林业科学 ›› 2025, Vol. 61 ›› Issue (6): 1-12.doi: 10.11707/j.1001-7488.LYKX20240790
崔泽宇1,2(),张怀清1,2,*(
),刘洋1,2,张京1,2,杨廷栋1,2,傅汝饶1,2,3
收稿日期:
2024-12-24
出版日期:
2025-06-10
发布日期:
2025-06-26
通讯作者:
张怀清
E-mail:cuizeyu@ifrit.ac.cn;zhang@ifrit.ac.cn
基金资助:
Zeyu Cui1,2(),Huaiqing Zhang1,2,*(
),Yang Liu1,2,Jing Zhang1,2,Tingdong Yang1,2,Rurao Fu1,2,3
Received:
2024-12-24
Online:
2025-06-10
Published:
2025-06-26
Contact:
Huaiqing Zhang
E-mail:cuizeyu@ifrit.ac.cn;zhang@ifrit.ac.cn
摘要:
树木三维建模与可视化模拟技术是研究森林结构与生长动态规律的重要手段,也是开展森林精准经营管理的关键技术和基础。本文从基于一维文本规则、二维图像、三维激光雷达点云以及多源数据融合等不同维度,系统分析了不同类型树木三维建模技术,并梳理了树木形态结构、生长、多态性可视化模拟等方面的进展。结合树木三维建模技术的发展趋势,重点讨论了生成式人工智能GAI、多源数据融合、大模型等技术在树木三维建模中的融合应用前景,论述了树木三维建模个性化、多样性、大规模、智能化发展方向,并梳理了在GAI发展背景下树木三维建模的研究思路,提出以多源数据融合为基础、GAI为驱动的智能化三维建模框架。分析了数字孪生、元宇宙等技术体系对树木三维模型的应用推广,剖析了其在树木育种培育、古树名木保护、景观设计、森林经营、生态监测灾害预警以及生态保护与修复等树木全生命周期应用场景中的特征与需求。通过树木三维模型模拟,能够有效突破时空限制,辅助智能决策,为森林精准、高效经营管理以及生态系统服务修复等提供关键技术支撑,并为树木培育、监测、保护等提供全新的研究思路与智能化的手段,助力林业全业务场景的跨模态数据协同处理与机制探索。
中图分类号:
崔泽宇,张怀清,刘洋,张京,杨廷栋,傅汝饶. 树木三维建模与可视化模拟技术进展与应用[J]. 林业科学, 2025, 61(6): 1-12.
Zeyu Cui,Huaiqing Zhang,Yang Liu,Jing Zhang,Tingdong Yang,Rurao Fu. Progress and Applications of 3D Modeling and Visualization Simulation Technology for Trees[J]. Scientia Silvae Sinicae, 2025, 61(6): 1-12.
白 静, 张怀清, 刘 闽. 合轴分枝树木形态结构三维可视化模拟方法. 林业科学, 2014, 50 (12): 73- 78. | |
Bai J, Zhang H Q, Liu M. Three-dimensional visual simulation of sympodial branching trees morphological architecture. Scientia Silvae Sinicae, 2014, 50 (12): 73- 78. | |
邓 强, 张怀清, 李永亮, 等. 基于三维虚拟环境的林分结构调整可视化模拟技术. 林业科学研究, 2016, 29 (6): 890- 895. | |
Deng Q, Zhang H Q, Li Y L, et al. Visualization simulation technique of stand structure adjustment based on 3D virtual environment. Forest Research, 2016, 29 (6): 890- 895. | |
范 菁, 赵 全. 基于L系统的虚拟植物仿真研究. 计算机应用与软件, 2008, 25 (1): 25- 27.
doi: 10.3969/j.issn.1000-386X.2008.01.010 |
|
Fan J, Zhao Q. The research on virtual plant simulation based on l-system. Computer Applications and Software, 2008, 25 (1): 25- 27.
doi: 10.3969/j.issn.1000-386X.2008.01.010 |
|
高士增, 张怀清, 刘 闽, 等. 基于点云的树木枝干形态参数提取技术. 东北林业大学学报, 2014, 42 (4): 109- 114. | |
Gao S Z, Zhang H Q, Liu M, et al. Morphological parameters extraction of tree branches based on point cloud. JOurnal of Northeast Forestry University, 2014, 42 (4): 109- 114. | |
雷 蕾, 郭新宇, 周淑秋. 基于粒子系统思想的叶片纹理构造. 计算机工程与应用, 2004, 40 (36): 218- 219.
doi: 10.3321/j.issn:1002-8331.2004.36.067 |
|
Lei L, Guo X Y, Zhou S Q. Construction of leaf veins based particle system. Computer Engineering and Applications, 2004, 40 (36): 218- 219.
doi: 10.3321/j.issn:1002-8331.2004.36.067 |
|
李永亮, 鞠洪波, 张怀清, 等. 参数化林木个体及林分场景可视化模拟技术. 林业科学研究, 2013, 26 (6): 704- 709. | |
Li Y L, Ju H B, Zhang H Q, et al. Visual simulation of the parameterized tree and the stand scene. Forest Research, 2013, 26 (6): 704- 709. | |
林郁欣, 唐丽玉, 陈崇成, 等. 基于组合型L-系统的单树建模工具的设计与实现. 农业工程学报, 2011, 27 (3): 185- 190.
doi: 10.3969/j.issn.1002-6819.2011.03.035 |
|
Lin Y X, Tang L Y, Chen C C, et al. Design and Implementation of tree individual modeling tool based on compounded L-system. Transactions of the CSAE, 2011, 27 (3): 185- 190.
doi: 10.3969/j.issn.1002-6819.2011.03.035 |
|
刘金鹏, 张怀清, 刘 闽, 等. 基于地面激光扫描数据的单木分枝结构参数自动提取. 林业科学, 2016, 52 (3): 121- 128. | |
Liu J P, Zhang H Q, Liu M, et al. Automatic extraction of individual tree branch structure parameters from terrestrial laser scanning data. Scientia Silvae Sinicae, 2016, 52 (3): 121- 128. | |
卢康宁, 张怀清, 刘 闽, 等. 杉木单木生长可视化模拟系统设计与实现. 林业科学研究, 2012, 25 (2): 207- 211.
doi: 10.3969/j.issn.1001-1498.2012.02.016 |
|
Lu K N, Zhang H Q, Liu M, et al. Design and implementation of individual tree growth visualization system of Cunninghamia lanceolata. Forest Research, 2012, 25 (2): 207- 211.
doi: 10.3969/j.issn.1001-1498.2012.02.016 |
|
马 玲, 李书杰, 刘晓平. 基于简单手绘的树木快速建模. 系统仿真学报, 2017, 29 (8): 1667- 1676. | |
Ma L, Li S J, Liu X P. Fast tree modeling method based on simple freehand sketch. Journal of System Simulation, 2017, 29 (8): 1667- 1676. | |
马载阳, 张怀清, 李永亮, 等. 基于空间结构的杉木树冠生长可视化模拟. 林业科学研究, 2018, 31 (4): 150- 157. | |
Ma Z Y, Zhang H Q, Li Y L, et al. Visual simulation of Chinese fir crown growth based on spatial structure. Forest Research, 2018, 31 (4): 150- 157. | |
沈 康, 杨廷栋, 张怀清, 等. 基于模拟退火算法的林分多目标经营动态可视化模拟. 林业科学研究, 2020, 33 (3): 99- 106. | |
Shen K, Yang T D, Zhang H Q, et al. Dynamic visual simulation of stand multi-objective management based on simulated annealing algorithm. Forest Research, 2020, 33 (3): 99- 106. | |
舒娱琴. 虚拟森林经营管理系统的设计与实现. 林业科学, 2007, 43 (10): 138- 144.
doi: 10.3321/j.issn:1001-7488.2007.10.026 |
|
Shu Y Q. Design and implementation of virtual forest management system. Scientia Silvae Sinicae, 2007, 43 (10): 138- 144.
doi: 10.3321/j.issn:1001-7488.2007.10.026 |
|
宋万寿, 赖建伟. 基于粒子系统方法的焰火及树木模拟. 计算机辅助设计与图形学学报, 1996, 8 (4): 254- 258.
doi: 10.3321/j.issn:1003-9775.1996.04.003 |
|
Song W S, Lai J W. Fireworks and trees modeling based on the approach of particle system. Journal of Computer-Aided Design & Computer Graphics, 1996, 8 (4): 254- 258.
doi: 10.3321/j.issn:1003-9775.1996.04.003 |
|
吴 谦, 张怀清, 陈永富, 等. 杉木形态三维可视化模拟技术研究. 林业科学研究, 2010, 23 (1): 59- 64. | |
Wu Q, Zhang H Q, Chen Y F. Study on Visual Simulation Technology of Cunninghamia lanceolata Morphological Characters. Forest Research, 2010, 23 (1): 59- 64. | |
杨海泉, 王仪丰, 王志强, 等. 基于空间资源竞争的三维树木建模方法. 计算机科学, 2019, 46 (S2): 38- 41, 46. | |
Yang H Q, Wang Y F, Wang Z Q, et al. 3D tree modeling approach based on competition over space resources. Computer Science, 2019, 46 (S2): 38- 41, 46. | |
赵 凯, 唐丽华, 张姝婧. 基于OpenGL的交互式三维树木建模与可视化研究. 浙江农林大学学报, 2019, 36 (1): 138- 147.
doi: 10.11833/j.issn.2095-0756.2019.01.017 |
|
Zhao K, Tang L H, Zhang S J. Research on interactively 3D tree modeling and visualization based on OpenGL. Journal of Zhejiang A& F University, 2019, 36 (1): 138- 147.
doi: 10.11833/j.issn.2095-0756.2019.01.017 |
|
朱 磊, 张怀清, 林 辉, 等. 基于GDI+技术的林分结构可视化技术研究. 安徽农业科学, 2011, 39 (9): 5566- 5569.
doi: 10.3969/j.issn.0517-6611.2011.09.193 |
|
Zhu L, Zhang H Q, Lin H, et al. Study on stand strucutre visualization based on GDI+. Journal of Anhui Agricultural Sciences, 2011, 39 (9): 5566- 5569.
doi: 10.3969/j.issn.0517-6611.2011.09.193 |
|
朱念福, 张怀清, 崔泽宇, 等. 基于肢体动作交互的森林经营作业模拟研究. 林业科学研究, 2021, 34 (5): 95- 103. | |
Zhu N F, Zhang H Q, Cui Z Y, et al. Simulation of Operation for Forest Management Based on Body Action Interaction. Forest Research, 2021, 34 (5): 95- 103. | |
Abe M, Yoshimura T, Koizumi S, et al. Virtual forest: design and evaluation of a walk-through system for forest education. Journal of Forest Research, 2005, 10 (3): 189- 197.
doi: 10.1007/s10310-004-0131-x |
|
Bernard J, McQuillan I. Stochastic L-system inference from multiple string sequence inputs. Soft Computing, 2023, 27 (10): 6783- 6798.
doi: 10.1007/s00500-022-07683-8 |
|
Chen C, Wang H D, Wang D C, et al. Towards the digital twin of urban forest: 3D modeling and parameterization of large-scale urban trees from close-range laser scanning. International Journal of Applied Earth Observation and Geoinformation, 2024, 127, 103695.
doi: 10.1016/j.jag.2024.103695 |
|
Chen X J, Neubert B, Xu Y Q, et al. Sketch-based tree modeling using Markov random field. ACM Transactions on Graphics, 2008, 27 (5): 1- 9. | |
Cui Z Y, Zhang H Q, Liu Y, et al. Constructing coupling model of generalized B-spline curve and crown (CMGBCC) to explore the 3D modeling of Chinese fir polymorphism. Forests, 2023, 14 (6): 1267.
doi: 10.3390/f14061267 |
|
Ding W L, Zhao Y L, Xin W T, et al. Parameter extraction method of virtual plant growth model based on Improved Particle Swarm Optimization. Computers and Electronics in Agriculture, 2021, 191, 106470.
doi: 10.1016/j.compag.2021.106470 |
|
Falcão A O, dos Santos M P, Borges J G. A real-time visualization tool for forest ecosystem management decision support. Computers and Electronics in Agriculture, 2006, 53 (1): 3- 12.
doi: 10.1016/j.compag.2006.03.003 |
|
Green D G, Klomp N I, Rimmington G, et al. 2020. Seeing the wood for the trees: emergent order in growth and behaviour. Complexity in Landscape Ecology. Cham: Springer International Publishing, 21−46. | |
Guo J W, Jiang H Y, Benes B, et al. Inverse procedural modeling of branching structures by inferring L-systems. ACM Transactions on Graphics, 2020, 39 (5): 1- 13. | |
Gao X D, Wang S D, Wang N H. 2010. Studies on individual tree growth three-dimensional simulation of Larix olgensis. 2010 International Conference on Computational and Information Sciences, Chengdu, China, IEEE, 717−720. | |
Hu K W, Ying W, Pan Y Q, et al. High-fidelity 3D reconstruction of plants using Neural Radiance Fields. Computers and Electronics in Agriculture, 2024, 220, 108848.
doi: 10.1016/j.compag.2024.108848 |
|
Hu X T, Zhang H Q, Yang G B, et al. Visual simulation research on growth polymorphism of Chinese fir stand based on different comprehensive grade models of spatial structure parameters. Forests, 2023, 14 (3): 617.
doi: 10.3390/f14030617 |
|
Juhari J, Alghar M Z. Modeling plant stems using the deterministic lindenmayer system. CAUCHY: Jurnal Matematika Murni Dan Aplikasi, 2021, 6 (4): 286- 295.
doi: 10.18860/ca.v6i4.11591 |
|
Kok E, Wang X, Chen C. Obscured tree branches segmentation and 3D reconstruction using deep learning and geometrical constraints. Computers and Electronics in Agriculture, 2023, 210, 107884.
doi: 10.1016/j.compag.2023.107884 |
|
Lee J J, Li B S, Benes B. Latent L-systems: transformer-based tree generator. ACM Transactions on Graphics, 2024, 43 (1): 1- 16. | |
Lei K X, Zhang H Q, Qiu H Q, et al. Comprehensive decision index of logging (CDIL) and visual simulation based on horizontal and vertical structure parameters. Forests, 2023, 14 (2): 277.
doi: 10.3390/f14020277 |
|
Li B S, Kałużny J, Klein J, et al. Learning to reconstruct botanical trees from single images. ACM Transactions on Graphics, 2021, 40 (6): 1- 15. | |
Li R N, Wang L, Zhai Y L, et al. Modeling LiDAR-derived 3D structural metric estimates of individual tree aboveground biomass in urban forests: a systematic review of empirical studies. Forests, 2025, 16 (3): 390.
doi: 10.3390/f16030390 |
|
Li W K, Hu X M, Su Y J, et al. A new method for voxel-based modelling of three-dimensional forest scenes with integration of terrestrial and airborne LiDAR data. Methods in Ecology and Evolution, 2024, 15 (3): 569- 582.
doi: 10.1111/2041-210X.14290 |
|
Liu J, Zhang X, Li H. 2010. Sketch-based tree modeling by distribution control on planes. Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry, 185−190. | |
Liu Z, Li Y, Tu F, et al. 2024. DeepTreeSketch: Neural Graph Prediction for Faithful 3D Tree Modeling from Sketches. Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems, 1−19. | |
Liu Z H, Wu K, Guo J W, et al. Single image tree reconstruction via adversarial network. Graphical Models, 2021, 117, 101115.
doi: 10.1016/j.gmod.2021.101115 |
|
Long J, Jones M D. Reconstructing 3D tree models using motion capture and particle flow. International Journal of Computer Games Technology, 2013, 2013, 363160. | |
Lu K N, Zhang H Q, Ju H B, et al. Visual simulation of trees' morphological structure based on crown shape. Journal of Information & Computational Science, 2013, 10 (6): 1623- 1632. | |
Ma W, Wang Y, Zha H, et al. 2009. Modeling of tree branches by bayesian network structure inference. Trees, 10(8): n. pag.. | |
Magnusson J S, Hilsmann A, Eisert P. 2023. Towards L-system captioning for tree reconstruction. 10.48550/arXiv.2305.06483. | |
Manfredi G, Capece N, Erra U, et al. TreeSketchNet: from sketch to 3D tree parameters generation. ACM Transactions on Intelligent Systems and Technology, 2023, 14 (3): 1- 29. | |
Mao C. 2022. Three-dimensional tree visualization of computer image data based on Louvain algorithm. Cyber Security Intelligence and Analytics. Cham: Springer International Publishing, 837−845. | |
Neubert B, Franken T, Deussen O. Approximate image-based tree-modeling using particle flows. ACM Transactions on Graphics, 2007, 26 (99): 88.
doi: 10.1145/1276377.1276487 |
|
Palubicki W, Horel K, Longay S, et al. 2009. Self-organizing tree models for image synthesis. ACM SIGGRA PH 2009, 1−10. | |
Parveaud C E, Chopard J, Dauzat J, et al. Modelling foliage characteristics in 3D tree crowns: influence on light interception and leaf irradiance. Trees, 2008, 22 (1): 87- 104.
doi: 10.1007/s00468-007-0172-9 |
|
Peng F, Zheng H N, Lu S H, et al. Growth model and visualization of a virtual jujube tree. Computers and Electronics in Agriculture, 2019, 157, 146- 153.
doi: 10.1016/j.compag.2018.12.045 |
|
Prăvălie R. Major perturbations in the Earth’s forest ecosystems. Possible implications for global warming. Earth-Science Reviews, 2018, 185, 544- 571.
doi: 10.1016/j.earscirev.2018.06.010 |
|
Qiu T, Wang T, Han T, et al. AppleQSM: geometry-based 3D characterization of apple tree architecture in orchards. Plant Phenomics, 2024, 6, 179.
doi: 10.34133/plantphenomics.0179 |
|
Tang L Y, Chen C C, Huang H Y, et al. 2012. A coupled architecture and physiology 3D growth model for young Longan tree. Shanghai: 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, 371−378. | |
Tang S J, Ao Z Y, Li Y Y, et al. TreeNet3D: a large scale tree benchmark for 3D tree modeling, carbon storage estimation and tree segmentation. International Journal of Applied Earth Observation and Geoinformation, 2024, 130, 103903.
doi: 10.1016/j.jag.2024.103903 |
|
Teng C H, Chen Y S. Image-based tree modeling from a few images with very narrow viewing range. The Visual Computer, 2009, 25 (4): 297- 307.
doi: 10.1007/s00371-008-0269-1 |
|
Terryn L, Calders K, Disney M, et al. Tree species classification using structural features derived from terrestrial laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 168, 170- 181.
doi: 10.1016/j.isprsjprs.2020.08.009 |
|
Wang L L, Zhang H Q, Zhang H C, et al. A novel 3D tree-modeling method of incorporating small-scale spatial structure parameters in a heterogeneous forest environment. Forests, 2023, 14 (3): 639.
doi: 10.3390/f14030639 |
|
Wróżyński R, Pyszny K, Wróżyńska M. Reaching beyond GIS for comprehensive 3D visibility analysis. Landscape and Urban Planning, 2024, 247, 105074.
doi: 10.1016/j.landurbplan.2024.105074 |
|
Yuan Q, Huai Y J. Immersive sketch-based tree modeling in virtual reality. Computers & Graphics, 2021, 94, 132- 143. | |
Zeng J G, Zhang Y, Zhan S Y. 2006. 3D tree models reconstruction from a single image. Jinan: Sixth International Conference on Intelligent Systems Design and Applications, 445−450. | |
Zhang H Q, Liu M. 2009. Tree growth simulation method based on improved IFS algorithm. 2009 International Conference on Computational Intelligence and Software Engineering, Wuhan, China, IEEE, 1−5. | |
Zuo Y Q, Zhang H Q, Cui Z Y, et al. New coupled canopy–light model (CCLM) to improve visual polymorphism simulation of fir morphology. Forests, 2023, 14 (3): 595.
doi: 10.3390/f14030595 |
[1] | 朱教君,王高峰,张怀清,高添. 关于“气候智慧林业”研究的思考[J]. 林业科学, 2024, 60(7): 1-7. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||