林业科学 ›› 2024, Vol. 60 ›› Issue (9): 183-198.doi: 10.11707/j.1001-7488.LYKX20230070
• 综合评述 • 上一篇
韩刘杨1,2,3,郭娟2,3,韩向娜1,席光兰4,田兴玲5,李仁2,3,陈家宝2,3,殷亚方2,3,*
收稿日期:
2023-02-21
出版日期:
2024-09-25
发布日期:
2024-10-08
通讯作者:
殷亚方
基金资助:
Liuyang Han1,2,3,Juan Guo2,3,Xiangna Han1,Guanglan Xi4,Xingling Tian5,Ren Li2,3,Jiabao Chen2,3,Yafang Yin2,3,*
Received:
2023-02-21
Online:
2024-09-25
Published:
2024-10-08
Contact:
Yafang Yin
摘要:
以古代沉船、出水木器和简牍等为代表的饱水木质文物是人类古代文明的一种载体,是研究古代历史、艺术、科技、经济的宝贵实物资料,准确认知饱水考古木材保存状况是实现饱水木质文物科学保护的重要前提和基础。受长期水埋环境影响,饱水考古木材的结构与性能均发生显著劣变,且样品获取、制备和测试分析等难度远大于健康木材,现有健康木材的科学研究理论和评估体系对其难以适用。本研究首先从解剖构造、化学结构、纤维素晶体结构和孔隙结构4方面介绍饱水考古木材的结构特征与分析方法;其次阐述饱水考古木材的物理性能、化学性能、力学性能与表征手段;然后进一步总结饱水考古木材保存状况的综合评估原则、方法和关键指标;最后围绕饱水考古木材研究的现状、需求和难点,提出未来应重点研究领域。建议开展以下3方面研究:1) 提出饱水考古木材创新无损或微损研究方法,建立饱水木质文物评估技术和标准体系;2) 提高饱水考古木材科学数据提取的便捷性和可靠性,完善饱水木质文物信息资源和共享体系建设;3) 构建饱水考古木材结构与性能构效关系,完善适用于饱水木质文物的木材科学理论体系。通过新技术、新方法和新材料在饱水木质文物领域的应用,推动饱水考古木材保存状况评估研究,为木质文物的科学保护和长期保存提供理论基础和技术支撑。
中图分类号:
韩刘杨,郭娟,韩向娜,席光兰,田兴玲,李仁,陈家宝,殷亚方. 饱水考古木材保存状况评估研究进展[J]. 林业科学, 2024, 60(9): 183-198.
Liuyang Han,Juan Guo,Xiangna Han,Guanglan Xi,Xingling Tian,Ren Li,Jiabao Chen,Yafang Yin. Research Progress and Perspective of the Preservation State of Waterlogged Archaeological Wood[J]. Scientia Silvae Sinicae, 2024, 60(9): 183-198.
表1
饱水考古木材的主要降解因素及木材解剖构造特征变化"
主要降解因素 Main factor of decay | 降解环境 Decay environment | 表征方法 Characteristic method | 木材解剖构造特征变化 Change in wood anatomical features | |
细菌 Bacteria | 侵蚀菌 Erosion bacteria | 低氧环境 Low oxygen environment | 光学显微镜、扫描电镜、 透射电镜 Light micrioscope (LM), scanning electron microscope (SEM), transmission electron microscope (TEM) | 降解初期,细胞壁出现侵蚀槽或凹槽( In the early stages of degradation, the WAW cell wall exhibits erosion grooves or depressions; in severe degradation, the secondary wall S2 layer appears as diffuse granules, while the S3 layer and the middle lamella remain intact |
隧道菌 Tuling bacteria | 低氧环境 Low oxygen environment | 降解后木材质地软、颜色深( The degraded WAW becomes soft and dark. Bacteria produce tunnels on the WAW cell walls, and the S2 layer and CML show cross walls (bands) | ||
孔洞菌 Cavitation bacteria | 低氧环境 Low oxygen environment | 降解方向垂直于木纤维,可打通相邻细胞壁层。降解早期细胞壁上出现钻石形空洞,随后可见颗粒状剩余物,降解晚期颗粒物消失( The degradation is along the length of the cell, and can penetrate through the adjacent cell wall layers. In the early stage of degradation, diamond-shaped cavities appear on the cell walls, followed by the presence of granular residues. In the late stage of degradation, the granular materials disappear | ||
真菌 Fungi | 软腐菌 Soft-rot fungus | 无氧环境 Anaerobic environment | 降解后木材表面软化、灰变,干燥后开裂并呈棕色( After degradation, the WAW surface becomes softened, grayed, and cracks with a brown color upon drying. There are two types of degradation, type I and type II, in both softwoods and hardwoods, respectively. In the early stage of degradation, small cavities form on the cell walls, and in the late stage, only the middle lamella remains. The earlywood is more severely decayed than the latewood, with the secondary walls of the tracheids undergoing channel-like degradation and occasionally, groove-like degradation, while no significant fungal appears on the ray cells, and the middle lamella remains relatively intact. The S3 layer of the secondary wall is more resistant to decay than the S2 layer | |
褐腐菌 Brown-rot fungus | 有氧环境 Aerobic environment | 降解后的木材呈褐色或棕色,降解初期主要出现在S1和S2层交界处,随后细胞壁S2层出现不规则的空洞,降解晚期只留下细胞壁胞间层,其木材细胞腔和木射线中可看到菌丝( After degradation, the wood becomes brown or reddish-brown in color. In the early stage of degradation, the degradation mainly occurs at the interface between the S1 and S2 layers of the cell wall. Subsequently, irregular cavities appear in the S2 layer of the cell wall. In the late stage of degradation, only the middle lamella of the cell wall remains, and fungal hyphae can be observed in the wood cell lumens and wood rays | ||
白腐菌 White-rot fungus | 有氧环境 Aerobic environment | 降解后的木材呈白色。降解初期通过木射线传播菌丝,降解晚期可打通相邻胞间层,仅留下改性的纤维素( After degradation, the wood becomes white in color. In the early stage of degradation, the fungal hyphae spread through the wood rays. In the late stage of degradation, the adjacent middle lamellae can be penetrated, leaving only the modified cellulose behind | ||
钻孔动物 Marine borers | 有氧环境 Aerobic environment | 光学显微镜、扫描电镜、X射线计算机体层成像 LM, SEM, X-ray computed tomography (CT) | 生长和啃食之处留下孔洞,随着虫体的增大会产生较大木材孔洞( The growth and feeding of marine boring organisms leave behind holes, and as the organism’s body increases in size, larger wood cavities will form | |
酸碱盐 Chemical compounds | 低氧环境 Oxygen limiting conditions | 扫描电镜能谱分析 SEM energy-dispersive X-ray spectroscopy (EDS) | 木材颜色加深,铁硫元素附近会有锈迹( Acids, bases, and salts can cause the WAW to darken in color, and the presence of iron and sulfur elements can lead to rust stains |
表2
饱水考古木材力学性能分析测试的样品条件"
年代 Period | 饱水木质文物 Waterlogged wooden artifact | 性能 Property | 样品尺寸(宽×厚×长)Sample size(width × thickness × length) | 树种 Tree species |
公元1600年 1600 A.D | 德国饱水木材( Waterlogged wood from Germany | 顺纹抗压强度 Compressive strength parallel to grain | 20 mm×20 mm×30 mm | 栎木Quercus spp. |
公元1628年 1628 A.D | 瑞典Vasa沉船 ( The Vasa shipwreck in Sweden | 顺纹抗压强度 Compressive strength parallel to grain | 25 mm×25 mm×25 mm | 欧洲栎 Quercus robur |
公元1628年 1628 A.D | 瑞典Vasa沉船( The Vasa shipwreck in Sweden | 径向、弦向压缩强度 Radial and tangential compressive strength | 10 mm×10 mm×10 mm | 欧洲栎 Quercus robur |
公元1628年 1628 A.D | 瑞典Vasa沉船( The Vasa shipwreck in Sweden | 顺纹抗拉强度 Tensile strength parallel to grain | 4 mm×2 mm×170 mm | 栎木Quercus spp. |
公元1628年 1628 A.D | 瑞典Vasa沉船( The Vasa shipwreck in Sweden | 抗拉强度 Tensile strength | 3.0 mm×0.3 mm×20.0 mm | 栎木Quercus spp. |
公元815—820年 815—820 A.D | 挪威Oseberg沉船( The Oseberg shipwreck in Norway | 抗弯强度 Bending strength | 15 mm×4 mm×50 mm | 栎木Quercus spp. |
公元1967年 1967 A.D | 德国饱水木材( Waterlogged wood from Germany | 抗弯强度 Bending strength | 25 mm×25 mm×360 mm | 冷杉Abies spp. |
— | 意大利S. Maria Maggiore教堂饱水木材( The waterlogged wood from the S. Maria Maggiore church in Italy | 顺纹抗压强度 Compressive strength parallel to grain | 20 mm×20 mm×35 mm | 桤木Alnus spp. |
— | 意大利饱水木材( Waterlogged wood from Italy | 顺纹抗压强度 Compressive strength parallel to grain | 13 mm×13 mm×20 mm | 落叶松Larix spp.; 栎木Quercus spp.; 桤木Alnus spp. |
— | 瑞典饱水木材( Waterlogged wood from Sweden | 顺纹抗拉强度 Tensile strength parallel to grain | 4 mm×2 mm×170 mm | 欧洲栎 Quercus robur |
— | 美国医用压舌板( Medical tongue depressors from the United States | 抗弯强度 Bending strength | 18.0 mm×1.8 mm× 152.0 mm | — |
公元前4 000—2 000年 4 000—2 000 B.C | 意大利Fiavé饱水木材( Waterlogged wood from Fiavé, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 欧洲银冷杉 Abies alba |
公元前7世纪—公元2世纪7th c. B.C.—2nd c. A.D | 意大利Pisa饱水木材( Waterlogged wood from Pisa, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 海岸松 Pinus pinaster |
公元前7世纪—公元2世纪7th c. B.C.—2nd c. A.D | 意大利Pisa饱水木材( Waterlogged wood from Pisa, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 欧洲鹅耳枥 Carpinus betulus |
公元前7世纪—公元2世纪7th c. B.C.—2nd c. A.D | 意大利Pisa饱水木材( Waterlogged wood from Pisa, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 欧洲白蜡木 Fraxinus excelsior |
公元前7世纪—公元2世纪7th c. B.C.—2nd c. A.D | 意大利Pisa饱水木材( Waterlogged wood from Pisa, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 欧洲水青冈 Fagus sylvatica |
公元前7世纪—公元2世纪7th c B.C.—2nd c. A.D | 意大利Pisa饱水木材( Waterlogged wood from Pisa, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 栎木 Quercus spp. |
公元前7世纪—公元2世纪7th c. B.C.—2nd c. A.D | 意大利Pisa饱水木材( Waterlogged wood from Pisa, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 榆木 Ulmus spp. |
公元前4世纪—公元6世纪4th c. B.C.—6th c. A.D | 意大利Alba Fucens饱水木材 ( Waterlogged wood from Alba Fucens, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 银白杨 Populus alba |
公元前4世纪—公元6世纪4th c. B.C.—6th c. A.D | 意大利Alba Fucens饱水木材 ( Waterlogged wood from Alba Fucens, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 栎木 Quercus spp. |
公元前2世纪 2nd c. B.C. | 意大利Chretienne C沉船 ( The Chretienne C shipwreck, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 0.4~1.4 mm(厚度width) | — |
公元1世纪 1st c. A.D | 意大利Herculaneum饱水木材 ( Waterlogged wood from Herculaneum, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 欧洲银冷杉 Abies alba |
公元1世纪 1st c. A.D | 意大利Herculaneum饱水木材 ( Waterlogged wood from Herculaneum, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 地中海柏木 Cupressus sempervirens |
公元4—5世纪 4th—5th c. A.D | 意大利Ferrara饱水木材( Waterlogged wood from Ferrara, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 栎属木材 Quercus spp. |
公元16世纪 16th c. A.D | 意大利Venice饱水木材( Waterlogged wood from Venice, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 桤木Alnus spp. |
公元17—19世纪 17th—19th c. A.D | 意大利Venice饱水木材( Waterlogged wood from Venice, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 欧洲落叶松 Larix decidua |
公元17—19世纪 17th—19th c. A.D | 意大利Venice饱水木材( Waterlogged wood from Venice, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 硬木松 Pinus sylvestris |
公元18世纪 18th c. A.D | 意大利Timisoara饱水木材 ( Waterlogged wood from Timisoara, Italy | 动态热机械分析 Dynamic mechanical analysis (DMA) | 10 mm×1 mm×20 mm | 栎木Quercus spp. |
公元12—13世纪 12th—13th c. A.D | 中国“南海I号”沉船( Nanhai No.1 shipwreck | 静态热机械分析 Static thermal mechanical analysis (TMA) | 2.0 mm×0.3 mm×8.0 mm | 松木 Pinus spp. |
公元815—820年 815—820 A.D | 挪威Oseberg沉船( The Oseberg Shipwreck in Norway | 纳米压痕 Nanoindentation (NI) | 2 mm×2 mm×2 mm | 栎木 Quercus spp. |
公元1628年 1628 A.D. | 瑞典Vasa沉船( The Vasa shipwreck in Sweden | 纳米压痕 Nanoindentation (NI) | 1 mm×1 mm×1 mm | 栎木 Quercus spp. |
公元1820—1850年 1820—1850 A.D. | 中国“小白礁I号”沉船 ( Xiaobaijiao No.1 shipwreck | 纳米压痕 Nanoindentation (NI) | 0.8 mm×0.8 mm×6.0 mm | 坡垒Hopea sp.; 柚木Tectona sp. |
曹 媛, 陈家宝, 殷亚方. 通过改良超薄切片制样法观察汉代饱水考古木材细胞壁的超微构造. 电子显微学报, 2022, 41 (3): 321- 328.
doi: 10.3969/j.issn.1000-6281.2022.03.014 |
|
Cao Y, Chen J B, Yin Y F. Optimized sample preparation method for ultrathin sectioning to observed cell wall ultrastructure of water-logged archaeological wood in the Han Dynasty. Journal of Chinese Electron Microscopy Society, 2022, 41 (3): 321- 328.
doi: 10.3969/j.issn.1000-6281.2022.03.014 |
|
陈家昌, 黄 霞, 陈晓琳, 等. 出土饱水木质文物的腐蚀病害类型与保护研究进展. 材料导报, 2015, 29 (11): 96- 101, 128. | |
Chen J C, Huang X, Chen X L, et al. Corrosion type and conservation of archaeological waterlogged wood. Materials Review, 2015, 29 (11): 96- 101, 128. | |
陈潇俐, 张金萍, 郑冬青, 等. 考古饱水木材树种的鉴定. 东方博物, 2012, (3): 119- 122. | |
Chen X L, Zhang J P, Zheng D Q, et al. Identification of archaeological water-saturated wood species. Cultural Relics of the East, 2012, (3): 119- 122. | |
高梦鸽, 张勤奋, 金 涛, 等. “小白礁Ⅰ号” 沉船部分木质文物微生物病害观察与损伤评估. 文物保护与考古科学, 2017, 29 (6): 102- 111. | |
Gao M G, Zhang Q F, Jin T, et al. Observation and damage assessment of microbial diseases in some wooden cultural relics from the ancient marine shipwreck, Ningbo Xiaobaijiao No. 1. Sciences of Conservation and Archaeology, 2017, 29 (6): 102- 111. | |
管 理, 武家璧, 王楚宁, 等. 江西南昌西汉海昏侯刘贺墓出土漆木器. 文物, 2018, (11): 27- 56,1. | |
Guan L, Wu J B, Wang C N, et al. The lacquered wooden wares unearthed from Marquis of Haihun’s tomb of the western Han Dynasty in Nanchang, Jiangxi. Cultural Relics, 2018, (11): 27- 56,1. | |
韩刘杨. 2020. 小白礁Ⅰ号沉船饱水·脱水加固木材的结构与性能研究. 北京: 中国林业科学研究院. | |
Han L Y. 2020. Structure and performance of both waterlogged and consolidated archaeological wood: a case of Xiaobaijiao No. 1 shipwreck. Beijing: Chinese Academy of Forestry. [in Chinese] | |
华佳晨. 2018. 考古出土饱水木质文物的加固脱水比较研究——以安徽、江苏出土的战国秦汉时期木质文物为例. 南京: 南京大学. | |
Hua J C. 2018. A comparative study on consolidation and dehydration of waterlogged archaeological woods: taking the woods found in Anhui and Jiangsu provinces during the Warring States period to Han Dynasty as examples. Nanjing: Nanjing University. [in Chinese] | |
姜笑梅, 殷亚方, 刘 波. 木材树种识别技术现状、发展与展望. 木材工业, 2010, 24 (4): 36- 39. | |
Jiang X M, Yin Y F, Liu B. Current status, development and prospect of wood identification technology. China Wood Industry, 2010, 24 (4): 36- 39. | |
李 坚. 2003. 木材波谱学. 北京: 科学出版社. | |
Li J. 2003. Wood spectroscopy. Beijing: Science Press. [in Chinese] | |
李 仁. 2022. “南海Ⅰ号” 沉船饱水考古木材保存状况的诊断评估研究. 北京: 北京林业大学. | |
Li R. 2022. Diagnostic evaluation of waterlogged archaeological wood from “Nanhai No. 1” wooden shipwreck. Beijing: Beijing Forestry University. [in Chinese] | |
刘一星, 赵广杰. 2004. 木质资源材料学. 北京: 中国林业出版社. | |
Liu Y X, Zhao G J. 2004. Wood resource materials science. Beijing: China Forestry Publishing House. [in Chinese] | |
卢 衡, 张绍志, 刘东坡, 等. 出土、出水饱水木质文物冷冻干燥研究进展. 文物保护与考古科学, 2020, 32 (6): 126- 137. | |
Lu H, Zhang S Z, Liu D P, et al. Research progress of freeze drying for unearthed/salvaged waterlogged wooden archaeological artifacts. Sciences of Conservation and Archaeology, 2020, 32 (6): 126- 137. | |
陆 方, 程海涛, 王 戈, 等. 核磁共振技术在竹木材研究中的应用. 竹子研究汇刊, 2007, 26 (1): 37- 41. | |
Lu F, Cheng H T, Wang G, et al. Application of NMR technology in bamboo and wood research. Journal of Bamboo Research, 2007, 26 (1): 37- 41. | |
James A Spriggs, 沈大娲. 考古发掘饱水木质文物的欧洲标准——目标、成果及应用. 中国文物科学研究, 2016, (3): 92- 94.
doi: 10.3969/j.issn.1674-9677.2016.03.018 |
|
Spriggs J, Shen D W. European standards for archaeological excavation of water-saturated wooden cultural relics: objectives, achievements and applications. China Cultural Heritage Scientific Research, 2016, (3): 92- 94.
doi: 10.3969/j.issn.1674-9677.2016.03.018 |
|
田兴玲, 李乃胜, 张治国, 等. 广东汕头市“南澳Ⅰ号” 明代沉船木材的分析研究. 文物保护与考古科学, 2014, 26 (4): 109- 115.
doi: 10.3969/j.issn.1005-1538.2014.04.016 |
|
Tian X L, Li N S, Zhang Z G, et al. Analysis and research on the wood from the Ming Dynasty shipwreck, Nan’ao No. 1, in Shantou city, Guangdong. Sciences of Conservation and Archaeology, 2014, 26 (4): 109- 115.
doi: 10.3969/j.issn.1005-1538.2014.04.016 |
|
吴义强. 木材科学与技术研究新进展. 中南林业科技大学学报, 2021, 41 (1): 1- 28. | |
Wu Y Q. Newly advances in wood science and technology. Journal of Central South University of Forestry & Technology, 2021, 41 (1): 1- 28. | |
余 雁. 2003. 人工林杉木管胞的纵向力学性质及其主要影响因子研究. 北京: 中国林业科学研究院. | |
Yu Y. 2003. Longitudinal mechanical properties and its main influencing factors of tracheids of Chinese fir from plantation. Beijing: Chinese Academy of Forestry. [in Chinese] | |
张 琼, 胡东波. 饱水木质文物的风冷干燥脱水研究. 文物保护与考古科学, 2018, 30 (6): 21- 29. | |
Zhang Q, Hu D B. Study of the air-cooled drying method for waterlogged wooden cultural relics. Sciences of Conservation and Archaeology, 2018, 30 (6): 21- 29. | |
Agarwal U. 1999. An overview of Raman spectroscopy as applied to lignocellulosic materials. Advances in Lignocellulosics Characterization, 201−225. | |
Arnott S H L, Dix J K, Best A I, et al. Imaging of buried archaeological materials: the reflection properties of archaeological wood. Marine Geophysical Researches, 2005, 26 (2): 135- 144. | |
Bader T K, de Borst K, Fackler K, et al. A nano to macroscale study on structure-mechanics relationships of archaeological oak. Journal of Cultural Heritage, 2013, 14 (5): 377- 388.
doi: 10.1016/j.culher.2012.09.007 |
|
Bader T, Braovac S, Hofstetter K. 2010. Microstructure-stiffness relations of the ancient oak wood from the oseberg ship. International Workshop on Modeling Mechanical Behavior of Wooden Cultural Objects, 22−23. | |
Barbour R J. 1989. Treatments for waterlogged and dry archaeological wood. Advances in Chemistry, 225: 177−192. | |
Bertolini C, Cestari L, Marzi T, et al. 2006. New methodological approaches to the survey on timber historical foundations. Structural Analysis of Historical Construction, 335−342. | |
Björdal C G, Nilsson T, Daniel G. Microbial decay of waterlogged archaeological wood found in Sweden Applicable to archaeology and conservation. International Biodeterioration & Biodegradation, 1999, 43 (1/2): 63- 73. | |
Bjurhager I, Halonen H, Lindfors E L, et al. State of degradation in archeological oak from the 17th century Vasa ship: substantial strength loss correlates with reduction in (holo)cellulose molecular weight. Biomacromolecules, 2012, 13 (8): 2521- 2527.
doi: 10.1021/bm3007456 |
|
Bjurhager I, Ljungdahl J, Wallström L, et al. Towards improved understanding of PEG-impregnated waterlogged archaeological wood: a model study on recent oak. Holzforschung, 2010, 64 (2): 243- 250. | |
Blanchette R A. A review of microbial deterioration found in archaeological wood from different environments. International Biodeterioration & Biodegradation, 2000, 46 (3): 189- 204. | |
Broda M, Mazela B. Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. Journal of Cultural Heritage, 2017, 25, 149- 156.
doi: 10.1016/j.culher.2017.01.007 |
|
Broda M, Popescu C M. Natural decay of archaeological oak wood versus artificial degradation processes: an FT-IR spectroscopy and X-ray diffraction study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 209, 280- 287.
doi: 10.1016/j.saa.2018.10.057 |
|
Brunning R, Watson J. 2010. Waterlogged wood: guidelines on the recording, sampling, conservation, and curation of waterlogged wood. England: English Heritage. | |
Bues C T. Untersuchung einiger eigenschaften von tannen- und fichtenholz nach 17jähriger wasserlagerung. Holz Als Roh- und Werkstoff, 1986, 44 (1): 7- 15.
doi: 10.1007/BF02616307 |
|
Burgert I, Bernasconi A, Niklas K J, et al. The influence of rays on the transverse elastic anisotropy in green wood of deciduous trees. Holzforschung, 2001, 55 (5): 449- 454.
doi: 10.1515/HF.2001.074 |
|
Burgert I, Fratzl P. Plants control the properties and actuation of their organs through the orientation of cellulose fibrils in their cell walls. Integrative and Comparative Biology, 2009, 49 (1): 69- 79.
doi: 10.1093/icb/icp026 |
|
Burgert I, Keplinger T, Cabane E, et al. 2016. Biomaterial wood: wood-based and bioinspired materials//Kim Y S, Funada R, Singh A P. Secondary xylem biology: origins, functions, and applications. Amsterdam: Elsevier, 259−281. | |
Camarero S, Bocchini P, Galletti G C, et al. Compositional changes of wheat lignin by a fungal peroxidase analyzed by pyrolysis-GC-MS. Journal of Analytical and Applied Pyrolysis, 2001, 58, 413- 423. | |
Campanella L, Tomassetti M, Tomellini R. Thermoanalysis of ancient, fresh and waterlogged woods. Journal of Thermal Analysis, 1991, 37 (8): 1923- 1932.
doi: 10.1007/BF01912224 |
|
Cao H M, Gao X, Chen J B, et al. Changes in moisture characteristics of waterlogged archaeological wood owing to microbial degradation. Forests, 2023, 14 (1): 9. | |
Capretti C, Macchioni N, Pizzo B, et al. The characterization of waterlogged archaeological wood: the three Roman ships found in Naples (Italy). Archaeometry, 2008, 50 (5): 855- 876.
doi: 10.1111/j.1475-4754.2007.00376.x |
|
Cavallaro G, Lazzara G, Milioto S, et al. Thermal and dynamic mechanical properties of beeswax-halloysite nanocomposites for consolidating waterlogged archaeological woods. Polymer Degradation and Stability, 2015, 120, 220- 225.
doi: 10.1016/j.polymdegradstab.2015.07.007 |
|
Célino A, Gonçalves O, Jacquemin F, et al. Qualitative and quantitative assessment of water sorption in natural fibres using ATR-FTIR spectroscopy. Carbohydrate Polymers, 2014, 101, 163- 170.
doi: 10.1016/j.carbpol.2013.09.023 |
|
Chen J B, Liu S J, Yin L J, et al. Non-destructive preservation state estimation of waterlogged archaeological wooden artifacts. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 285, 121840.
doi: 10.1016/j.saa.2022.121840 |
|
Colombini M P, Lucejko J J, Modugno F, et al. A multi-analytical study of degradation of lignin in archaeological waterlogged wood. Talanta, 2009, 80 (1): 61- 70.
doi: 10.1016/j.talanta.2009.06.024 |
|
Colombini M P, Orlandi M, Modugno F, et al. Archaeological wood characterisation by PY/GC/MS, GC/MS, NMR and GPC techniques. Microchemical Journal, 2007, 85 (1): 164- 173.
doi: 10.1016/j.microc.2006.05.001 |
|
Crestini C, El Hadidi N M N, Palleschi G. Characterisation of archaeological wood: a case study on the deterioration of a coffin. Microchemical Journal, 2009, 92 (2): 150- 154.
doi: 10.1016/j.microc.2009.03.003 |
|
Daniel G. 2014. Fungal and bacterial biodegradation: white rots, brown rots, soft rots, and bacteria//Schultz T P, Goodell B, Nicholas D D. ACS symposium series. Washington, DC: American Chemical Society, 23−58. | |
Decombeix A L, Boucher L, Wheeler E A, et al. Plant hydraulic architecture through geological time. IAWA Journal, 2019, 40 (3): 383- 386.
doi: 10.1163/22941932-40190251 |
|
Donaldson L A, Singh A P. Ultrastructure of Terminalia wood from an ancient Polynesian canoe. IAWA Journal, 1990, 11 (2): 195- 202.
doi: 10.1163/22941932-90000516 |
|
Fors Y, Nilsson T, Risberg E D, et al. Sulfur accumulation in pinewood (Pinus sylvestris) induced by bacteria in a simulated seabed environment: implications for marine archaeological wood and fossil fuels. International Biodeterioration & Biodegradation, 2008, 62 (4): 336- 347. | |
Donato I D, Lazzara G. Porosity determination with helium pycnometry as a method to characterize waterlogged woods and the efficacy of the conservation treatments. Archaeometry, 2012, 54 (5): 906- 915.
doi: 10.1111/j.1475-4754.2011.00657.x |
|
Glass S V, Boardman C R, Zelinka S L. Short hold times in dynamic vapor sorption measurements mischaracterize the equilibrium moisture content of wood. Wood Science and Technology, 2017, 51 (2): 243- 260.
doi: 10.1007/s00226-016-0883-4 |
|
Goodell B, Qian Y H, Jellison J. 2008. Fungal decay of wood: soft rot-brown rot-white rot//Schultz T P, Goodell B, Nicholas D D. ACS symposium series. Washington, DC: American Chemical Society, 9−31. | |
Grönquist P, Frey M, Keplinger T, et al. Mesoporosity of delignified wood investigated by water vapor sorption. ACS Omega, 2019, 4 (7): 12425- 12431.
doi: 10.1021/acsomega.9b00862 |
|
Guiner A, Fournet G, Walker C. 1955. Small angle scattering of X-rays. New York: J. Wiley & Sons. | |
Guo J, Chen J B, Meng Q L, et al. Molecular and crystal structures of cellulose in severely deteriorated archaeological wood. Cellulose, 2022, 29 (18): 9549- 9568.
doi: 10.1007/s10570-022-04856-4 |
|
Guo J, Rennhofer H, Yin Y F, et al. The influence of thermo-hygro-mechanical treatment on the micro- and nanoscale architecture of wood cell walls using small- and wide-angle X-ray scattering. Cellulose, 2016, 23 (4): 2325- 2340.
doi: 10.1007/s10570-016-0982-2 |
|
Guo J, Song K L, Salmén L, et al. Changes of wood cell walls in response to hygro-mechanical steam treatment. Carbohydrate Polymers, 2015, 115, 207- 214.
doi: 10.1016/j.carbpol.2014.08.040 |
|
Guo J, Xiao L, Han L Y, et al. Deterioration of the cell wall in waterlogged wooden archeological artifacts, 2 400 years old. IAWA Journal, 2019, 40 (4): 820- 844.
doi: 10.1163/22941932-40190241 |
|
Guo J, Zhang M M, Liu J A, et al. Evaluation of the deterioration state of archaeological wooden artifacts: a nondestructive protocol based on direct analysis in real time - mass spectrometry (DART-MS) coupled to chemometrics. Analytical Chemistry, 2020, 92 (14): 9908- 9915.
doi: 10.1021/acs.analchem.0c01429 |
|
Guo J, Zhou H B, Stevanic J S, et al. Effects of ageing on the cell wall and its hygroscopicity of wood in ancient timber construction. Wood Science and Technology, 2018, 52 (1): 131- 147.
doi: 10.1007/s00226-017-0956-z |
|
Han L Y, Tian X L, Keplinger T, et al. Even visually intact cell walls in waterlogged archaeological wood are chemically deteriorated and mechanically fragile: a case of a 170 year-old shipwreck. Molecules, 2020a, 25 (5): 1113.
doi: 10.3390/molecules25051113 |
|
Han L Y, Guo J, Wang K, et al. Hygroscopicity of waterlogged archaeological wood from Xiaobaijiao No. 1 shipwreck related to its deterioration state. Polymers, 2020b, 12 (4): 834.
doi: 10.3390/polym12040834 |
|
Han L Y, Han X N, Liang G Q, et al. Even samples from the same waterlogged wood are hygroscopically and chemically different by simultaneous DVS and 2D COS-IR spectroscopy. Forests, 2023a, 14 (1): 15. | |
Han L Y, Guo J, Tian X L, et al. Evaluation of PEG and sugars consolidated fragile waterlogged archaeological wood using nanoindentation and ATR-FTIR imaging. International Biodeterioration & Biodegradation, 2023b, 170, 105390. | |
Han L Y, Xi G L, Dai W, et al. Influence of natural aging on the moisture sorption behaviour of wooden structural components. Molecules, 2023c, 28 (4): 1946.
doi: 10.3390/molecules28041946 |
|
Han L Y, Wang K, Wang W B, et al. Nanomechanical and topochemical changes in elm wood from ancient timber constructions in relation to natural aging. Materials, 2019, 12 (5): 786.
doi: 10.3390/ma12050786 |
|
High K E, Penkman K E H. A review of analytical methods for assessing preservation in waterlogged archaeological wood and their application in practice. Heritage Science, 2020, 8 (1): 83.
doi: 10.1186/s40494-020-00422-y |
|
Hoffmann P, Jones M A. Structure and degradation process for waterlogged archaeological wood. Advances in Chemistry, 1989, 225, 35- 65. | |
Jiao L C, Liu X L, Jiang X M, et al. Extraction and amplification of DNA from aged and archaeological Populus euphratica wood for species identification. Holzforschung, 2015, 69 (8): 925- 931.
doi: 10.1515/hf-2014-0224 |
|
Jiao L C, Lu Y, Zhang M, et al. 2022. Ancient plastid genomes solve the tree species mystery of the imperial wood “Nanmu” in the Forbidden City, the largest existing wooden Palace complex in the world. Plants, People, Planet, 4(6): 696−709. | |
Kennedy A, Pennington E R. Conservation of chemically degraded waterlogged wood with sugars. Studies in Conservation, 2014, 59 (3): 194- 201.
doi: 10.1179/2047058413Y.0000000109 |
|
Kim Y S. Chemical characteristics of waterlogged archaeological wood. Holzforschung, 1990, 44, 169- 172.
doi: 10.1515/hfsg.1990.44.3.169 |
|
Kim Y S, Singh A P. Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA Journal, 2000, 21 (2): 135- 155.
doi: 10.1163/22941932-90000241 |
|
Kim Y S, Singh A P, Nilsson T. 1996. Bacteria as important degraders in waterlogged archaeological woods. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 50(5): 389−392. | |
Klaassen R K W M. Bacterial decay in wooden foundation piles-patterns and causes: a study of historical pile foundations in the Netherlands. International Biodeterioration & Biodegradation, 2008, 61 (1): 45- 60. | |
Kobori H, Gorretta N, Rabatel G, et al. Applicability of Vis-NIR hyperspectral imaging for monitoring wood moisture content (MC). Holzforschung, 2013, 67 (3): 307- 314.
doi: 10.1515/hf-2012-0054 |
|
Kulasinski K, Guyer R, Derome D, et al. Water adsorption in wood microfibril-hemicellulose system: role of the crystalline-amorphous interface. Biomacromolecules, 2015, 16 (9): 2972- 2978.
doi: 10.1021/acs.biomac.5b00878 |
|
Landy E T, Mitchell J I, Hotchkiss S, et al. Bacterial diversity associated with archaeological waterlogged wood: ribosomal RNA clone libraries and denaturing gradient gel electrophoresis (DGGE). International Biodeterioration & Biodegradation, 2008, 61 (1): 106- 116. | |
Lechner T, Bjurhager I, Kliger R I. Strategy for developing a future support system for the Vasa warship and evaluating its mechanical properties. Heritage Science, 2013, 1 (1): 35.
doi: 10.1186/2050-7445-1-35 |
|
Li Q X, Cao L X, Wang W F, et al. Analysis of the bacterial communities in the waterlogged wooden cultural relics of the Xiaobaijiao No. 1 shipwreck via high-throughput sequencing technology. Holzforschung, 2018, 72 (7): 609- 619.
doi: 10.1515/hf-2017-0132 |
|
Li R, Guo J, Macchioni N, et al. Characterisation of waterlogged archaeological wood from Nanhai No. 1 shipwreck by multidisciplinary diagnostic methods. Journal of Cultural Heritage, 2022, 56, 25- 35.
doi: 10.1016/j.culher.2022.05.004 |
|
Limsuwan P. The study of crystal structure and thermal decomposition of Paphia undulate using XRD, TGA and FTIR techniques. Annals of the New York Academy of Sciences, 1958, 76, 838- 849.
doi: 10.1111/j.1749-6632.1958.tb54901.x |
|
Liu T T, Xi G L, Han X N, et al. Prediction model of the hardness of waterlogged archaeological wood based on NIR spectroscopy. Heritage Science, 2023, 11 (1): 215.
doi: 10.1186/s40494-023-01062-8 |
|
Liu Z J, Fu T T, Hu C T, et al. Microbial community analysis and biodeterioration of waterlogged archaeological wood from the Nanhai No. 1 shipwreck during storage. Scientific Reports, 2018, 8 (1): 7170.
doi: 10.1038/s41598-018-25484-8 |
|
Ljungdahl J. 2004. Computer based FE-model for evaluation of the support system to the Vasa ship. Department of Aeronautical and Vehicle Engineering, KTH. | |
Ljungdahl J, Berglund L A. Transverse mechanical behaviour and moisture absorption of waterlogged archaeological wood from the Vasa ship. Holzforschung, 2007, 61 (3): 279- 284.
doi: 10.1515/HF.2007.048 |
|
Łucejko J J, Mattonai M, Zborowska M, et al. Deterioration effects of wet environments and brown rot fungus Coniophora puteana on pine wood in the archaeological site of Biskupin (Poland). Microchemical Journal, 2018, 138, 132- 146.
doi: 10.1016/j.microc.2017.12.028 |
|
Łucejko J J, Modugno F, Ribechini E, et al. Analytical instrumental techniques to study archaeological wood degradation. Applied Spectroscopy Reviews, 2015, 50 (7): 584- 625.
doi: 10.1080/05704928.2015.1046181 |
|
Ma T, Inagaki T, Tsuchikawa S. Rapidly visualizing the dynamic state of free, weakly, and strongly hydrogen-bonded water with lignocellulosic material during drying by near-infrared hyperspectral imaging. Cellulose, 2020, 27 (9): 4857- 4869.
doi: 10.1007/s10570-020-03117-6 |
|
Macchioni N. Physical characteristics of the wood from the excavations of the ancient port of Pisa. Journal of Cultural Heritage, 2003, 4 (2): 85- 89.
doi: 10.1016/S1296-2074(03)00019-0 |
|
Macchioni N, Capretti C, Sozzi L, et al. Grading the decay of waterlogged archaeological wood according to anatomical characterisation. The case of the Fiavé site (N-E Italy). International Biodeterioration & Biodegradation, 2013, 84, 54- 64. | |
Macchioni N, Pizzo B, Capretti C. An investigation into preservation of wood from Venice foundations. Construction and Building Materials, 2016, 111, 652- 661.
doi: 10.1016/j.conbuildmat.2016.02.144 |
|
Macchioni N, Pizzo B, Capretti C, et al. How an integrated diagnostic approach can help in a correct evaluation of the state of preservation of waterlogged archaeological wooden artefacts. Journal of Archaeological Science, 2012, 39 (10): 3255- 3263.
doi: 10.1016/j.jas.2012.05.008 |
|
Majka J, Zborowska M, Fejfer M, et al. Dimensional stability and hygroscopic properties of PEG treated irregularly degraded waterlogged Scots pine wood. Journal of Cultural Heritage, 2018, 31, 133- 140.
doi: 10.1016/j.culher.2017.12.002 |
|
Mizuno S, Torizu R, Sugiyama J. Wood identification of a wooden mask using synchrotron X-ray microtomography. Journal of Archaeological Science, 2010, 37 (11): 2842- 2845.
doi: 10.1016/j.jas.2010.06.022 |
|
Nilsson T, Daniel G. 1989. Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung-International Journal of the Biology, Chemistry, Physics and Technology of Wood, 43(1): 11−18. | |
Nilsson T, Daniel G. 1997. Developments in the study of soft rot and bacterial decay//Bruce A, Palfreyman J W. Forest products biotechnology. Boca Raton: Taylor & Francis Ltd. , 47−72. | |
Pandey K K, Pitman A J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. International Biodeterioration & Biodegradation, 2003, 52 (3): 151- 160. | |
Pecoraro E, Pizzo B, Salvini A, et al. Dynamic mechanical analysis (DMA) at room temperature of archaeological wood treated with various consolidants. Holzforschung, 2019, 73 (8): 757- 772.
doi: 10.1515/hf-2018-0235 |
|
Pizzo B, Macchioni N, Capretti C, et al. Assessing the wood compressive strength in pile foundations in relation to diagnostic analysis: the example of the Church of Santa Maria Maggiore, Venice. Construction and Building Materials, 2016, 114, 470- 480.
doi: 10.1016/j.conbuildmat.2016.03.173 |
|
Pizzo B, Pecoraro E, Lazzeri S. Dynamic mechanical analysis (DMA) of waterlogged archaeological wood at room temperature. Holzforschung, 2018, 72 (5): 421- 431.
doi: 10.1515/hf-2017-0114 |
|
Plötze M, Niemz P. Porosity and pore size distribution of different wood types as determined by mercury intrusion porosimetry. European Journal of Wood and Wood Products, 2011, 69 (4): 649- 657.
doi: 10.1007/s00107-010-0504-0 |
|
Radojkovi B, Risti S, Poli S, et al. Study on dimensional stabilization of 12 500-year-old waterlogged subfossil Scots pine wood from the Kozmin Las site, Poland. Journal of Cultural Heritage, 2017, 23, 119- 127.
doi: 10.1016/j.culher.2016.08.002 |
|
Ribechini E, Modugno F, Colombini M P, et al. Gas chromatographic and mass spectrometric investigations of organic residues from Roman glass unguentaria. Journal of Chromatography A, 2008, 1183 (1/2): 158- 169. | |
Richards R, Li W F, Decker S, et al. Consolidation of metal oxide nanocrystals. reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. Journal of the American Chemical Society, 2000, 122 (20): 4921- 4925.
doi: 10.1021/ja994383g |
|
Riggio M, Sandak J, Sandak A, et al. Analysis and prediction of selected mechanical/dynamic properties of wood after short and long-term waterlogging. Construction and Building Materials, 2014, 68, 444- 454.
doi: 10.1016/j.conbuildmat.2014.06.085 |
|
Röder T, Sixta H 2004. Thermal treatment of cellulose pulps and its influence to cellulose reactivity. Lenzinger Berichte, 83: 79−83. | |
Romagnoli M, Galotta G, Antonelli F, et al. Micro-morphological, physical and thermogravimetric analyses of waterlogged archaeological wood from the prehistoric village of Gran Carro (Lake Bolsena-Italy). Journal of Cultural Heritage, 2018, 33, 30- 38.
doi: 10.1016/j.culher.2018.03.012 |
|
Salmén L, Burgert I. Cell wall features with regard to mechanical performance. A review COST action E35 2004—2008: wood machining–micromechanics and fracture. Holzforschung, 2009, 63 (2): 121- 129.
doi: 10.1515/HF.2009.011 |
|
Sandak A, Sandak J, Zborowska M, et al. Near infrared spectroscopy as a tool for archaeological wood characterization. Journal of Archaeological Science, 2010, 37 (9): 2093- 2101.
doi: 10.1016/j.jas.2010.02.005 |
|
Schniewind A P. Physical and mechanical properties of archaeological wood. Advances in Chemistry, 1989, 225, 87- 109. | |
Shen D W, Li N S, Fu Y, et al. Study on wood preservation state of Chinese ancient shipwreck Huaguangjiao І. Journal of Cultural Heritage, 2018, 32, 53- 59.
doi: 10.1016/j.culher.2018.01.009 |
|
Simón C, Fernández F G, Esteban L G, et al. Comparison of the saturated salt and dynamic vapor sorption methods in obtaining the sorption properties of Pinus pinea L. European Journal of Wood and Wood Products, 2017, 75 (6): 919- 926.
doi: 10.1007/s00107-016-1155-6 |
|
Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57 (4): 603- 619.
doi: 10.1351/pac198557040603 |
|
Singh A P, Kim Y S, Chavan R R. Advances in understanding microbial deterioration of buried and waterlogged archaeological woods: a review. Forests, 2022, 13 (3): 394.
doi: 10.3390/f13030394 |
|
Sluiter A, Hames B, Ruiz R O, et al. Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure, 2004, 1617 (1): 1- 16. | |
Song J W, Chen C J, Zhu S Z, et al. Processing bulk natural wood into a high-performance structural material. Nature, 2018, 554 (7691): 224- 228.
doi: 10.1038/nature25476 |
|
Speirs A K, McConnachie G, Lowe A J. Chloroplast DNA from 16th century waterlogged oak in a marine environment: initial steps in sourcing the Mary Rose timbers. Archaeological Science Under a Microscope: Studies in Residue and Ancient DNA Analysis in Honour of Thomas H. Loy. Terra Australis, 2009, 30, 175- 189. | |
Spurr A R. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 1969, 26 (1/2): 31- 43. | |
Svedström K, Bjurhager I, Kallonen A, et al. Structure of oak wood from the Swedish warship Vasa revealed by X-ray scattering and microtomography. Holzforschung, 2012, 66 (3): 355- 363. | |
Tahira A, Howard W, Pennington E R, et al. Mechanical strength studies on degraded waterlogged wood treated with sugars. Studies in Conservation, 2017, 62 (4): 223- 228.
doi: 10.1080/00393630.2016.1169364 |
|
Tamburini D, Łucejko J J, Pizzo B, et al. A critical evaluation of the degradation state of dry archaeological wood from Egypt by SEM, ATR-FTIR, wet chemical analysis and Py(HMDS)-GC-MS. Polymer Degradation and Stability, 2017, 146, 140- 154.
doi: 10.1016/j.polymdegradstab.2017.10.009 |
|
Tani N, Tsumura Y, Sato H. Nuclear gene sequences and DNA variation of Cryptomeria japonica samples from the postglacial period. Molecular Ecology, 2003, 12 (4): 859- 868.
doi: 10.1046/j.1365-294X.2003.01779.x |
|
Unger A, Schniewind A P, Unger W. 2001. Conservation of wood artifacts: a handbook. Heidelberg: Springer Berlin. | |
Vorobyev A, Almkvist G, van Dijk N P, et al. Relations of density, polyethylene glycol treatment and moisture content with stiffness properties of Vasa oak samples. Holzforschung, 2017, 71 (4): 327- 335.
doi: 10.1515/hf-2016-0202 |
|
Wagner L, Almkvist G, Bader T K, et al. The influence of chemical degradation and polyethylene glycol on moisture-dependent cell wall properties of archeological wooden objects: a case study of the Vasa shipwreck. Wood Science and Technology, 2016, 50 (6): 1103- 1123.
doi: 10.1007/s00226-016-0861-x |
|
Wagner S, Lagane F, Seguin-Orlando A, et al. High-Throughput DNA sequencing of ancient wood. Molecular Ecology, 2018, 27 (5): 1138- 1154.
doi: 10.1111/mec.14514 |
|
Walsh-Korb Z, Avérous L. Recent developments in the conservation of materials properties of historical wood. Progress in Materials Science, 2019, 102, 167- 221.
doi: 10.1016/j.pmatsci.2018.12.001 |
|
Wilson M A, Godfrey I M, Hanna J V, et al. The degradation of wood in old Indian Ocean shipwrecks. Organic Geochemistry, 1993, 20 (5): 599- 610.
doi: 10.1016/0146-6380(93)90026-8 |
|
Wu M R, Han X N, Qin Z F, et al. A quasi-nondestructive evaluation method for physical-mechanical properties of fragile archaeological wood with TMA: a case study of an 800-year-old shipwreck. Forests, 2022, 13 (1): 38.
doi: 10.3390/f13010038 |
|
Xia Y, Chen T Y, Wen J L, et al. Multi-analysis of chemical transformations of lignin macromolecules from waterlogged archaeological wood. International Journal of Biological Macromolecules, 2018, 109, 407- 416.
doi: 10.1016/j.ijbiomac.2017.12.114 |
|
Yin J P, Song K L, Lu Y, et al. Comparison of changes in micropores and mesopores in the wood cell walls of sapwood and heartwood. Wood Science and Technology, 2015, 49 (5): 987- 1001.
doi: 10.1007/s00226-015-0741-9 |
|
Yin Y F, Berglund L, Salmén L. Effect of steam treatment on the properties of wood cell walls. Biomacromolecules, 2011, 12 (1): 194- 202.
doi: 10.1021/bm101144m |
|
Zisi A, Dix J K. Simulating mass loss of decaying waterlogged wood: a technique for studying ultrasound propagation velocity in waterlogged archaeological wood. Journal of Cultural Heritage, 2018, 33, 39- 47.
doi: 10.1016/j.culher.2018.02.016 |
|
Zoia L, Tamburini D, Orlandi M, et al. Chemical characterisation of the whole plant cell wall of archaeological wood: an integrated approach. Analytical and Bioanalytical Chemistry, 2017, 409 (17): 4233- 4245.
doi: 10.1007/s00216-017-0378-7 |
[1] | 贾茹,孙海燕,王玉荣,汪睿,赵荣军,任海青. 杉木无性系新品种‘洋020’和‘洋061’10年生幼龄材微观结构与力学性能的相关性[J]. 林业科学, 2021, 57(5): 165-175. |
[2] | 张亚梅;于文吉. 热处理对竹基纤维复合材料性能的影响[J]. , 2013, 49(5): 160-168. |
[3] | 高慧 张利萍. 白腐菌预处理对杨木硫酸盐法制浆性能的影响[J]. 林业科学, 2009, 12(1): 125-130. |
[4] | 赵红英 郝玉乐 王鑫晓 高江华 魏刚 王经武. 河南信阳长台关七号墓出土棺木化学结构分析*[J]. 林业科学, 2008, 44(5): 170-172. |
[5] | 石淑兰 谢新良 胡惠仁 张守攻 王军辉. 不同树龄日本落叶松的化学组成与制浆特性[J]. 林业科学, 2006, 42(7): 90-94. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||