|
陈胜楠, 孔 喆, 陈立欣, 等. 半干旱区城市环境下油松林分蒸腾特征及其影响因子. 生态学报, 2020, 40 (4): 1269- 1280.
|
|
Chen S N, Kong Z, Chen L X, et al. The stand transpiration characteristics of Pinus tabuliformis and its influential factors in a semi-arid urban environment. Acta Ecologica Sinica, 2020, 40 (4): 1269- 1280.
|
|
陈左司南. 2020. 不同密度/林龄油松和元宝枫人工林冠层蒸腾和夜间液流特征及机制研究. 北京: 北京林业大学.
|
|
Chen Z S N. 2020. Characteristics and mechanism of canopy transpiration and night sap flow of Pinus tabuliformis and Acer truncatum plantations with different densities and age. Beijing: Beijing Forestry University. [in Chinese]
|
|
贾剑波. 2016. 北京山区典型森林生态系统水分运动过程与机制研究. 北京: 北京林业大学.
|
|
Jia J B. 2016. Water movement process and mechanism analysis on forest ecosystems in Beijing mountainous area. Beijing: Beijing Forestry University. [in Chinese]
|
|
李银坤, 郭文忠, 韩 雪, 等. 基于称重式蒸渗仪实测值的温室茄子日蒸散量估算方法评价. 中国农业气象, 2020, 41 (3): 129- 137.
doi: 10.3969/j.issn.1000-6362.2020.03.001
|
|
Li Y K, Guo W Z, Han X, et al. Evaluation of methods for estimating greenhouse eggplant daily evapotranspiration based on the values of weighing lysimeter measurements. Chinese Journal of Agrometeorology, 2020, 41 (3): 129- 137.
doi: 10.3969/j.issn.1000-6362.2020.03.001
|
|
佘映军, 齐学斌, 韩 洋, 等. 蒸渗仪在农业科研上的应用现状及发展趋势. 中国农学通报, 2020, 36 (20): 127- 135.
|
|
She Y J, Qi X B, Han Y, et al. Lysimeter in agricultural scientific research: application status and development trend. Chinese Agricultural Science Bulletin, 2020, 36 (20): 127- 135.
|
|
史 宇. 2011. 北京山区主要优势树种森林生态系统生态水文过程分析. 北京: 北京林业大学.
|
|
Shi Y. 2011. Eco-hydrological process analysis on forest ecosystems of major dominant species in Beijing mountainous area. Beijing: Beijing Forestry University. [in Chinese]
|
|
徐志彬, 陈胜楠, 陈立欣, 等. 半干旱区油松林分夜间液流变化特征及其影响因子. 中国水土保持科学, 2021, 19 (5): 37- 44.
|
|
Xu Z B, Chen S N, Chen L X, et al. Nocturnal sap flow variations and its influencing factors of Pinus tabuliformis stand in a semi-arid environment. Science of Soil and Water Conservation, 2021, 19 (5): 37- 44.
|
|
鄢春华, 王 蓓, 邹振东, 等. 九寨沟针阔混交林的夜间液流及其分配特征研究. 北京大学学报(自然科学版), 2020, 56 (4): 732- 738.
|
|
Yan C H, Wang B, Zou Z D, et al. Characteristics of nighttime sap flow and its partition in a mixed forest in Jiuzhaigou valley. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56 (4): 732- 738.
|
|
杨 宜, 李银坤, 郭文忠, 等. 基于称重式蒸渗仪的温室秋茬茄子蒸散特征及影响因素分析. 节水灌溉, 2021, (2): 47- 51.
|
|
Yang Y, Li Y K, Guo W Z, et al. Analysis of dynamic changes of evapotranspiration water consumption and environmental factors of autumn eggplant in greenhouse. Water Saving Irrigation, 2021, (2): 47- 51.
|
|
姚 瑶, 唐婉莹, 袁宏伟, 等. 基于称重式蒸渗仪的淮北平原冬小麦蒸散估算模型的本地化. 麦类作物学报, 2020, 40 (60): 737- 745.
doi: 10.7606/j.issn.1009-1041.2020.06.12
|
|
Yao Y, Tang W Y, Yuan H W, et al. Calibration of evapotranspiration for winter wheat based on the value of weighing lysimeter measurements in Huaibei plain. Journal of Triticeae Crops, 2020, 40 (60): 737- 745.
doi: 10.7606/j.issn.1009-1041.2020.06.12
|
|
张宝珠, 王仰仁, 李金玉, 等. 基于称重式蒸渗仪的春玉米蒸散量研究. 灌溉排水学报, 2021, 40 (11): 17- 25.
|
|
Zhang B Z, Wang Y R, Li J Y, et al. Evapotranspiration from maize studied using weighing lysimeters. Journal of Irrigation and Drainage, 2021, 40 (11): 17- 25.
|
|
张 婕, 蔡永茂, 陈立欣, 等. 北京山区元宝枫夜间液流活动特征及影响因素. 生态学报, 2019, 39 (9): 3210- 3223.
|
|
Zhang J, Cai Y M, Chen L X, et al. Influencing factors and characteristics of nighttime sap flow of Acer truncatum in Beijing mountainous area. Acta Ecologica Sinica, 2019, 39 (9): 3210- 3223.
|
|
Campbell G S, Norman J M. 1998. The light environment of plant canopies. An Introduction to Environmental Biophysics. New York: Springer, 247−278.
|
|
Cao Q Q, Li J R, Xiao H J, et al. Sap flow of Amorpha fruticosa: implications of water use strategy in a semiarid system with secondary salinization. Scientific Reports, 2020, 10, 13504.
doi: 10.1038/s41598-020-70511-2
|
|
Chen L X, Zhang Z Q, Zha T G, et al. Soil water affects transpiration response to rainfall and vapor pressure deficit in poplar plantation. New Forests, 2014, 45 (2): 235- 250.
doi: 10.1007/s11056-014-9405-0
|
|
Chen X, Zhao P, Hu Y T, et al. The sap flow-based assessment of atmospheric trace gas uptake by three forest types in subtropical China on different timescales. Environmental Science and Pollution Research, 2018, 25 (28): 28431- 28444.
doi: 10.1007/s11356-018-2891-4
|
|
Daley M J, Phillips N G. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 2006, 26 (4): 411- 419.
doi: 10.1093/treephys/26.4.411
|
|
Dawson T E, Burgess S S O, Tu K P, et al. Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 2007, 27 (4): 561- 575.
doi: 10.1093/treephys/27.4.561
|
|
Doronila A I, Forster M A. Performance measurement via sap flow monitoring of three eucalyptus species for mine site and dryland salinity phytoremediation. International Journal of Phytoremediation, 2015, 17 (1/2/3/4/5/6): 101- 108.
|
|
Fang W W, Lu N, Zhang Y, et al. Responses of nighttime sap flow to atmospheric and soil dryness and its potential roles for shrubs on the Loess Plateau of China. Journal of Plant Ecology, 2018, 11 (5): 717- 729.
doi: 10.1093/jpe/rtx042
|
|
Forster M A. 2014. How significant is nocturnal sap flow? Tree Physiology, 34(7): 757−765.
|
|
Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 1987, 3 (4): 309- 320.
doi: 10.1093/treephys/3.4.309
|
|
Huang C W, Domec J C, Ward E J, et al. The effect of plant water storage on water fluxes within the coupled soil-plant system. The New Phytologist, 2017, 213 (3): 1093- 1106.
doi: 10.1111/nph.14273
|
|
Jia J B, Yan W D, Chen X Y, et al. Characteristics of horizontal precipitation in semi-humid forestland in northern China. Water, 2019, 11 (5): 975.
doi: 10.3390/w11050975
|
|
Karpul R H, West A G. Wind drives nocturnal, but not diurnal, transpiration in Leucospermum conocarpodendron trees: implications for stilling on the Cape Peninsula. Tree Physiology, 2016, 36 (8): 954- 966.
doi: 10.1093/treephys/tpw033
|
|
Klein T, Zeppel M J B, Anderegg W R L, et al. Xylem embolism refilling and resilience against drought-induced mortality in woody plants: processes and trade-offs. Ecological Research, 2018, 33 (5): 839- 855.
doi: 10.1007/s11284-018-1588-y
|
|
Livesley S J, McPherson G M, Calfapietra C. The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. Journal of Environmental Quality, 2016, 45 (1): 119- 124.
doi: 10.2134/jeq2015.11.0567
|
|
Montoro A, Torija I, Mañas F, et al. Lysimeter measurements of nocturnal and diurnal grapevine transpiration: effect of soil water content, and phenology. Agricultural Water Management, 2020, 229, 105882.
doi: 10.1016/j.agwat.2019.105882
|
|
Moore G W, Cleverly J R, Owens M K. Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements. Tree Physiology, 2008, 28 (4): 521- 528.
doi: 10.1093/treephys/28.4.521
|
|
Phillips N G, Lewis J D, Logan B A, et al. Inter- and intra-specific variation in nocturnal water transport in Eucalyptus. Tree Physiology, 2010, 30 (5): 586- 596.
doi: 10.1093/treephys/tpq009
|
|
Rosado B H P, Oliveira R S, Joly C A, et al. Diversity in nighttime transpiration behavior of woody species of the Atlantic Rain Forest, Brazil. Agricultural and Forest Meteorology, 2012, 158/159, 13- 20.
doi: 10.1016/j.agrformet.2012.02.002
|
|
Siddiq Z, Cao K F. Nocturnal transpiration in 18 broadleaf timber species under a tropical seasonal climate. Forest Ecology and Management, 2018, 418, 47- 54.
doi: 10.1016/j.foreco.2017.12.043
|
|
Vogt J, Hauer R, Fischer B. The costs of maintaining and not maintaining the urban forest: a review of the urban forestry and arboriculture literature. Arboriculture & Urban Forestry, 2015, 41 (6): 293- 323.
|
|
Wang H, Zhao P, Hölscher D, et al. Nighttime sap flow of Acacia mangium and its implications for nighttime transpiration and stem water storage. Journal of Plant Ecology, 2012, 5 (3): 294- 304.
doi: 10.1093/jpe/rtr025
|
|
Wu J, Liu H X, Zhu J Y, et al. Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban Forestry & Urban Greening, 2020, 56, 126800.
|
|
Yu T F, Feng Q, Si J H, et al. Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. in situ measurement. Ecology and Evolution, 2018, 8 (5): 2607- 2616.
doi: 10.1002/ece3.3875
|
|
Zeppel M, Tissue D, Taylor D, et al. Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Tree Physiology, 2010, 30 (8): 988- 1000.
doi: 10.1093/treephys/tpq053
|
|
Zhang Y C, Shen Y J, Sun H Y, et al. Evapotranspiration and its partitioning in an irrigated winter wheat field: a combined isotopic and micrometeorologic approach. Journal of Hydrology, 2011, 408 (3/4): 203- 211.
|
|
Zhao C Y, Si J H, Feng Q, et al. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regulation, 2017, 82 (2): 353- 362.
doi: 10.1007/s10725-017-0263-6
|