J, Liu X Y, et al. Review of reinforcement learning based knowledge graph reasoning research. Application Research of Computers, 2024, 41 (9): 2561- 2572.
|
|
刘志伟, 胡 锐, 徐志鸿, 等. 智慧国家公园体系构建路径. 林草政策研究, 2023, 3 (4): 7- 14.
|
|
Liu Z W, Hu R, Xu Z H, et al. Path to building a smart national park system. Forestry and Grassland Policy Research, 2023, 3 (4): 7- 14.
|
|
龙文兴, 杜彦君, 洪小江, 等. 海南热带雨林国家公园试点经验. 生物多样性, 2021, 29 (3): 328- 330.
doi: 10.17520/biods.2021071
|
|
Long W X, Du Y J, Hong X J, et al. Experience of Hainan Tropical Rainforest National Park Pilot Project. Biodiversity Science, 2021, 29 (3): 328- 330.
doi: 10.17520/biods.2021071
|
|
罗贤宇. 习近平生态文明思想中关于国家公园建设的理论与实践. 东南学术, 2025, (1): 47- 57.
doi: 10.3969/j.issn.1008-1569.2025.1.dnxs202501006
|
|
Luo X Y. Theory and practice of national park construction in Xi Jinping’s ecological civilization thought. Southeast Academic, 2025, (1): 47- 57.
doi: 10.3969/j.issn.1008-1569.2025.1.dnxs202501006
|
|
吕雪蕾, 浦恩辉, 符 盟, 等. 国家公园智慧体系构建需求研究. 林业建设, 2023, 41 (6): 1- 8.
|
|
Lü X L, Pu E Hi, Fu M, et al. Research on the needs of building a smart system for national parks. Forestry Construction, 2023, 41 (6): 1- 8.
|
|
马童慧, 吕 偲, 雷光春. 中国自然保护地空间重叠分析与保护地体系优化整合对策. 生物多样性, 2019, 27 (7): 758- 771.
doi: 10.17520/biods.2019087
|
|
Ma T H, Lü S, Lei G C. The spatial overlapping analysis for China's natural protected area and countermeasures for the optimization and integration of protected area system. Biodiversity Science, 2019, 27 (7): 758- 771.
doi: 10.17520/biods.2019087
|
|
欧阳志云, 徐卫华, 杜 傲, 等. 2018. 中国国家公园总体空间布局研究. 北京: 中国环境出版集团.
|
|
Ouyang Z Y, Xu W H, Du A, et al. 2018. Research on overall spatial planning for China’s national park system. Beijing: China Environment Publishing Group. [in Chinese]
|
|
任承芳, 和正华, 赵冬莲, 等. 遥感与GIS在我国国家公园建设与保护研究中的应用及展望. 世界林业研究, 2024, 37 (4): 72- 77.
|
|
Ren C F, He Z H, Zhao D L, et al. Application and prospects of remote sensing and GIS in the construction and protection of national parks in my country. World Forestry Research, 2024, 37 (4): 72- 77.
|
|
谭晶维, 张怀清, 刘 洋, 等. 问答式林业预训练语言模型ForestBERT. 林业科学, 2024, 60 (9): 99- 110.
|
|
Tan J W, Zhang H Q, Liu Y, et al. Question-answering forestry pretrained language model: ForestBERT. Scientia Silvae Sinicae, 2024, 60 (9): 99- 110.
|
|
王洪昌, 夏 舫, 张渊媛, 等. 基于深度学习算法的鸟类及其栖息地识别: 以北京翠湖国家城市湿地公园为例. 生态学杂志, 2024, 43 (7): 2231- 2238.
|
|
Wang H C, Xia F, Zhang Y Y, et al. Bird and habitat recognition based on deep learning algorithm: a case study of Beijing Cuihu National Urban Wetland Park. Chinese Journal of Ecology, 2024, 43 (7): 2231- 2238.
|
|
王钊齐, 赵 亮, 李 奇, 等. 三江源国家公园大型动物多样性监测技术及应用. 国家公园(中英文), 2025, 3 (1): 1- 13.
|
|
Wang Z Q, Zhao L, Li Q, et al. Large animal diversity monitoring technology and application in Sanjiangyuan National Park. National Park, 2025, 3 (1): 1- 13.
|
|
吴 锋, 余 瑞, 张 倩, 等. 国家公园监管系统框架设计与建设展望. 国家公园(中英文), 2023, 1 (3): 190- 200.
|
|
Wu F, Yu R, Zhang Q, et al. Design framework and construction prospect of national park supervision system. National Park, 2023, 1 (3): 190- 200.
|
|
叶 菁, 宋天宇, 陈君帜. 大熊猫国家公园监测指标体系构建研究. 林业资源管理, 2020, (2): 53- 60,66.
|
|
Ye J, Song T Y, Chen J Z. Research on the developing an indicator system for monitoring in Giant Panda National Park. Forest Resources Management, 2020, (2): 53- 60,66.
|
|
张江蕾, 陈少辉. 基于机器学习与再分析数据集的黄河水源涵养区蒸散发研究. 生态学报, 2024, 44 (18): 8314- 8325.
|
|
Zhang J L, Chen S H. Evapotranspiration in the water source conservation area of the Yellow River Basin based on machine learning and reanalysis dataset. Acta Ecologica Sinica, 2024, 44 (18): 8314- 8325.
|
|
赵新全, 徐世晓, 赵 亮, 等. 三江源国家公园生物多样性保护创新及实践. 中国科学院院刊, 2023, 38 (12): 1833- 1844.
|
|
Zhao X Q, Xu S X, Zhao L, et al. Innovation and practice of biodiversity conservation in Sanjiangyuan National Park. Bulletin of the Chinese Academy of Sciences, 2023, 38 (12): 1833- 1844.
|
|
朱教君, 王高峰, 张怀清, 等. 关于“气候智慧林业”研究的思考. 林业科学, 2024, 60 (7): 1- 7.
|
|
Zhu J J, Wang G F, Zhang H Q, et al. Thoughts on the research of “climate-smart forestry”. Journal of Forestry Science, 2024, 60 (7): 1- 7.
|
|
Feng Z X, Sun X T, Xue L, et al. National park classification and spatial identification: a case of Yunnan Province, China. Chinese Journal of Applied Ecology, 2023, 34 (1): 187- 195.
|
|
Han B A, Varshney K R, LaDeau S, et al. 2023. A synergistic future for AI and ecology. Proceedings of the National Academy of Sciences, 120(38): e2220283120.
|
|
Jiang Z, Wei Z. Grassland resource evaluation based on improved bp network model and analytic hierarchy process. Journal of Intelligent & Fuzzy Systems, 2021, 40 (4): 7109- 7120.
|
|
Khosravi K, Rezaie F, Cooper J R, et al. Soil water erosion susceptibility assessment using deep learning algorithms. Journal of Hydrology, 2023, 618, 129229.
doi: 10.1016/j.jhydrol.2023.129229
|
|
Lei K, Zhang H, Qiu H, et al. A two-dimensional four-quadrant assessment method to explore the spatiotemporal coupling and coordination relationship of human activities and ecological environment. Journal of Environmental Management, 2024, 370, 122362.
doi: 10.1016/j.jenvman.2024.122362
|
|
Ma Z, Dong Y, Xia Y, et al. Wildlife real-time detection in complex forest scenes based on YOLOv5s deep learning network. Remote Sensing, 2024, 16 (8): 1350.
doi: 10.3390/rs16081350
|
|
Pettorelli N, Williams J, Schulte to Bühne H, et al. Deep learning and satellite remote sensing for biodiversity monitoring and conservation. Remote Sensing in Ecology and Conservation, 2025, 11 (2): 123- 132.
doi: 10.1002/rse2.415
|
|
Qiu H, Zhang H, Lei K, et al. Forest digital twin: a new tool for forest management practices based on spatio-temporal data, 3D simulation engine, and intelligent interactive environment. Computers and Electronics in Agriculture, 2023, 215, 108416.
doi: 10.1016/j.compag.2023.108416
|
|
Seidl R, Thom D, Kautz M, et al. Forest disturbances under climate change. Nature Climate Change, 2017, 7 (6): 395- 402.
doi: 10.1038/nclimate3303
|
|
Tan J, Zhang H, Yang J, Liu Y, et al. ForestryBERT: a pre-trained language model with continual learning adapted to changing forestry text. Knowledge-Based Systems, 2025, 320, 113706.
doi: 10.1016/j.knosys.2025.113706
|
|
Wang Z, Gong H, Huang M, et al. A multimodel random forest ensemble method for an improved assessment of Chinese terrestrial vegetation carbon density. Methods in Ecology and Evolution, 2023, 14 (1): 117- 132.
doi: 10.1111/2041-210X.13729
|
|
Xi L, Shu Q, Sun Y, et al. Carbon storage estimation of mountain forests based on deep learning and multisource remote sensing data. Journal of Applied Remote Sensing, 2023, 17 (1): 014510.
|
|
Xie X, Peng M, Zhang L, et al. Assessing the impacts of climate and land use change on water conservation in the Three-River Headstreams Region of China based on the integration of the InVEST Model and Machine Learning. Land, 2024, 13 (3): 352.
doi: 10.3390/land13030352
|
|
Xin L, Ning Z, Rui J, et al. Internet of things to network smart devices for ecosystem monitoring. Science Bulletin, 2019, 64 (17): 1234- 1245.
doi: 10.1016/j.scib.2019.07.004
|
|
Xu Y, Tang J. Examining the rationality of Giant Panda National Park’s zoning designations and management measures for habitat conservation: Insights from interpretable machine learning methods. Science of the Total Environment, 2024, 920, 170955.
doi: 10.1016/j.scitotenv.2024.170955
|
|
Zeng N, Ren X, He H, et al. Estimating the grassland aboveground biomass in the Three-River Headwater Region of China using machine learning and Bayesian model averaging. Environmental Research Letters, 2021, 16 (11): 114020.
doi: 10.1088/1748-9326/ac2e85
|