|
葛晓宁, 许新桥, 张怀清, 等. 2025. 林木基因型-环境互作算法研究进展与思考. 林业科学, 61(3): 1−15.
|
|
Ge X N, Xu X Q, Zhang H Q, et al. 2025. Progress and reflection on genotype-environment interaction algorithms in forest tree breeding. Scientia Silvae Sinicae, 61(3): 1−15. [in Chinese]
|
|
何 江, 梁 正, 韩希佳. 2024. AI产业化与产业AI化:AI大模型产业生态的行动实践、变革趋势与前沿议题. 西安财经大学学报, 37(6): 49−63.
|
|
He J, Liang Z, Han J X. 2024. AI industrialization and industrial AI-ization: action practices, transformation trends,and frontiertopics for the AI large model industrial ecosystem. Journal of Xi’an University of Finance and Economics, 37(6): 49−63. [in Chinese]
|
|
黄再胜. AI大模型赋能新质生产力加快发展: 内在机理、现实障碍与实践进路. 改革与战略, 2024, 40 (2): 1- 12.
|
|
Huang Z S. Empowering the accelerated development of new-quality productivity by AI large models: internal mechanisms, realistic obstacles, and practical approaches. Reformation & Strategy, 2024, 40 (2): 1- 12.
|
|
刘海军, 温赞玲. 2025. 深度求索DeepSeek:人工智能、技术创新与新质生产力. 当代经济管理, 47(6): 1−11.
|
|
Liu H J, Wen Z L. 2025. DeepSeek: artificial intelligence, technological innovation and new quality productive forces. Contemporary Economic Management, 47(6): 1−11. [in Chinese]
|
|
舒全英, 马 媛, 陈 亮, 等. 数字孪生水利建设中的人工智能大模型应用探索. 中国水利, 2025, (6): 14- 30.
doi: 10.3969/j.issn.1000-1123.2025.06.002
|
|
Shu Q Y, Ma Y, Chen L, et al. Exploration of artificial intelligence large model applications in digital twin water conservancy construction. China Water Resources, 2025, (6): 14- 30.
doi: 10.3969/j.issn.1000-1123.2025.06.002
|
|
谭晶维, 张怀清, 刘 洋, 等. 问答式林业预训练语言模型ForestBERT. 林业科学, 2024, 60 (9): 99- 110.
doi: 10.11707/j.1001-7488.LYKX20240435
|
|
Tan J W, Zhang H Q, Liu Y, et al. Question-answering forestry pre-trained language model: ForestBERT. Scientia Silvae Sinicae, 2024, 60 (9): 99- 110.
doi: 10.11707/j.1001-7488.LYKX20240435
|
|
燕 琴, 顾海燕, 杨 懿, 等. 2024. 智能遥感大模型研究进展与发展方向. 测绘学报, 53(10): 1967−1980.
|
|
Yan Q, Gu H Y, Yang Y, et al. 2024. Research progress and trend of intelligent remote sensing large model. Acta Geodaetica et Cartographica Sinica, 53(10): 1967−1980. [in Chinese]
|
|
朱教君, 王高峰, 张怀清, 等. 关于“气候智慧林业”研究的思考. 林业科学, 2024, 60 (7): 1- 7.
doi: 10.11707/j.1001-7488.LYKX20240433
|
|
Zhu J J, Wang G F, Zhang H Q, et al. On the research of climate-smart forestry. Scientia Silvae Sinicae, 2024, 60 (7): 1- 7.
doi: 10.11707/j.1001-7488.LYKX20240433
|
|
Awais M, Naseer M, Khan S, et al. 2025. Foundation models defining a new era in vision: A survey and outlook. IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(4): 2245−2264.
|
|
Benegas G, Ye C, Albors C, et al. 2025. Genomic language models: Opportunities and challenges. Trends in Genetics, 41(4): 286−302.
|
|
Bi K, Xie L, Zhang H, et al. Accurate medium-range global weather forecasting with 3d neural networks. Nature, 2023, 619 (7970): 533- 538.
doi: 10.1038/s41586-023-06185-3
|
|
Bodnar C, Bruinsma W P, Lucic A, et al. 2025. A foundation model for the earth system. Nature, 641(8065): 1180−1187.
|
|
Borowiec M L, Dikow R B, Frandsen P B, et al. Deep learning as a tool for ecology and evolution. Methods in Ecology and Evolution, 2022, 13 (8): 1640- 1660.
doi: 10.1111/2041-210X.13901
|
|
Brixi G, Durrant M G, Ku J, et al. 2025. Genome modeling and design across all domains of life with Evo 2. bioRxiv, 2025.2002. 2018.638918.
|
|
Chen L, Zhong X, Li H, et al. A machine learning model that outperforms conventional global subseasonal forecast models. Nature Communications, 2024, 15 (1): 6425.
doi: 10.1038/s41467-024-50714-1
|
|
Cheng G, Chen X, Wang C, et al. Visual fire detection using deep learning: A survey. Neurocomputing, 2024b, 596, 127975.
doi: 10.1016/j.neucom.2024.127975
|
|
Cheng Y H, Zhang C Y, Zhang Z W, et al. 2024a. Exploring large language model based intelligent agents: definitions, methods, and prospects. arXiv Preprint arXiv: 2401.03428.
|
|
Curtis P S, Gough C M. Forest aging, disturbance and the carbon cycle. New Phytologist, 2018, 219 (4): 1188- 1193.
doi: 10.1111/nph.15227
|
|
Du S Q, Tang S J, Wang W X, et al. 2023. Tree-GPT: modular large language model expert system for forest remote sensing image understanding and interactive analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-1/W2-2023: 1729−1736.
|
|
Gan L, Chu W, Li G, et al. Large models for intelligent transportation systems and autonomous vehicles: a survey. Advanced Engineering Informatics, 2024, 62, 102786.
doi: 10.1016/j.aei.2024.102786
|
|
Goodge A, Ng W S, Hooi B, et al. 2025. Spatio-temporal foundation models: Vision, challenges, and opportunities. arXiv Preprint arXiv: 2501.09045.
|
|
Gu J, Stevens S, Campolongo E G, et al. 2025. BioCLIP 2: Emergent properties from scaling hierarchical contrastive learning. arXiv Preprint arXiv:2505.23883.
|
|
Guo X, Lao J, Dang B, et al. 2023. SkySense: A multi-modal remote sensing foundation model towards universal interpretation for earth observation imagery. arXiv Preprint arXiv: 2312.10115.
|
|
Harris N L, Gibbs D A, Baccini A, et al. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11 (3): 234- 240.
doi: 10.1038/s41558-020-00976-6
|
|
Hong D, Zhang B, Li X, et al. 2023. SpectralGPT: Spectral remote sensing foundation model. arXiv Preprint arXiv:2311.07113.
|
|
Jiang S X, Liang J F, Wang J Y, et al. 2024. From specific-MLLMs to omni-MLLMs: a survey on MLLMs aligned with multi-modalities. arXiv Preprint arXiv: 2412.11694.
|
|
Latif S, Shoukat M, Shamshad F, et al. 2023. Sparks of large audio models: A survey and outlook. arXiv Preprint arXiv: 2308.12792.
|
|
Lei K X, Zhang H Q, Qiu H Q, et al. A two-dimensional four-quadrant assessment method to explore the spatiotemporal coupling and coordination relationship of human activities and ecological environment. Journal of Environmental Management, 2024, 370, 122362.
doi: 10.1016/j.jenvman.2024.122362
|
|
Li Z, Xia L, Tang J, et al. 2024. UrbanGPT: Spatio-temporal large language models. Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Barcelona, Spain, 5351–5362.
|
|
Lian G, Zhang H, Lei K, et al. 2025. A novel collaborative planning framework for artificial forest harvesting and replanting. Biosystems Engineering, 256: 104156.
|
|
Marcus G. 2018. Deep learning: A critical appraisal. arXiv Preprint arXiv: 1801.00631.
|
|
Mendoza-Revilla J, Trop E, Gonzalez L, et al. A foundational large language model for edible plant genomes. Communications Biology, 2024, 7 (1): 835.
doi: 10.1038/s42003-024-06465-2
|
|
Qiu H, Zhang H, Kexin L, et al. 2023. Forest digital twin: A new tool for forest management practices based on spatio-temporal data, 3d simulation engine, andintelligent interactive environment. Computers and Electronics in Agriculture, 215: 108416.
|
|
Qiu H Q, Zhang H Q, Lei K X, et al. A novel method for forest spatial structure heterogeneity evaluation of plantation utilizing point-wise vector network and neighborhood index. Computers and Electronics in Agriculture, 2025, 229, 109774.
doi: 10.1016/j.compag.2024.109774
|
|
Seidl R, Thom D, Kautz M, et al. Forest disturbances under climate change. Nature Climate Change, 2017, 7 (6): 395- 402.
doi: 10.1038/nclimate3303
|
|
Shanahan M. Talking about large language models. Communications of the ACM, 2024, 67 (2): 68- 79.
doi: 10.1145/3624724
|
|
Shao M, Basit A, Karri R, et al. Survey of different large language model architectures: trends, benchmarks, and challenges. IEEE Access, 2024, 12, 188664- 188706.
doi: 10.1109/ACCESS.2024.3482107
|
|
Simon E, Swanson K, Zou J. Language models for biological research: A primer. Nature Methods, 2024, 21 (8): 1422- 1429.
doi: 10.1038/s41592-024-02354-y
|
|
Sun X, Wang P, Lu W, et al. RingMo: A remote sensing foundation model with masked image modeling. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1- 22.
|
|
Tan J, Zhang H, Yang J, et al. ForestryBERT: A pre-trained language model with continual learning adapted to changing forestry text. Knowledge-Based Systems, 2025, 320, 113706.
doi: 10.1016/j.knosys.2025.113706
|
|
Tang Y, Bi J, Xu S, et al. 2023. Video understanding with large language models: A survey. arXiv Preprint arXiv: 2312.17432.
|
|
Thirunavukarasu A J, Ting D S J, Elangovan K, et al. Large language models in medicine. Nature Medicine, 2023, 29 (8): 1930- 1940.
doi: 10.1038/s41591-023-02448-8
|
|
Wang J L, Zhang D. Intelligent pest forecasting with meteorological data: an explainable deep learning approach. Expert Systems with Applications, 2024, 252, 124137.
doi: 10.1016/j.eswa.2024.124137
|
|
Wu Z, Zhang C, Gu X, et al. Deep learning enables satellite-based monitoring of large populations of terrestrial mammals across heterogeneous landscape. Nature Communications, 2023, 14 (1): 3072.
doi: 10.1038/s41467-023-38901-y
|
|
Xing Z, Feng Q, Chen H, et al. 2024. A survey on video diffusion models. ACM Computing Surveys, 57(2): 1−42.
|
|
Yang J, Jin H, Tang R, et al. 2024. Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. ACM Transactions on Knowledge Discovery from Data, 18(6): 1−32.
|
|
Yuan Y, Ding J, Feng J, et al. 2024. UniST: A prompt-empowered universal model for urban spatio-temporal prediction. arXiv Preprint arXiv: 2402.11838.
|
|
Yun T, Li J, Ma L F, et al. Status, advancements and prospects of deep learning methods applied in forest studies. International Journal of Applied Earth Observation and Geoinformation, 2024, 131, 103938.
doi: 10.1016/j.jag.2024.103938
|
|
Zhang K, Zhou R, Adhikarla E, et al. A generalist vision–language foundation model for diverse biomedical tasks. Nature Medicine, 2024a, 30 (11): 3129- 3141.
doi: 10.1038/s41591-024-03185-2
|
|
Zhang W, Cai M, Zhang T, et al. 2024b. EarthMarker: A visual prompting multi-modal large language model for remote sensing. IEEE Transactions on Geoscience and Remote Sensing. DOI: 10.1109/TGRS.2024.3523505.
|
|
Zhu H, Qin S, Su M, et al. 2024. Harnessing large vision and language models in agriculture: A review. arXiv preprint arXiv: 240719679.
|