林业科学 ›› 2024, Vol. 60 ›› Issue (9): 170-182.doi: 10.11707/j.1001-7488.LYKX20220833
收稿日期:
2022-11-24
出版日期:
2024-09-25
发布日期:
2024-10-08
通讯作者:
杨红强
E-mail:153950092@qq.com
基金资助:
Zhihan Yu1,2(),Hongqiang Yang1,2,3,*
Received:
2022-11-24
Online:
2024-09-25
Published:
2024-10-08
Contact:
Hongqiang Yang
E-mail:153950092@qq.com
摘要:
可持续营林及相关联的最优轮伐期决策是缓解全球气候变化的重要途径。经典Faustmann模型关于“所有参数在不同轮伐期内保持一致”的基本假设无法得到满足,有必要以广义Faustmann模型为基础探求多因素影响下的最优轮伐期决策问题。本研究围绕广义Faustmann模型,归纳总结其理论扩展及前沿应用,梳理可持续营林决策方法学中广义Faustmann模型的最新研究进展。研究发现:1) 广义Faustmann模型已在碳汇效益、异龄林管理、自然风险和税收政策4个方向得到拓展,其中土地期望值及相应的利润最大化一阶条件能够帮助林地所有者制定合理的营林管理方案;2) 利用广义Faustmann模型,能够将Pressler指示率中的数量增长率、质量增长率和价格增长率具体化,允许林地所有者在不知道未来价格的情况下,结合自身风险偏好使用事前决策的方法决定当年是否采伐林分;3) 林分的土地价值和木材价值在广义Faustmann模型下能够被明确区别开来,从而在转让一片未成熟林分时,实现对林分的土地和木材准确估值,并在不同税收政策下确定其各自税率。广义Faustmann模型在未来最优轮伐期决策研究中的拓展方向还包括以下几个方面:1) 将碳汇效益由地上生物量碳库扩展至完整林业碳库;2) 将税收政策由国外政策扩展至中国特色林业税费体系;3) 将模型假设由确定环境扩展至随机环境;4) 将研究尺度由林分层面扩展至森林层面;5) 将生态效益由碳汇效益扩展至森林生态系统服务。
中图分类号:
余智涵,杨红强. 基于广义Faustmann模型的营林管理决策方法学研究前沿及展望[J]. 林业科学, 2024, 60(9): 170-182.
Zhihan Yu,Hongqiang Yang. Research Frontier and Prospect of Forest Management Decision-Making Methodology Based on Generalized Faustmann Model[J]. Scientia Silvae Sinicae, 2024, 60(9): 170-182.
表1
经典Faustmann模型和广义Faustmann模型的比较静态分析①"
参数发生变化的时间 Time of parameters change | 发生“一次性增长”的参数名称 Parameter name where “one-time increase” occurs | 最优轮伐期 Optimal rotation period | |
经典Faustmann模型 | 广义Faustmann模型 | ||
当前轮伐期 During the current rotation period | 重置成本 Replacement cost( | 延长 Increase | 不变 No change |
木材价格 Timber price( | 缩短 Decrease | 延长 Increase | |
折现率 Discount rate | 缩短 Decrease | 缩短 Decrease | |
碳价格 Carbon price | 延长 Increase | 延长 Increase | |
碳转换系数 Carbon conversion factor | 延长 Increase | 延长 Increase | |
木材的长期储存比例 Long-term storage ratio of wood( | 缩短 Decrease | 不确定 Uncertain | |
未来轮伐期 During the future rotation period | 重置成本 Replacement cost( | 延长 Increase | 延长 Increase |
木材价格 Timber price( | 缩短 Decrease | 缩短 Decrease | |
折现率 Discount rate( | 缩短 Decrease | 延长 Increase | |
碳价格 Carbon price( | 延长 Increase | 缩短 Decrease | |
碳转换系数 Carbon conversion factor( | 延长 Increase | 缩短 Decrease | |
木材的长期储存比例 Long-term storage ratio of wood( | 缩短 Decrease | 延长 Increase |
表2
不同税收政策下的土地期望值及利润最大化的一阶条件①"
税收政策 Tax policy | 公式类别 Formula category | 公式 Formula |
UPT | 土地期望值 Land expectation value | |
一阶条件 First-order condition | ||
SVT | 土地期望值 Land expectation value | |
一阶条件 First-order condition | ||
GFRPT | 土地期望值 Land expectation value | |
一阶条件 First-order condition | ||
NFRPT | 土地期望值 Land expectation value | |
一阶条件 First-order condition | ||
FTP | 土地期望值 Land expectation value | |
一阶条件 First-order condition |
表3
不同税收政策下的林分价值和土地价值①"
税收政策 Tax policy | 价值类别 Value category | 公式 Formula |
UPT | 林分价值 Forest value | |
土地价值 Land value | ||
SVT | 林分价值 Forest value | |
土地价值 Land value | ||
GFRPT | 林分价值 Forest value | |
土地价值 Land value | ||
NFRPT | 林分价值 Forest value | |
土地价值 Land value | ||
FTP | 林分价值 Forest value | |
土地价值 Land value |
董灵波, 蔺雪莹, 张一帆, 等. 2022. 兼顾碳汇和木材生产的长白落叶松人工林最优轮伐期. 林业科学, 58(5): 18–30. | |
Dong L B, Lin X Y, Zhang Y F, et al. 2022. Optimal rotation of Larix olgensis plantation in considering carbon sequestration and timber production. Scientia Silvae Sinicae, 58(5): 18–30. [in Chinese] | |
付 晓, 张煜星, 王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学, 2022, 58 (2): 32- 41. | |
Fu X, Zhang Y X, Wang X J. Prediction of forest biomass carbon pool and carbon sink potential in China before 2060. Scientia Silvae Sinicae, 2022, 58 (2): 32- 41. | |
郭 蕾, 赵方芳. 2020. 我国碳排放权交易市场活跃度研究: 基于碳价时间序列的测算. 价格理论与实践, (7): 98–101, 179. | |
Guo L, Zhao F F. 2020. Research on the active degree of carbon emission trading market in China: calculation based on carbon price time series. Price: Theory & Practice, (7): 98–101, 179. [in Chinese] | |
李林蓓, 李剑泉, 郭慧敏. 中国木材市场时空格局分析. 林业资源管理, 2022, (1): 78- 85. | |
Li L B, Li J Q, Guo H M. Analysis on spatiotemporal pattern of China’s timber market. Forest Resources Management, 2022, (1): 78- 85. | |
廖世涛, 华伟平, 江希钿, 等. 2018. 天然异龄林林木资产择伐收益法评估. 森林与环境学报, 38(2): 191–195. | |
Liao S T, Hua W P, Jiang X D, et al. 2018. Tree assets evaluation of natural uneven-aged stand by selective cutting income method. Journal of Forest and Environment, 38(2): 191–195. [in Chinese] | |
林进添. 天然异龄林资产评估收益现值法中择伐周期的改进. 西南林业大学学报, 2016, 36 (1): 84- 90. | |
Zhu J T. Methodology development of selective cutting cycle of income approach of natural uneven-aged forest resource evaluation. Journal of Southwest Forestry University, 2016, 36 (1): 84- 90. | |
沈月琴, 王 枫, 张耀启, 等. 2013. 中国南方杉木森林碳汇供给的经济分析. 林业科学, 49(9): 140–147. | |
Shen Y Q, Wang F, Zhang Y Q, et al. 2013. Economic analysis of Chinese fir forest carbon sequestration supply in south China. Scientia Silvae Sinicae, 49(9): 140–147. [in Chinese] | |
田惠玲, 朱建华, 何 潇, 等. 2022. 基于随机森林模型的东北三省乔木林生物质碳储量预测. 林业科学, 58(4): 40–50. | |
Tian H L, Zhu J H, He X, et al. 2022. Projected biomass carbon stock of arbor forest of three provinces in northeastern China based on random forest model. Scientia Silvae Sinicae, 58(4): 40–50. [in Chinese] | |
徐拓远, 张晓晓, 刘金龙, 等. 2019. 分权还是集权: 对改革开放以来我国林业税费体制变迁的解释. 农业经济问题, (1): 133–144. | |
Xu T Y, Zhang X X, Liu J L, et al. 2019. Decentralization or centralization: an explanation about the changes of China’s forestry tax and fee system since the reform and opening up. Issues in Agricultural Economy, (1): 133–144. [in Chinese] | |
杨红强, 余智涵. 全球木质林产品碳科学研究动态及未来的重点问题. 南京林业大学学报(自然科学版), 2021, 45 (4): 219- 228. | |
Yang H Q, Yu Z H. Research trends and future key issues of global harvested wood products carbon science. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45 (4): 219- 228. | |
余智涵, 宁 卓, 杨红强. 随机价格下杉木人工林的碳汇收益及最优轮伐期确定. 自然资源学报, 2022, 37 (3): 753- 768.
doi: 10.31497/zrzyxb.20220313 |
|
Yu Z H, Ning Z, Yang H Q. Carbon sequestration benefit and optimal rotation period determination of Cunninghamia lanceolata plantation under stochastic price. Journal of Natural Resources, 2022, 37 (3): 753- 768.
doi: 10.31497/zrzyxb.20220313 |
|
余智涵, 张 楠, 杨红强, 2023. 基于价格随机Faustmann模型的最优轮伐期决策方法及演进. 中国人口·资源与环境, 33(10): 211–220. | |
Yu Z H, Zhang N, Yang H Q. 2023. Decision-making method and evolution of optimal rotation period based on the Faustmann model with stochastic price. China Population, Resources and Environment, 33(10): 211–220. [in Chinese] | |
张 楠, 宁 卓, 杨红强. 弗斯曼模型及其广义改进: 基于林地期望值评估方法学演进. 林业经济, 2020, 42 (10): 3- 15. | |
Zhang N, Ning Z, Yang H Q. Faustmann model and its generalization: methodology evolution based on evaluation of forestland expectation value. Forestry Economics, 2020, 42 (10): 3- 15. | |
朱万泽. 成熟森林固碳研究进展. 林业科学, 2020, 56 (3): 117- 126. | |
Zhu W Z. Advances in the carbon sequestration of mature forests. Scientia Silvae Sinicae, 2020, 56 (3): 117- 126. | |
朱永红, 翁国庆. 异龄林经营决策优化. 林业资源管理, 2000, (1): 20- 24. | |
Zhu Y H, Wen G Q. Optimization of management decisions for uneven-aged stands. Forest Resources Management, 2000, (1): 20- 24. | |
朱 臻, 沈月琴, 张耀启, 等. 2012. 碳汇经营目标下的林地期望价值变化及碳供给: 基于杉木裸地造林假设研究. 林业科学, 48(11): 112–116. | |
Zhu Z, Shen Y Q, Zhang Y Q, et al. 2012. Change of forestland expected value and carbon supply in the objective of carbon sequestration: based on the Chinese fir plantation in bared land. Scientia Silvae Sinicae, 48(11): 112–116. [in Chinese] | |
周经纬. 经济学视角下林业税费改革问题研究. 财会月刊, 2010, (30): 30- 32. | |
Zhou J W. Study on forestry tax and fee reform from the perspective of economics. Finance and Accounting Monthly, 2010, (30): 30- 32. | |
Adams D M, Ek A R. Optimizing the management of uneven-aged forest stands. Canadian Journal of Forest Research, 1974, 4 (3): 274- 287.
doi: 10.1139/x74-041 |
|
Ahtikoski A, Salminen H, Hokka H, et al. Optimising stand management on peatlands: the case of northern Finland. Canadian Journal of Forest Research, 2012, 42 (2): 247- 259.
doi: 10.1139/x11-174 |
|
Al Abri I, Grogan K, Daigneault A. Optimal forest management in the presence of endogenous fire risk and fuel control. European Journal of Forest Research, 2023, 142 (2): 395- 413.
doi: 10.1007/s10342-023-01530-7 |
|
Amacher G S, Malik A S, Haight R G. Not getting burned: the importance of fire prevention in forest management. Land Economics, 2005, 81 (2): 284- 302.
doi: 10.3368/le.81.2.284 |
|
Amacher G S, Ollikainen M, Koskela E. 2009. Economics of forest resources. Cambridge: the MIT Press. | |
Asante P, Armstrong G W. Optimal forest harvest age considering carbon sequestration in multiple carbon pools: a comparative statics analysis. Journal of Forest Economics, 2012, 18 (2): 145- 156.
doi: 10.1016/j.jfe.2011.12.002 |
|
Bedel A P, Mote T L, Goodrick S L. Climate change and associated fire potential for the south-eastern United States in the 21st century. International Journal of Wildland Fire, 2013, 22 (8): 1034- 1043.
doi: 10.1071/WF13018 |
|
Chang S J. An economic analysis of forest taxation’s impact on optimal rotation age. Land Economics, 1982, 58 (3): 310- 323.
doi: 10.2307/3145939 |
|
Chang S J. A generalized Faustmann model for the determination of optimal harvest age. Canadian Journal of Forest Research, 1998, 28 (5): 652- 659.
doi: 10.1139/x98-017 |
|
Chang S J. Forest valuation under the generalized Faustmann formula. Canadian Journal of Forest Research, 2014, 44 (1): 56- 63.
doi: 10.1139/cjfr-2013-0298 |
|
Chang S J. Forest property taxation under the generalized Faustmann formula. Forest Policy and Economics, 2018a, 88, 38- 45.
doi: 10.1016/j.forpol.2017.12.008 |
|
Chang S J. Forest valuation under the generalized Faustmann formula with taxation. Forest Policy and Economics, 2018b, 88, 46- 51.
doi: 10.1016/j.forpol.2017.12.007 |
|
Chang S J. Twenty one years after the publication of the generalized Faustmann formula. Forest Policy and Economics, 2020, 118, 102238.
doi: 10.1016/j.forpol.2020.102238 |
|
Chang S J, Deegen P. Pressler’s indicator rate formula as a guide for forest management. Journal of Forest Economics, 2011, 17 (3): 258- 266.
doi: 10.1016/j.jfe.2011.04.002 |
|
Chang S J, Gadow K V. Application of the generalized Faustmann model to uneven-aged forest management. Journal of Forest Economics, 2010, 16 (4): 313- 325.
doi: 10.1016/j.jfe.2010.06.002 |
|
Chang W Y, Li Z L, Lu K F, et al. Optimal eco-compensation for forest-based carbon sequestration programs: a case study of larch carbon sink plantations in Gansu, northwest China. Forests, 2022, 13 (2): 268.
doi: 10.3390/f13020268 |
|
Cook-Patton S C, Leavitt S M, Gibbs D, et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature, 2020, 585, 545- 550.
doi: 10.1038/s41586-020-2686-x |
|
Costanza R, d’Arge R, de Groot R, et al. The value of the world’s ecosystem services and natural capital. Nature, 1997, 387, 253- 260.
doi: 10.1038/387253a0 |
|
Diaz-Balteiro L, Rodriguez L C E. Optimal rotations on Eucalyptus plantations including carbon sequestration: a comparison of results in Brazil and Spain. Forest Ecology and Management, 2006, 229 (1/2/3): 247- 258. | |
Dwivedi P, Bailis R, Stainback A, et al. Impact of payments for carbon sequestered in wood products and avoided carbon emissions on the profitability of NIPF landowners in the US South. Ecological Economics, 2012, 78, 63- 69.
doi: 10.1016/j.ecolecon.2012.03.014 |
|
Ekholm T. Optimal forest rotation under carbon pricing and forest damage risk. Forest Policy and Economics, 2020, 115, 102131.
doi: 10.1016/j.forpol.2020.102131 |
|
Faustmann M. Calculation of the value which forest land and immature stands possess for forestry. Journal of Forest Economics, 1849, 1, 7- 44. | |
Gong P C, Löfgren K G. 2010. Did Pressler fully understand how to use the indicator per cent? Journal of Forest Economics, 16(3): 195–203. | |
Grassi G, House J, Dentener F, et al. The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 2017, 7 (3): 220- 226.
doi: 10.1038/nclimate3227 |
|
Halbritter A. An economic analysis of double-cohort forest resources. Journal of Forest Economics, 2015, 21 (1): 14- 31.
doi: 10.1016/j.jfe.2014.11.001 |
|
Harris N L, Gibbs D A, Baccini A, et al. Global maps of twenty-first century forest carbon fluxes. Nature Climate Change, 2021, 11 (3): 234- 240.
doi: 10.1038/s41558-020-00976-6 |
|
Hartman R. The harvesting decision when a standing forest has valuea. Economic Inquiry, 1976, 14 (1): 52- 58.
doi: 10.1111/j.1465-7295.1976.tb00377.x |
|
Holtsmark B, Hoel M, Holtsmark K. Optimal harvest age considering multiple carbon pools: a comment. Journal of Forest Economics, 2013, 19 (1): 87- 95.
doi: 10.1016/j.jfe.2012.09.002 |
|
Klemperer W D, Farkas D R. Impacts on economically optimal timber rotations when future land use changes. Forest Science, 2001, 47 (4): 520- 525.
doi: 10.1093/forestscience/47.4.520 |
|
Le Quéré C, Andrew R M, Canadell J G, et al. Global carbon budget 2016. Earth System Science Data, 2016, 8 (2): 605- 649.
doi: 10.5194/essd-8-605-2016 |
|
Lintunen J, Rautiainen A, Uusivuori J. Which is more important, carbon or albedo? Optimizing harvest rotations for timber and climate benefits in a changing climate. American Journal of Agricultural Economics, 2022, 104 (1): 134- 160.
doi: 10.1111/ajae.12219 |
|
Muchiri M N, Pukkala T, Miina J. Optimising the management of maize: Grevillea robusta fields in Kenya. Agroforestry Systems, 2002, 56 (1): 13- 25.
doi: 10.1023/A:1021180609939 |
|
Newman D H. Forestry’s golden rule and the development of the optimal forest rotation literature. Journal of Forest Economics, 2002, 8 (1): 5- 27.
doi: 10.1078/1104-6899-00002 |
|
Ning Z, Sun C Y. Forest management with wildfire risk, prescribed burning and diverse carbon policies. Forest Policy and Economics, 2017, 75, 95- 102.
doi: 10.1016/j.forpol.2016.10.004 |
|
Norstrøm C J. A stochastic model for the growth period decision in forestry. The Swedish Journal of Economics, 1975, 77 (3): 329- 337.
doi: 10.2307/3438965 |
|
Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world’s forests. Science, 2011, 333, 988- 993.
doi: 10.1126/science.1201609 |
|
Parajuli R, Chang S J. Carbon sequestration and uneven-aged management of loblolly pine stands in the Southern USA: a joint optimization approach. Forest Policy and Economics, 2012, 22, 65- 71.
doi: 10.1016/j.forpol.2012.05.003 |
|
Pukkala T. Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic. Forest Ecosystems, 2015, 2, 6.
doi: 10.1186/s40663-015-0028-5 |
|
Reed W J. The effects of the risk of fire on the optimal rotation of a forest. Journal of Environmental Economics and Management, 1984, 11 (2): 180- 190.
doi: 10.1016/0095-0696(84)90016-0 |
|
Samuelson P A. Economics of forestry in an evolving society. Economic Inquiry, 1976, 14 (4): 466- 492.
doi: 10.1111/j.1465-7295.1976.tb00437.x |
|
Sato A, Nojiri Y. Assessing the contribution of harvested wood products under greenhouse gas estimation: accounting under the paris agreement and the potential for double-counting among the choice of approaches. Carbon Balance and Management, 2019, 14, 15.
doi: 10.1186/s13021-019-0129-5 |
|
Schulte B J, Buongiorno J. Effects of uneven-aged silviculture on the stand structure, species composition, and economic returns of loblolly pine stands. Forest Ecology and Management, 1998, 111 (1): 83- 101.
doi: 10.1016/S0378-1127(98)00312-0 |
|
Smith P, Davis S J, Creutzig F, et al. Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6 (1): 42- 50.
doi: 10.1038/nclimate2870 |
|
Stanturf J A, Goodrick S L, Outcalt K W. Disturbance and coastal forests: a strategic approach to forest management in hurricane impact zones. Forest Ecology and Management, 2007, 250 (1/2): 119- 135. | |
Susaeta A. On Pressler’s indicator rate formula under the generalized Reed model. Journal of Forest Economics, 2018, 30, 32- 37.
doi: 10.1016/j.jfe.2017.12.002 |
|
Susaeta A. Implications of future risk of fusiform rust on optimal forest management of even-aged slash pine plantations. Forest Policy and Economics, 2020, 116, 102183.
doi: 10.1016/j.forpol.2020.102183 |
|
Susaeta A, Carter D R, Chang S J, et al. A generalized reed model with application to wildfire risk in even-aged Southern United States pine plantations. Forest Policy and Economics, 2016, 67, 60- 69.
doi: 10.1016/j.forpol.2016.03.009 |
|
Susaeta A, Chang S J, Carter D R, et al. Economics of carbon sequestration under fluctuating economic environment, forest management and technological changes: an application to forest stands in the southern United States. Journal of Forest Economics, 2014, 20 (1): 47- 64.
doi: 10.1016/j.jfe.2013.08.001 |
|
Tahvonen O, Pukkala T, Laiho O, et al. Optimal management of uneven-aged Norway spruce stands. Forest Ecology and Management, 2010, 260 (1): 106- 115.
doi: 10.1016/j.foreco.2010.04.006 |
|
Trasobares A, Pukkala T. Optimising the management of uneven-aged Pinus sylvestris L. and Pinus nigra Arn. mixed stands in Catalonia, north-east Spain. Annals of Forest Science, 2004, 61 (8): 747- 758.
doi: 10.1051/forest:2004071 |
|
van Kooten G C, Binkley C S, Delcourt G. Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. American Journal of Agricultural Economics, 1995, 77 (2): 365- 374.
doi: 10.2307/1243546 |
|
Vincent J R. A framework for forest accounting. Forest Science, 1999, 45 (4): 552- 561.
doi: 10.1093/forestscience/45.4.552 |
|
Winjum J K, Brown S, Schlamadinger B. Forest harvests and wood products: sources and sinks of atmospheric carbon dioxide. Forest Science, 1998, 44 (2): 272- 284.
doi: 10.1093/forestscience/44.2.272 |
|
Yin R S. Combining forest-level analysis with options valuation approach: a new framework for assessing forestry investment. Forest Science, 2001, 47 (4): 475- 483.
doi: 10.1093/forestscience/47.4.475 |
|
Yin R S, Newman D H. The effect of catastrophic risk on forest investment decisions. Journal of Environmental Economics and Management, 1996, 31 (2): 186- 197.
doi: 10.1006/jeem.1996.0040 |
|
Yin R S, Newman D H. A timber producer’s entry, exit, mothballing, and reactivation decisions under market risk. Journal of Forest Economics, 1999, 5 (2): 305- 320. | |
Yousefpour R, Jacobsen J B, Thorsen B J, et al. A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Annals of Forest Science, 2012, 69 (1): 1- 15.
doi: 10.1007/s13595-011-0153-4 |
|
Yu Z H, Zhang H, Tu Q S, et al. Methodological comparison of the production approach 2013 and 2019 for quantifying the carbon stock in harvested wood products in China. Frontiers in Environmental Science, 2022, 10, 758857.
doi: 10.3389/fenvs.2022.758857 |
|
Yu Z H, Ning Z, Chang W Y, et al. Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences. Forest Policy and Economics, 2023, 151, 102957.
doi: 10.1016/j.forpol.2023.102957 |
|
Zhang F, Chang S J. Measuring the impact of risk preference on land valuation: evidence from forest management. Land Economics, 2018, 94 (3): 425- 436.
doi: 10.3368/le.94.3.425 |
[1] | 孙云浩,程南洋,沈文星. 长三角地区城市森林建设的空间关联及影响因素分析[J]. 林业科学, 2024, 60(5): 177-190. |
[2] | 刘林,张旭,余素君,孙洪刚,姜景民,王宇华. 湿地松材脂兼用林最优轮伐期的经济分析——以江西省景德镇市枫树山林场为例[J]. 林业科学, 2022, 58(4): 62-73. |
[3] | 沈月琴, 王枫, 张耀启, 朱臻, 王小玲. 中国南方杉木森林碳汇供给的经济分析[J]. 林业科学, 2013, 49(9): 140-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||