林业科学 ›› 2024, Vol. 60 ›› Issue (4): 99-108.doi: 10.11707/j.1001-7488.LYKX20220017
房有鑫,曹帮华*,郭龙梅,毛培利,庞元湘,张金颢,王志恒,李鹏飞
收稿日期:
2022-01-13
出版日期:
2024-04-25
发布日期:
2024-05-23
通讯作者:
曹帮华
基金资助:
Youxin Fang,Banghua Cao*,Longmei Guo,Peili Mao,Yuanxiang Pang,Jinhao Zhang,Zhiheng Wang,Pengfei Li
Received:
2022-01-13
Online:
2024-04-25
Published:
2024-05-23
Contact:
Banghua Cao
摘要:
目的: 探究高浓度氯盐胁迫下桧柏容器苗施加不同质量分数黄腐酸钾(FA-K)后的生长和生理特性,揭示FA-K缓解高浓度氯盐胁迫下桧柏的生理响应机制及差异性,为冬季北方高速公路中央分隔绿化带桧柏的管理维护提供技术支撑。方法: 选取2年生桧柏容器苗开展盆栽试验,以正常生长为对照,设置0.7% NaCl和0.7% CaCl2 2种盐分,每种盐分设置0、0.05%、0.10%、0.30%和0.50% 5种质量分数FA-K处理,测定各处理下桧柏苗生长指标(苗高生长量、地径生长量、生物量、根冠比)、光合色素含量(叶绿素a、叶绿素b、总叶绿素、类胡萝卜素)、相对电导率、丙二醛含量、渗透调节物质(脯氨酸、可溶性糖)含量、超氧化物歧化酶和过氧化物酶活性。结果: 1) 0.7% CaCl2胁迫对桧柏苗生长的抑制作用大于0.7% NaCl胁迫;0.7% CaCl2胁迫下桧柏苗除可溶性糖和类胡萝卜素含量低于NaCl胁迫外,其他生理指标(叶绿素a含量、叶绿素b含量、总叶绿素含量、丙二醛含量、脯氨酸含量、相对电导率、过氧化物酶和超氧化物歧化酶活性)均高于NaCl胁迫;2) 2种盐胁迫下,施加FA-K均使桧柏苗苗高生长量、地径生长量、生物量增加,叶绿素a、叶绿素b、总叶绿素、类胡萝卜素含量上升,相对电导率和丙二醛含量下降,超氧化物歧化酶和过氧化物酶活性、脯氨酸和可溶性糖含量呈低-高-低的变化趋势,0.50% FA-K下2种盐胁迫的幼苗生长接近对照;3) 相较0.7% NaCl胁迫,FA-K对0.7% CaCl2胁迫表现出更好的缓解作用。结论: 高浓度氯盐胁迫显著抑制桧柏苗生长和存活,0.7% CaCl2抑制作用比0.7% NaCl强;FA-K能够有效缓解NaCl和CaCl2胁迫,0.50% FA-K缓解效果较佳。
中图分类号:
房有鑫,曹帮华,郭龙梅,毛培利,庞元湘,张金颢,王志恒,李鹏飞. 黄腐酸钾对不同氯盐胁迫下桧柏生长的缓解效应[J]. 林业科学, 2024, 60(4): 99-108.
Youxin Fang,Banghua Cao,Longmei Guo,Peili Mao,Yuanxiang Pang,Jinhao Zhang,Zhiheng Wang,Pengfei Li. Mitigating Effect of Fulvic Acid Potassium on the Growth of Sabina chinensis under Different Chlorine Salt Stress[J]. Scientia Silvae Sinicae, 2024, 60(4): 99-108.
表1
黄腐酸钾对NaCl和CaCl2胁迫下桧柏苗生长的影响(均值±标准误)①"
处理 Treatment | 苗高生长量 Seedling height growth/cm | 地径生长量 Ground diameter growth/mm | 生物量 The biomass/g | 根冠比 Root-shoot ratio | 存活率 Survival rate(%) |
CK(正常生长 Normal growth) | 5.1±0.14a | 1.04±0.04a | 901.67±10.07a | 0.22±0.01g | 100 |
CK1(0.7% NaCl) | 1.2±0.33hi | 0.83±0.03bc | 628.33±9.99e | 0.29±0.01de | 40 |
T1(0.7% NaCl+0.05% FA-K) | 1.5±0.12ghi | 0.91±0.03abc | 725.67±54.47d | 0.37±0.02a | 40 |
T2(0.7% NaCl+0.10% FA-K) | 1.9±0.24ef | 0.91±0.03abc | 752.67±38.32d | 0.32±0.01cde | 60 |
T3(0.7% NaCl+0.30% FA-K) | 3.7±0.12d | 1.01±0.03ab | 789.00±33.55bc | 0.29±0.01de | 100 |
T4(0.7% NaCl+0.50% FA-K) | 4.4±0.15bc | 1.03±0.04a | 856.33±25.89ab | 0.25±0.01fg | 100 |
CK2(0.7% CaCl2) | 1.1±0.10i | 0.78±0.05c | 585.32±12.56e | 0.33±0.01bcd | 40 |
T5(0.7% CaCl2+0.05% FA-K) | 1.6±0.06fg | 0.95±0.14abc | 761.00±5.69c | 0.36±0.03ab | 60 |
T6(0.7% CaCl2+0.10% FA-K) | 2.1±0.23e | 0.96±0.06abc | 762.00±21.00c | 0.34±0.01abc | 80 |
T7(0.7% CaCl2+0.30%F A-K) | 4.0±0.12cd | 1.00±0.04ab | 806.00±29.57bc | 0.28±0.01ef | 100 |
T8(0.7% CaCl2+0.50% FA-K) | 4.8±0.26ab | 1.04±0.07a | 898.33±20.87a | 0.24±0.01g | 100 |
表2
黄腐酸钾对NaCl和CaCl2胁迫下桧柏光合色素含量的影响(均值±标准误)①"
处理 Treatment | 叶绿素a Chl a/(mg·g?1) | 叶绿素b Chl b/(mg·g?1) | 总叶绿素 Chl (a+b)/(mg·g?1) | 类胡萝卜素 Car/(mg·g?1) |
CK(正常生长 Normal growth) | 1.87±0.10a | 0.48±0.02a | 2.35±0.08a | 0.64±0.05a |
CK1(0.7% NaCl) | 1.04±0.04f | 0.18±0.02f | 1.22±0.04f | 0.38±0.01e |
T1(0.7% NaCl+0.05% FA-K) | 1.14±0.04ef | 0.24±0.03d | 1.37±0.05de | 0.43±0.01d |
T2(0.7% NaCl+0.10% FA-K) | 1.16±0.04ef | 0.29±0.02b | 1.44±0.05d | 0.46±0.02d |
T3(0.7% NaCl+0.30% FA-K) | 1.31±0.03cd | 0.29±0.03b | 1.60±0.04c | 0.47±0.01d |
T4(0.7% NaCl+0.50% FA-K) | 1.48±0.05b | 0.36±0.05b | 1.84±0.07b | 0.59±0.02b |
CK2(0.7% CaCl2) | 1.09±0.02ef | 0.20±0.03e | 1.29±0.02ef | 0.33±0.01f |
T5(0.7% CaCl2+0.05%F A-K) | 1.18±0.03e | 0.25±0.02d | 1.42±0.03d | 0.35±0.01ef |
T6(0.7% CaCl2+0.10%F A-K) | 1.20±0.02de | 0.26±0.01cd | 1.46±0.02d | 0.39±0.02e |
T7(0.7% CaCl2+0.30% FA-K) | 1.35±0.03c | 0.28±0.02bc | 1.62±0.03c | 0.44±0.01d |
T8(0.7% CaCl2+0.50% FA-K) | 1.58±0.06b | 0.37±0.03a | 1.96±0.06b | 0.51±0.02c |
表3
黄腐酸钾处理对盐胁迫下桧柏苗各指标的双因素方差分析"
指标 Index | FA-K质量分数 FA-K concentration | 盐分种类 Salt species | FA-K质量分数×氯盐种类 FA-K concentration×salt species | |||||
F | P | F | P | F | P | |||
苗高生长量Seedling height growth/cm | 218.82 | <0.01 | 4.21 | <0.05 | 0.87 | 0.50 | ||
地径生长量Ground diameter growth/mm | 4.64 | <0.01 | 0.55 | 0.82 | 0.23 | 0.92 | ||
生物量The biomass/g | 23.49 | <0.01 | 0.45 | 0.51 | 0.68 | 0.61 | ||
根冠比Root-shoot ratio | 26.50 | <0.01 | 0.19 | 0.67 | 1.55 | 0.23 | ||
Chl a含量 Chl a content/(mg·g?1) | 44.73 | <0.01 | 5.04 | <0.05 | 0.26 | 0.90 | ||
Chl b含量 Chl b content/(mg·g?1) | 185.13 | <0.01 | 0.10 | 0.76 | 6.35 | <0.01 | ||
Chl (a+b)含量Chl (a+b) content/(mg·g?1) | 70.07 | <0.01 | 4.81 | <0.05 | 0.53 | 0.72 | ||
Car含量 Car content/(mg·g?1) | 68.89 | <0.01 | 58.27 | <0.01 | 2.00 | 0.13 | ||
相对电导率Relative conductivity(%) | 102.82 | <0.01 | 23.13 | <0.01 | 3.84 | <0.05 | ||
MDA含量 MDA content/(μmol·g?1) | 165.98 | <0.01 | 6.15 | <0.01 | 8.46 | <0.01 | ||
PRO含量 Pro content(%) | 455.90 | <0.01 | 238.32 | <0.01 | 8.58 | <0.01 | ||
SS含量 SS content(%) | 167.42 | <0.01 | 39.61 | <0.01 | 9.96 | <0.01 | ||
SOD活性SOD activity/(U·g?1h?1) | 89.51 | <0.01 | 3.92 | >0.05 | 3.79 | <0.05 | ||
POD活性POD activity/(U·g?1h?1) | 123.56 | <0.01 | 125.61 | <0.01 | 20.347 | <0.01 |
表4
黄腐酸钾处理对NaCl胁迫下桧柏苗各指标的相关分析①"
生长和生理指标 Growth and physiological indicators | 苗高生长量Seedling height growth | 地径生长量Ground diameter growth | 生物量The biomass | 根冠比Root-shoot ratio | Chl a含量 Chl a content | Chl b含量 Chl b content | Chl (a+b)含量Chl (a+b) content | Car含量 Car content | 相对电导率Relative conductivity | MDA含量 MDA content | PRO含量 Pro content | SS含量 SS content | SOD活性SOD activity | POD活性POD activity |
苗高生长量Seedling height growth | 1.00 | |||||||||||||
地径生长量Ground diameter growth | 0.805** | 1.00 | ||||||||||||
生物量The biomass | 0.698** | 0.669** | 1.00 | |||||||||||
根冠比Root-shoot ratio | ?0.646** | ?0.38 | ?0.30* | 1.00 | ||||||||||
Chl a含量 Chl a content | 0.910** | 0.803** | 0.711** | ?0.627* | 1.00 | |||||||||
Chl b含量 Chl b content | 0.862** | 0.800** | 0.772** | ?0.521* | 0.903** | 1.00 | ||||||||
Chl (a+b)含量 Chl (a+b) content | 0.915** | 0.815** | 0.742** | ?0.604* | 0.993** | 0.947** | 1.00 | |||||||
Car含量 Car content | 0.817** | 0.779** | 0.701** | ?0.539* | 0.869** | 0.929** | 0.899** | 1.00 | ||||||
相对电导率Relative conductivity | ?0.922** | ?0.768** | ?0.753** | 0.624* | ?0.866** | ?0.931** | ?0.903** | ?0.825** | 1.00 | |||||
MDA含量 MDA content | ?0.940** | ?0.793** | ?0.808** | 0.666** | ?0.922** | ?0.912** | ?0.937** | ?0.887** | 0.921** | 1.00 | ||||
PRO含量 Pro content | ?0.11 | 0.07 | 0.18* | 0.47 | ?0.04 | 0.25 | 0.05 | 0.07 | ?0.12 | 0.09 | 1.00 | |||
SS含量 SS content | 0.813** | 0.794** | 0.806** | ?0.30 | 0.748** | 0.870** | 0.800** | 0.731** | ?0.891** | ?0.790** | 0.42 | 1.00 | ||
SOD活性SOD activity | ?0.42 | ?0.14 | ?0.13 | 0.572* | ?0.38 | ?0.12 | ?0.31 | ?0.26 | 0.22 | 0.42 | 0.870** | 0.13 | 1.00 | |
POD活性POD activity | 0.05 | 0.24 | 0.38 | 0.37* | 0.18 | 0.43 | 0.25 | 0.24 | ?0.27 | ?0.12 | 0.937** | 0.540* | 0.758** | 1.00 |
表5
黄腐酸钾处理对CaCl2胁迫下桧柏苗各指标的相关分析①"
生长和生理指标 Growth and physiological indicators | 苗高生长量Seedling height growth | 地径生长量Ground diameter growth | 生物量The biomass | 根冠比Root-shoot ratio | Chl a含量 Chl a content | Chl b含量 Chl b content | Chl (a+b)含量Chl (a+b) content | Car含量 Car content | 相对电导率Relative conductivity | MDA含量 MDA content | PRO含量 Pro content | SS含量 SS content | SOD活性SOD activity | POD活性POD activity |
苗高生长量Seedling height growth | 1.00 | |||||||||||||
地径生长量Ground diameter growth | 0.48 | 1.00 | ||||||||||||
生物量The biomass | 0.833** | 0.51 | 1.00 | |||||||||||
根冠比Root-shoot ratio | ?0.860** | ?0.15 | ?0.575* | 1.00 | ||||||||||
Chl a含量 Chl a content | 0.912** | 0.47 | 0.842** | ?0.809** | 1.00 | |||||||||
Chl b含量 Chl b content | 0.871** | 0.51 | 0.853** | ?0.749** | 0.928** | 1.00 | ||||||||
Chl (a+b)含量 Chl (a+b) content | 0.918** | 0.49 | 0.865** | ?0.802** | 0.996** | 0.957** | 1.00 | |||||||
Car含量 Car content | 0.941** | 0.539* | 0.803** | ?0.785** | 0.914** | 0.919** | 0.928** | 1.00 | ||||||
相对电导率Relative conductivity | ?0.933** | ?0.558* | ?0.935** | 0.664** | ?0.880** | ?0.822** | ?0.885** | ?0.893** | 1.00 | |||||
MDA含量 MDA content | ?0.922** | ?0.568* | ?0.934** | 0.689** | ?0.880** | ?0.870** | ?0.898** | ?0.893** | 0.952** | 1.00 | ||||
PRO含量 Pro content | 0.02 | 0.33 | 0.43* | 0.33 | ?0.02 | 0.08 | 0.02 | 0.01 | ?0.26 | ?0.36 | 1.00 | |||
SS含量 SS content | 0.740** | 0.550* | 0.847** | ?0.40 | 0.615* | 0.608* | 0.634* | 0.685** | ?0.869** | ?0.864** | 0.595* | 1.00 | ||
SOD活性SOD activity | ?0.589* | ?0.13 | ?0.37 | 0.703** | ?0.693** | ?0.676** | ?0.688** | ?0.649** | 0.44 | 0.38 | 0.602* | 0.03 | 1.00 | |
POD活性POD activity | ?0.33 | 0.08 | ?0.02 | 0.543* | ?0.36 | ?0.31 | ?0.34 | ?0.31 | 0.12 | 0.05 | 0.790** | 0.32 | 0.855** | 1.00 |
陈 旋, 胡 颖, 孙明升, 等. 外源调节物质对铅胁迫下格木幼苗生理特性的影响. 林业科学, 2021, 57 (2): 39- 48.
doi: 10.11707/j.1001-7488.20210205 |
|
Chen X, Hu Y, Sun M S, et al. Effects of exogenous regulating substances on physiological characteristics of Erythrophleum fordii seedlings under lead stress. Scientia Silvae Sinicae, 2021, 57 (2): 39- 48.
doi: 10.11707/j.1001-7488.20210205 |
|
丁 丁, 郭艳超, 鲁梦莹, 等. 黄腐酸对NaCl胁迫下茶菊幼苗生理特性的影响. 江苏农业科学, 2019, 47 (24): 114- 117. | |
Ding D, Guo Y C, Lu M Y, et al. Influence of fulvic acid on seedling physiological characteristics of Chrysanthemum under NaCl stress. Jiangsu Agricultural Sciences, 2019, 47 (24): 114- 117. | |
高鹤宁. 2020. 盐胁迫对水蜡幼苗的影响及氯化钙对盐胁迫的缓解. 沈阳: 沈阳农业大学. | |
Gao H N. 2020. Effects of salt stress and its alleviation by calcium chloride in Ligustrum obtusifolium Sieb. et Zucc. seedlings. Shenyang: Shenyang Agricultural University. [in Chinese] | |
高云晓, 庞元湘, 毛培利, 等. 黄腐酸有机肥对盐胁迫下刺槐幼苗生长的影响. 西南林业大学学报(自然科学), 2019, 39 (2): 36- 43. | |
Gao Y X, Pang Y X, Mao P L, et al. Effects of fulvic acid organic fertilizer on the growth of Robinia pseudoacacia seedlings under salt stress. Journal of Southwest Forestry University (Natural Sciences), 2019, 39 (2): 36- 43. | |
李青云, 葛会波, 胡淑明, 等. 钠盐和钙盐胁迫对草莓光合作用的影响. 西北植物学报, 2006, 26 (8): 1713- 1717.
doi: 10.3321/j.issn:1000-4025.2006.08.035 |
|
Li Q Y, Ge H B, Hu S M, et al. Effects of sodium and calcium salt stresses on strawberry photosynthesis. Acta Botanica Boreali-Occidentalia Sinica, 2006, 26 (8): 1713- 1717.
doi: 10.3321/j.issn:1000-4025.2006.08.035 |
|
刘梅堂, 王天雷, 程 瑶, 等. 中国泥炭褐煤资源及发展腐植酸钾产业潜力. 地学前缘, 2014, 21 (5): 255- 266. | |
Liu M T, Wang T L, Cheng Y, et al. Peat and brown coal resources in China and its potential for developing potassium humate fertilizer. Earth Science Frontiers, 2014, 21 (5): 255- 266. | |
刘晓涵. 2020. 外源添加生物炭和黄腐酸钾缓解烟草盐胁迫机理研究. 郑州: 河南农业大学. | |
Liu X H. 2020. The Study on relieving pesponse mechanism of tobacco in salt sterss by exogenous biochar and potassium fulvic acid. Zhengzhou: Henan Agricultural University. [in Chinese] | |
任毛飞, 王智豪, 郭雪芝, 等. 营养液添加黄腐酸钾对番茄幼苗生长的影响. 东北农业科学, 47(1): 120−122. | |
Ren M F, Wang Z H , Guo X Z, et al. Effect of BSFA in nutrient solution on tomato seedling growth. Journal of Northeast Agricultural Sciences, 47(1): 120−122. [in Chinese] | |
单丽岩, 田 霜, 胡 清. 氯盐类融雪剂对路域植物和土壤的影响研究. 安全与环境工程, 2016, 23 (3): 89- 95. | |
Shan L Y, Tian S, Hu Q. Effect of deicing chloride salts on roadside plants and soil. Safety and Environmental Engineering, 2016, 23 (3): 89- 95. | |
宋文静, 赵永长, 况 帅, 等. 干旱胁迫下黄腐酸钾对烤烟幼苗保水渗透调节能力的影响. 中国烟草科学, 2017, 38 (6): 61- 66. | |
Song W J, Zhao Y C, Kuang S, et al. Effect of fulvic acid potassium on osmotic adjustment ability of flue-cured tobacco seedlings under drought stress. Chinese Tobacco Science, 2017, 38 (6): 61- 66. | |
檀龙颜, 马洪娜. 植物响应钙离子胁迫的研究进展. 植物生理学报, 2017, 53 (7): 1150- 1158. | |
Tan L Y, Ma H N. Advance in the research of plant in response to calcium ions stress. Plant Physiology Journal, 2017, 53 (7): 1150- 1158. | |
田 敏, 饶龙兵, 李纪元. 2005. 植物细胞中的活性氧及其生理作用. 植物生理学通讯, 41(2): 235−241. | |
Tian M, Rao L B, Li J Y. 2002. Reactive oxygen species (ROS) and its physiological functions in plant cells. Plant Physiology Communications, 41(2): 235−241. [in Chinese] | |
王舒华, 陈 爽, 王 悦, 等. 不同有机物料对盐碱土的淋洗效果研究. 水土保持学报, 2021, 35 (6): 376- 383. | |
Wang S H, Chen S, Wang Y, et al. Study on leaching effect of different organic materials on saline-alkali soil. Journal of Soil and Water Conservation, 2021, 35 (6): 376- 383. | |
王双印. 2012. 耐融雪剂植物的筛选及融雪剂对微生物多样性的影响. 北京: 中国林业科学研究院. | |
Wang S Y. 2012. Screening of salt-tolerant plants and effect of snow-melting agent on the microbial diversity. Beijing: Chinses Academy of Forestry. [in Chinese] | |
王学奎, 黄见良. 2015. 植物生理生化实验原理与技术. 3版. 北京: 高等教育出版社. | |
Wang X K, Huang J L. 2015. Principles and techniques of plant physiological biochemical experiment. 3rd ed. Beijing: Higher Education Press. [in Chinese] | |
严 霞, 李法云, 刘桐武, 等. 化学融雪剂对生态环境的影响. 生态学杂志, 2008, 27 (12): 2209- 2214. | |
Yan X, Li F Y, Liu T W, et al. Effects of deicing chemicals on ecological environment. Chinese Journal of Ecology, 2008, 27 (12): 2209- 2214. | |
杨 澜. 2019. 黄腐酸对平邑甜茶和八棱海棠耐盐生理特性的影响. 泰安: 山东农业大学. | |
Yang L. 2019. Effects of fulvic acid on salt tolerance of Malus hupehensis Rehd and Malus robusta Rehd. Tai’an: Shandong Agricultural University. [in Chinese] | |
张丽丽, 刘德兴, 史庆华, 等. 黄腐酸对番茄幼苗适应低磷胁迫的生理调控作用. 中国农业科学, 2018, 51 (8): 1547- 1555.
doi: 10.3864/j.issn.0578-1752.2018.08.012 |
|
Zhang L L, Liu D X, Shi Q H, et al. Physiological regulatory effects of fulvic acid on stress tolerance of tomato seedlings against phosphate deficiency. Scientia Agricultura Sinica, 2018, 51 (8): 1547- 1555.
doi: 10.3864/j.issn.0578-1752.2018.08.012 |
|
张水勤, 袁 亮, 林治安, 等. 腐植酸促进植物生长的机理研究进展. 植物营养与肥料学报, 2017, 23 (4): 1065- 1076.
doi: 10.11674/zwyf.16255 |
|
Zhang S Q, Yuan L, Lin Z A, et al. Advances in humic acid for promoting plant growth and its mechanism. Journal of Plant Nutrition and Fertilizer, 2017, 23 (4): 1065- 1076.
doi: 10.11674/zwyf.16255 |
|
张 旭. 融雪剂的现状及对环境的影响和对策. 环境卫生工程, 2017, 25 (5): 64- 65,68.
doi: 10.3969/j.issn.1005-8206.2017.05.020 |
|
Zhang X. Deicing-salt application status and its influence and corresponding countermeasures to the environment. Environmental Sanitation Engineering, 2017, 25 (5): 64- 65,68.
doi: 10.3969/j.issn.1005-8206.2017.05.020 |
|
张 娅, 施树倩, 李亚萍, 等. 2021. 不同盐胁迫下小麦叶片渗透性调节和叶绿素荧光特性. 应用生态学报, 32(12): 4381−4390. | |
Zhang Y, Shi S Q, Li Y P, et al. 2021. Osmotic regulation and chlorophyll fluorescence characteristics in leaves of wheat seedlings under different salt stresses. Chinese Journal of Applied Ecology, 32(12): 4381−4390. [in Chinese] | |
张永霞, 张英杰, 巩冠群, 等. 2021. 黄腐酸对植物生长作用效果研究. 应用化工, 50(4): 1069−1072. | |
Zhang Y X, Zhang J Y, Gong G Q, et al. 2021. Effect of fulvic acid on plant growth. Applied Chemical Industry, 50(4): 1069−1072, 1076. [in Chinese] | |
赵励军. 2005. 不同来源腐植酸促进植物生长活性及作用机理研究. 哈尔滨: 哈尔滨理工大学. | |
Zhao L J. 2005. A research on that the humic acid of different sources accelerates the growth activity of plants and it’s mechanism of action. Harbin: Harbin University of Science and Technology. [in Chinese] | |
赵世杰, 许长成, 邹 琦, 等. 植物组织中丙二醛测定方法的改进. 植物生理学通讯, 1994, 30 (3): 207- 210. | |
Zhao S J, Xu C C, Zou Q, et al. Improvements of method of measurement of malondialdehvde in plant tissue. Plant Physiology Communications, 1994, 30 (3): 207- 210. | |
赵 鑫, 王文娟, 王普昶, 等. 不同钙浓度对宽叶雀稗幼苗的生长和抗性生理的影响. 植物生态学报, 2019, 43 (10): 909- 920.
doi: 10.17521/cjpe.2019.0235 |
|
Zhao X, Wang W J, Wang P C, et al. Effects of different calcium concentrations on growth and physiology of Paspalum wettsteinii seedlings. Chinese Journal of Plant Ecology, 2019, 43 (10): 909- 920.
doi: 10.17521/cjpe.2019.0235 |
|
赵秀婷, 王延双, 段 劼, 等. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响. 林业科学, 2021, 57 (4): 43- 53. | |
Zhao X T, Wang Y S, Duan J, et al. Effects of salt stress on growth and photosynthetic characteristics of Magnolia wufengensis grafted seedlings. Scientia Silvae Sinicae, 2021, 57 (4): 43- 53. | |
赵永长, 宋文静, 董建新, 等. 黄腐酸钾对干旱胁迫下烤烟幼苗活性氧代谢的影响. 中国烟草科学, 2017, 38 (4): 29- 36. | |
Zhao Y C, Song W J, Dong J X, et al. Effects of fulvic acid potassium on reactive oxygen metabolism of flue-cured tobacco seedlings grown under drought stress. Chinese Tobacco Science, 2017, 38 (4): 29- 36. | |
郑敏娜, 梁秀芝, 韩志顺, 等. 不同措施对苏打型盐碱土土壤盐分淋洗特征的影响. 山西农业科学, 2021, 49 (3): 318- 323.
doi: 10.3969/j.issn.1002-2481.2021.03.12 |
|
Zheng M N, Liang X Z, Han Z S, et al. Effects of different measures on soil salinity leaching characteristics in saline-alkali soil. Journal of Shanxi Agricultural Sciences, 2021, 49 (3): 318- 323.
doi: 10.3969/j.issn.1002-2481.2021.03.12 |
|
Aydın A, Kant C, Turan M. Hydrogel substrate alleviates salt stress with increase antioxidant enzymes activity of bean (Phaseolus vulgaris L. ) under salinity stress. African Journal of Agricultural Research, 2011, 6, 715- 724. | |
Dinler B S, Gunduzer E, Tekinay T. Pre-treatment of Fulvic Acid Plays a Stimulant Role in Protection of Soybean (Glycine max L. ) Leaves against heat and salt stress. Acta Biologica Cracoviensia s Botanica, 2016, 58 (1): 29- 41.
doi: 10.1515/abcsb-2016-0002 |
|
Fu D F, Bu B, Wu J G, et al. Investigation on the carbon sequestration capacity of vegetation along a heavy traffic load expressway. Journal of Environmental Management, 2019, 241, 549- 557.
doi: 10.1016/j.jenvman.2018.09.098 |
|
Hayat S, Hayat Q, Alyemeni M N, et al. Role of proline under changing environments: a review. Plant Signaling & Behavior, 2012, 7 (11): 1456- 1466. | |
Hua Q X, Nie Z H, Luo Y H, et al. Preparation of modified mineralized fulvic acid for inhibition of crystallization of calcium phosphate. Chemical Papers, 2022, 76 (1): 203- 211.
doi: 10.1007/s11696-021-01855-w |
|
Lichtenthaler H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymology, 1987, 148, 350- 382. | |
Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9 (10): 490- 498.
doi: 10.1016/j.tplants.2004.08.009 |
|
Vaughan D. A possible mechanism for humic acid action on cell elongation in root segments of Pisum sativum under aseptic conditions. Soil Biology and Biochemistry, 1974, 6 (4): 241- 247.
doi: 10.1016/0038-0717(74)90058-3 |
[1] | 姬新颖, 唐佳莉, 李敖, 郑旭, 王红霞, 张俊佩. 盐胁迫下不同基因型核桃实生幼苗生长及生理响应[J]. 林业科学, 2024, 60(2): 65-77. |
[2] | 李振倩,吴小芹,孔维亮. 拟蕈状芽孢杆菌JYZ-SD5与菌根真菌互作对水杉生长和耐盐性的影响[J]. 林业科学, 2023, 59(1): 99-109. |
[3] | 马姗姗,杨静静,曲德辉,李梦婕,张进,吴凡林,宿红艳,王磊. 过表达C2H2型锌指蛋白基因PdbZFP26提高山新杨耐盐性[J]. 林业科学, 2023, 59(1): 110-118. |
[4] | 赵凯,樊艳,邹圣强,郇旭辉,杜淑辉,韩有志,王升级. 银腺杨84K盐胁迫应答基因PagMYBR96的克隆及表达分析[J]. 林业科学, 2022, 58(9): 117-127. |
[5] | 林庆芝,朱祥元,毛培利,朱琳,郭龙梅,李泽秀,曹帮华,郝迎东,谭海涛,洪丕征,卢小军. NaCl和PEG胁迫对不同大小刺槐种子萌发和幼苗生长的影响[J]. 林业科学, 2022, 58(2): 100-112. |
[6] | 赵秀婷,王延双,段劼,马履一,何宝华,贾忠奎,桑子阳,朱仲龙. 盐胁迫对红花玉兰嫁接苗生长和光合特性的影响[J]. 林业科学, 2021, 57(4): 43-53. |
[7] | 刘道凤, 王霞, 代银, 杨建峰, 马婧, 李名扬, 眭顺照. 蜡梅转录因子CpTAF10基因的克隆及功能分析[J]. 林业科学, 2019, 55(6): 176-183. |
[8] | 江成, 周厚君, 赵岩秋, 何辉, 楚立威, 宋学勤, 卢孟柱. 干旱和高盐胁迫下钙离子依赖核酸酶基因CDD对银腺杨84K生长发育的影响[J]. 林业科学, 2019, 55(2): 33-40. |
[9] | 姚虹宇, 刘亚敏, 张盛楠, 刘玉民, 周文颖, 王针针. 外源柠檬酸对铝胁迫下马尾松生理特性的影响[J]. 林业科学, 2018, 54(7): 155-164. |
[10] | 王凯利, 傅鹰, 周明兵. 毛竹SQUAMOSA启动子结合蛋白SBP家族基因的鉴定及表达模式分析[J]. 林业科学, 2017, 53(12): 50-61. |
[11] | 储文渊, 王玉娇, 朱东悦, 陈竹, 严涵薇, 项艳. 盐和干旱胁迫下杨树新内参基因的筛选[J]. 林业科学, 2017, 53(10): 70-79. |
[12] | 管阳, 王宏芝, 张杰伟, 陈亚娟, 朱丹, 丁莉萍, 魏建华. 毛白杨翻译起始因子基因PtoeIF5A2的克隆及其表达特性分析[J]. 林业科学, 2014, 50(2): 63-69. |
[13] | 杨秀艳, 张华新, 张丽, 刘正祥, 杨升, 武香. NaCl胁迫对唐古特白刺幼苗生长及离子吸收、运输与分配的影响[J]. 林业科学, 2013, 49(9): 165-171. |
[14] | 马金龙, 姜国斌, 姚善泾, 金华. 盐胁迫下杨树质外体离子对气体交换参数的影响[J]. 林业科学, 2013, 49(7): 40-47. |
[15] | 杨升;刘正祥;张华新;杨秀艳;刘涛;姚宗国. 3个树种苗期耐盐性综合评价及指标筛选[J]. , 2013, 49(1): 91-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||