林业科学 ›› 2024, Vol. 60 ›› Issue (1): 1-11.doi: 10.11707/j.1001-7488.LYKX20220401
收稿日期:
2022-06-09
接受日期:
2023-12-07
出版日期:
2024-01-25
发布日期:
2024-01-29
通讯作者:
张忠华
E-mail:ahhugang@126.com
基金资助:
Gang Hu1(),Qingling Pang2,Cong Hu1,Chaohao Xu1,Zhonghua Zhang1,*
Received:
2022-06-09
Accepted:
2023-12-07
Online:
2024-01-25
Published:
2024-01-29
Contact:
Zhonghua Zhang
E-mail:ahhugang@126.com
摘要:
目的: 分析中亚热带喀斯特森林树木功能型的生态位特征,推断不同功能型树木对资源的利用程度和种间竞争差异,为喀斯特地区的植被恢复与重建提供理论指导。方法: 以中亚热带喀斯特常绿落叶阔叶混交林为研究对象,在样地调查基础上根据冠层高度、种群大小、耐荫性和种子传播方式将被选的40种树木划分为不同功能型,通过计测生态位宽度和生态位重叠指数分析不同功能型树木的生态位特征。结果: 喀斯特森林树木的生态位宽度普遍较低,表现为常见种>偶见种>稀有种,且三者的生态位宽度间差异显著;重力传播种的生态位宽度显著低于动物和风力传播种,不同耐荫性和冠层高度功能型间的生态位宽度无显著差异;40种树木种对间的生态位重叠指数同样较低,常见种的生态位重叠指数显著高于偶见种和稀有种,上层种显著高于下层种,喜光种显著高于耐荫种,而重力传播种则显著低于动物和风力传播种;常见种与偶见种间的生态位重叠指数显著高于常见种与稀有种以及偶见种与稀有种间,动物与风力传播种间的生态位重叠指数显著高于动物与重力种间以及风力与重力种间,而中生与耐荫种间的生态位重叠指数则显著低于喜光与中生种以及喜光与耐荫种间。结论: 中亚热带喀斯特常绿落叶阔叶混交林中多数树种占据较小的生态位空间并可能存在较低的种间竞争作用,不同树木功能型生态位宽度和生态位重叠指数的差异可能与生境异质性和物种性状差异等存在密切联系。在进行退化生境植被重建时,可根据不同功能型树木的生态位特征合理构建群落的组成与结构,促进森林植被快速恢复。
中图分类号:
胡刚,庞庆玲,胡聪,徐超昊,张忠华. 中亚热带喀斯特森林树木功能型的生态位特征[J]. 林业科学, 2024, 60(1): 1-11.
Gang Hu,Qingling Pang,Cong Hu,Chaohao Xu,Zhonghua Zhang. Niche Characterization of Tree Functional Types in a Central Subtropical Karst Forest[J]. Scientia Silvae Sinicae, 2024, 60(1): 1-11.
表1
喀斯特森林40种树木的功能型划分、重要值和生态位宽度"
编号 No. | 种名Species | 种群大小 Population size | 冠层高度 Canopy height | 耐荫性 Shade tolerance | 种子散布方式 Seed dispersal mode | 重要值 Important value | 生态位宽度 Niche breadth |
1 | 黄杞 Engelhardtia roxburghiana | 常见 Common | 中层 Midstory | 喜光Light demanding | 风力Wind | 3.45 | 3.95 |
2 | 西南米槠 Castanopsis carlesii var. spinulosa | 常见 Common | 上层 Overstory | 中生Midtolerant | 动物Animal | 9.31 | 3.80 |
3 | 鹿角杜鹃 Rhododendron latoucheae | 常见 Common | 中层 Midstory | 耐荫Shade tolerant | 风力Wind | 3.88 | 3.37 |
4 | 香叶树 Lindera communis | 常见 Common | 下层 Understory | 耐荫Shade tolerant | 重力Gravity | 2.44 | 3.26 |
5 | 齿叶黄皮 Clausena dunniana | 常见 Common | 下层Understory | 耐荫Shade tolerant | 动物Animal | 1.75 | 3.16 |
6 | 圆果化香 Platycarya longipes | 常见 Common | 上层Overstory | 喜光Light demanding | 风力Wind | 3.51 | 3.37 |
7 | 灰石栎Lithocarpus henryi | 常见 Common | 上层Overstory | 喜光Light demanding | 动物Animal | 2.17 | 3.04 |
8 | 红翅槭 Acer fabri | 常见 Common | 中层Midstory | 耐荫Shade tolerant | 风力Wind | 1.17 | 3.27 |
9 | 青冈 Cyclobalanopsis glauca | 常见 Common | 上层Overstory | 喜光Light demanding | 动物Animal | 1.46 | 3.07 |
10 | 榕叶冬青 Ilex ficoidea | 常见 Common | 中层Midstory | 耐荫Shade tolerant | 动物Animal | 1.89 | 2.41 |
11 | 云贵鹅耳枥 Carpinus pubescens | 常见 Common | 上层Overstory | 喜光Light demanding | 风力Wind | 2.13 | 2.62 |
12 | 紫弹朴 Celtis biondii | 常见 Common | 上层Overstory | 喜光Light demanding | 动物Animal | 0.83 | 2.94 |
13 | 赤杨叶 Alniphyllum fortunei | 常见 Common | 上层Overstory | 喜光Light demanding | 风力Wind | 0.72 | 1.77 |
14 | 江南越橘Vaccinium mandarinorum | 常见 Common | 下层Understory | 耐荫Shade tolerant | 动物Animal | 0.61 | 2.76 |
15 | 细枝柃Eurya loquaiana | 偶见 Occasional | 下层Understory | 中生Midtolerant | 动物Animal | 0.4 | 2.45 |
16 | 椤木石楠 Photinia davidsoniae | 偶见 Occasional | 中层Midstory | 中生Midtolerant | 重力Gravity | 0.51 | 2.08 |
17 | 粗糠柴 Mallotus philippensis | 偶见 Occasional | 下层Understory | 中生Midtolerant | 重力Gravity | 0.35 | 1.88 |
18 | 褐毛杜英 Elaeocarpus duclouxii | 偶见 Occasional | 上层Overstory | 中生Midtolerant | 重力Gravity | 0.39 | 2.17 |
19 | 小叶柿 Diospyros dumetorum | 偶见 Occasional | 下层Understory | 中生Midtolerant | 动物Animal | 0.32 | 2.38 |
20 | 鸡仔木Sinoadina racemosa | 偶见 Occasional | 中层Midstory | 喜光Light demanding | 风力Wind | 0.54 | 1.88 |
21 | 栓叶安息香 Styrax suberifolius | 偶见 Occasional | 上层Overstory | 喜光Light demanding | 重力Gravity | 0.26 | 1.82 |
22 | 白蜡树 Fraxinus chinensis | 偶见 Occasional | 上层Overstory | 喜光Light demanding | 风力Wind | 0.36 | 1.44 |
23 | 小花梾木 Swida parviflora | 偶见 Occasional | 下层Understory | 中生Midtolerant | 重力Gravity | 0.16 | 1.47 |
24 | 矩叶卫矛Euonymus oblongifolius | 偶见 Occasional | 下层Understory | 耐荫Shade tolerant | 风力Wind | 0.16 | 1.77 |
25 | 野漆树 Toxicodendron succedaneum | 偶见 Occasional | 中层Midstory | 中生Midtolerant | 重力Gravity | 0.18 | 1.15 |
26 | 短序荚蒾 Viburnum brachybotryum | 偶见 Occasional | 下层Understory | 耐荫Shade tolerant | 重力Gravity | 0.11 | 0.91 |
27 | 桂楠 Phoebe kwangsiensis | 偶见 Occasional | 下层Understory | 耐荫Shade tolerant | 重力Gravity | 0.15 | 1.54 |
28 | 异叶梁王茶 Nothopanax davidii | 稀有 Rare | 下层Understory | 中生Midtolerant | 重力Gravity | 0.1 | 0.81 |
29 | 大叶冬青 Ilex latifolia | 稀有 Rare | 上层Overstory | 中生Midtolerant | 动物Animal | 0.06 | 0.69 |
30 | 红楠 Machilus thunbergii | 稀有 Rare | 中层Midstory | 中生Midtolerant | 重力Gravity | 0.06 | 0.63 |
31 | 黄连木Pistacia chinensis | 稀有 Rare | 上层Overstory | 喜光Light demanding | 重力Gravity | 0.19 | 1.05 |
32 | 山合欢Albizia kalkora | 稀有 Rare | 下层Understory | 喜光Light demanding | 重力Gravity | 0.18 | 1.02 |
33 | 广西大头茶 Gordonia kwangsiensis | 稀有 Rare | 下层Understory | 耐荫Shade tolerant | 风力Wind | 0.09 | 0 |
34 | 毛桂 Cinnamomum appelianum | 稀有 Rare | 下层Understory | 耐荫Shade tolerant | 重力Gravity | 0.05 | 0.69 |
35 | 云和新木姜子 Neolitsea aurata var. paraciculata | 稀有 Rare | 中层Midstory | 中生Midtolerant | 重力Gravity | 0.06 | 0.59 |
36 | 凹叶冬青Ilex championii | 稀有 Rare | 上层Overstory | 中生Midtolerant | 重力Gravity | 0.04 | 0 |
37 | 大叶桂樱 Laurocerasus zippeliana | 稀有 Rare | 中层Midstory | 喜光Light demanding | 动物Animal | 0.03 | 0 |
38 | 短萼海桐 Pittosporum brevicalyx | 稀有 Rare | 下层Understory | 耐荫Shade tolerant | 重力Gravity | 0.03 | 0 |
39 | 灰叶安息香 Styrax calvescens | 稀有 Rare | 下层Understory | 耐荫Shade tolerant | 重力Gravity | 0.03 | 0 |
40 | 硬毛山香圆 Turpinia affinis | 稀有 Rare | 下层Understory | 中生Midtolerant | 重力Gravity | 0.03 | 0 |
白晓航, 张金屯. 小五台山森林群落优势种的生态位分析. 应用生态学报, 2017, 28 (12): 3815- 3826. | |
Bai X H, Zhang J T. Niche analysis of dominant species of forest community in Xiaowutai Mountain, China. Chinese Journal of Applied Ecology, 2017, 28 (12): 3815- 3826. | |
陈 磊, 米湘成, 马克平. 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 2014, 26 (2): 112- 117. | |
Chen L, Mi X C, Ma K P. Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 2014, 26 (2): 112- 117. | |
储诚进, 王酉石, 刘 宇, 等. 物种共存理论研究进展. 生物多样性, 2017, 25 (4): 345- 354.
doi: 10.17520/biods.2017034 |
|
Chu C J, Wang Y S, Liu Y, et al. Advances in species coexistence theory. Biodiversity Science, 2017, 25 (4): 345- 354.
doi: 10.17520/biods.2017034 |
|
董 雪, 李永华, 辛智鸣, 等. 敦煌西湖荒漠-湿地生态系统优势物种生态位研究. 生态学报, 2020, 40 (19): 6841- 6849. | |
Dong X, Li Y H, Xin Z M, et al. Niche of the dominant species in wetland ecosystem enclosed by extremely dry desert region in Dunhuang Xihu. Acta Ecologica Sinica, 2020, 40 (19): 6841- 6849. | |
龚雪伟, 吕光辉. 艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位. 生物多样性, 2017, 25 (1): 34- 45. | |
Gong X W, Lü G H. Species diversity and dominant species’ niches of eremophyte communities of the Tugai forest in the Ebinur basin of Xinjiang, China. Biodiversity Science, 2017, 25 (1): 34- 45. | |
胡 楠, 范玉龙, 丁圣彦, 等. 伏牛山自然保护区森林生态系统乔木植物功能型分类. 植物生态学报, 2008, 32 (5): 1104- 1115. | |
Hu N, Fan Y L, Ding S Y, et al. Classification of plant functional types based on dominant tree species in the forest ecosystem at Funiu Mountain National Reserve, east China. Chinese Journal of Plant Ecology, 2008, 32 (5): 1104- 1115. | |
黄甫昭, 李冬兴, 王 斌, 等. 喀斯特季节性雨林优势种群生态位特征及其对石漠化地区植被修复的启示. 广西科学, 2018, 25 (5): 599- 610. | |
Huang F Z, Li D X, Wang B, et al. Niche characteristics of dominant populations of tropical karst seasonal rainforest implications for vegetation restoration in rock desertification region. Guangxi Sciences, 2018, 25 (5): 599- 610. | |
金 超, 吴初平, 丁 易, 等. 午潮山常绿次生阔叶林主要木本植物功能群及其演替特征. 生态学报, 2021, 41 (8): 3053- 3066. | |
Jin C, Wu C P, Ding Y, et al. The functional groups and succession characteristics of dominant populations in an evergreen secondary broad-leaved forest of Wuchao Mountain. Acta Ecologica Sinica, 2021, 41 (8): 3053- 3066. | |
李 坤, 邢小艺, 李逸伦, 等. 石林风景区不同石漠化人工修复方式对木本植物群落组成及种群生态位的影响. 生态学报, 2020, 40 (13): 4641- 4650. | |
Li K, Xing X Y, Li Y L, et al. Effect of different artificial restoration methods of karst rocky desertification on community composition and niche characteristics of woody populations in Shilin scenic area. Acta Ecologica Sinica, 2020, 40 (13): 4641- 4650. | |
李婷婷, 容 丽, 王梦洁, 等. 黔中喀斯特次生林主要物种的生态位及种间联结性动态变化. 热带亚热带植物学报, 2021, 29 (1): 9- 19. | |
Li T T, Rong L, Wang M J, et al. Dynamic changes in niche and interspecific association of major species of karst secondary forest in central Guizhou. Journal of Tropical and Subtropical Botany, 2021, 29 (1): 9- 19. | |
牛克昌, 储诚进, 王志恒. 动态生态位: 构建群落生态学理论的新框架. 中国科学:生命科学, 2022, 52 (3): 403- 417.
doi: 10.1360/SSV-2021-0160 |
|
Niu K C, Chu C J, Wang Z H. Dynamic niche: a new foundation for rebuilding theory of community ecology. Scientia Sinica Vitae, 2022, 52 (3): 403- 417.
doi: 10.1360/SSV-2021-0160 |
|
王克林, 岳跃民, 陈洪松, 等. 喀斯特石漠化综合治理及其区域恢复效应. 生态学报, 2019, 39 (20): 7432- 7440. | |
Wang K L, Yue Y M, Chen H S, et al. The comprehensive treatment of karst rocky desertification and its regional restoration effects. Acta Ecologica Sinica, 2019, 39 (20): 7432- 7440. | |
袁道先. 1994. 中国岩溶学. 北京: 地质出版社. | |
Yuan D X. 1994. Karst science in China. Beijing: Geological Publishing House. [in Chinese] | |
张金屯. 2018. 数量生态学. 第3版. 北京: 科学出版社. | |
Zhang J T. 2018. Quantitative ecology. 3rd ed. Beijing: Science Press. [in Chinese] | |
Anthwal S, Bhatt A B, Nautiyal B P, et al. Vegetation structure, niche width, niche overlap and types of competition in temperate grazingland of Garhwal Himalaya, India. The Environmentalist, 2008, 28 (3): 261- 273.
doi: 10.1007/s10669-007-9137-1 |
|
Atwater D Z, Ervine C, Barney J N. Climatic niche shifts are common in introduced plants. Nature Ecology & Evolution, 2018, 2 (1): 34- 43. | |
Carscadden K A, Emery N C, Arnillas C A, et al. Niche breadth: causes and consequences for ecology, evolution, and conservation. The Quarterly Review of Biology, 2020, 95 (3): 179- 214.
doi: 10.1086/710388 |
|
Chen D D, Liao J B, Bearup D, et al. Habitat heterogeneity mediates effects of individual variation on spatial species coexistence. Proceedings of the Royal Society B:Biological Sciences, 2020, 287 (1919): 20192436.
doi: 10.1098/rspb.2019.2436 |
|
Clements R, Sodhi N S, Schilthuizen M, et al. Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience, 2006, 56 (9): 733- 742.
doi: 10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2 |
|
Connell J H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees//Den Boer P J, Gradwell G R. Dynamics of Populations. Wageningen: Centre for Agricultural Publishing and Documentation, 298–312. | |
Costa-Pereira R, Araújo M S, Souza F L, et al. Competition and resource breadth shape niche variation and overlap in multiple trophic dimensions. Proceedings of the Royal Society B:Biological Sciences, 2019, 286 (1902): 20190369.
doi: 10.1098/rspb.2019.0369 |
|
Duckworth J C, Kent M, Ramsay P M. 2000. Plant functional types: an alternative to taxonomic plant community description in biogeography? Progress in Physical Geography, 24(4): 515-542. | |
Ford D, Williams P D. 2007. Karst hydrogeology and geomorphology. Chichester: John Wiley & Sons. | |
Fu W G, Wang F K, Yin Q L, et al. Niche dynamics of species in succession process in the Wetland of Yangtze Rivers Lower Reach, China. Plant Ecology and Evolution, 2015, 148 (1): 43- 51.
doi: 10.5091/plecevo.2015.956 |
|
Geange S W, Pledger S, Burns K C, et al. A unified analysis of niche overlap incorporating data of different types. Methods in Ecology and Evolution, 2011, 2 (2): 175- 184.
doi: 10.1111/j.2041-210X.2010.00070.x |
|
Godoy O, Gómez-Aparicio L, Matías L, et al. An excess of niche differences maximizes ecosystem functioning. Nature Communications, 2020, 11, 4180.
doi: 10.1038/s41467-020-17960-5 |
|
Golluscio R A, Sala O E. Plant functional types and ecological strategies in Patagonian forbs. Journal of Vegetation Science, 1993, 4 (6): 839- 846.
doi: 10.2307/3235623 |
|
Guo Y L, Lu J M, Franklin S B, et al. Spatial distribution of tree species in a species-rich subtropical mountain forest in central China. Canadian Journal of Forest Research, 2013, 43 (9): 826- 835.
doi: 10.1139/cjfr-2013-0084 |
|
HilleRisLambers J, Adler P B, Harpole W S, et al. 2012. Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43: 227−248. | |
Hirose T, Werger M J A. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia, 1987, 72, 520- 526.
doi: 10.1007/BF00378977 |
|
Hu Y, Wang H C, Jia H P, et al. Ecological niche and interspecific association of plant communities in alpine desertification grasslands: a case study of Qinghai Lake basin. Plants, 2022, 11 (20): 2724.
doi: 10.3390/plants11202724 |
|
Hurlbert S H. The measurement of niche overlap and some relatives. Ecology, 1978, 59 (1): 67- 77.
doi: 10.2307/1936632 |
|
Hutchinson G E. Cold spring harbor symposium on quantitative biology. Concluding Remarks, 1957, 22, 415- 427. | |
Janzen D H. Herbivores and the number of tree species in tropical forests. The American Naturalist, 1970, 104 (940): 501- 528.
doi: 10.1086/282687 |
|
Jiang Z C, Lian Y Q, Qin X Q. Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Science Reviews, 2014, 132, 1- 12.
doi: 10.1016/j.earscirev.2014.01.005 |
|
Lamont B B, Witkowski E T F. Plant functional types determine how close postfire seedlings are from their parents in a species-rich shrubland. Annals of Botany, 2021, 127 (3): 381- 395.
doi: 10.1093/aob/mcaa180 |
|
Lavorel S, Díaz S, Cornelissen J H C, et al. 2007. Plant functional types: are we getting any closer to the holy grail?//Canadell J G, Pataki D E, Pitelka L F. Terrestrial Ecosystems in a Changing World. Berlin: Springer, 149−164. | |
Levine J M, HilleRisLambers J. The importance of niches for the maintenance of species diversity. Nature, 2009, 461 (7261): 254- 257.
doi: 10.1038/nature08251 |
|
Mendes L M, César R G, Uezu A, et al. Large canopy and animal-dispersed species facilitate natural regeneration in tropical forest restoration. Restoration Ecology, 2021, 29 (4): e13406.
doi: 10.1111/rec.13406 |
|
Nathan R, Muller-Landau H C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 2000, l5 (7): 278- 285. | |
Nie Y P, Chen H S, Ding Y L, et al. Comparison of rooting strategies to explore rock fractures for shallow soil-adapted tree species with contrasting aboveground growth rates: a greenhouse microcosm experiment. Frontiers in Plant Science, 2017, 8, 1651.
doi: 10.3389/fpls.2017.01651 |
|
O'Kane C A J, Duffy K J, Page B R, et al. Overlap and seasonal shifts in use of woody plant species amongst a guild of savanna browsers. Journal of Tropical Ecology, 2011, 27 (3): 249- 258.
doi: 10.1017/S0266467410000817 |
|
Pastore A I, Barabás G, Bimler M D, et al. The evolution of niche overlap and competitive differences. Nature Ecology & Evolution, 2021, 5 (3): 330- 337. | |
Peterson A T, Soberón J, Pearson G, et al. 2011. Ecological niches and geographic distributions. New Jersey: Princeton University Press. | |
Pianka E R. The structure of lizard communities. Annual Review of Ecology and Systematics, 1973, 4, 53- 74.
doi: 10.1146/annurev.es.04.110173.000413 |
|
Pielou E C. Niche width and niche overlap: a method for measuring them. Ecology, 1972, 53 (4): 687- 692.
doi: 10.2307/1934784 |
|
Poorter L, Bongers L, Bongers F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology, 2006, 87 (5): 1289- 1301.
doi: 10.1890/0012-9658(2006)87[1289:AOMTST]2.0.CO;2 |
|
Qiao Y, Jiang Y J, Zhang C Y. Contribution of karst ecological restoration engineering to vegetation greening in southwest China during recent decade. Ecological Indicators, 2021, 121, 107081.
doi: 10.1016/j.ecolind.2020.107081 |
|
Rutherford M C, O'Callaghan M, Hurford J L, et al. Realized niche spaces and functional types: a framework for prediction of compositional change. Journal of Biogeography, 1995, 22 (2/3): 523- 531.
doi: 10.2307/2845950 |
|
Shannon C E, Weiner W. 1949. The mathematical theory of communication: unknown distance function. Urbana: University of Illinois Press. | |
Shen Y X, Wang D J, Chen Q Q, et al. Large heterogeneity of water and nutrient supply derived from runoff of nearby rock outcrops in karst ecosystems in SW China. Catena, 2019, 172, 125- 131.
doi: 10.1016/j.catena.2018.08.020 |
|
Silvertown J. Plant coexistence and the niche. Trends in Ecology & Evolution, 2004, 19 (11): 605- 611. | |
Smith E P. Niche breadth, resource availability, and inference. Ecology, 1982, 63 (6): 1675- 1681.
doi: 10.2307/1940109 |
|
Stein A, Gerstner K, Kreft H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 2014, 17 (7): 866- 880.
doi: 10.1111/ele.12277 |
|
Tong X W, Brandt M, Yue Y M, et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 2018, 1 (1): 44- 50.
doi: 10.1038/s41893-017-0004-x |
|
Verheijen L M, Aerts R, Bönisch G, et al. Variation in trait trade-offs allows differentiation among predefined plant functional types: implications for predictive ecology. New Phytologist, 2016, 209 (2): 563- 575.
doi: 10.1111/nph.13623 |
|
Wang D J, Shen Y X, Li Y H, et al. Rock outcrops redistribute organic carbon and nutrients to nearby soil patches in three karst ecosystems in SW China. PLoS One, 2016, 11 (8): e0160773.
doi: 10.1371/journal.pone.0160773 |
|
Wang K L, Zhang C H, Chen H S, et al. Karst landscapes of China: patterns, ecosystem processes and services. Landscape Ecology, 2019, 34 (12): 2743- 2763.
doi: 10.1007/s10980-019-00912-w |
|
Wang X G, Ye J, Li B H, et al. Spatial distributions of species in an old-growth temperate forest, northeastern China. Canadian Journal of Forest Research, 2010, 40 (6): 1011- 1019. | |
Wiegand T, Wang X G, Anderson-Teixeira K J, et al. Consequences of spatial patterns for coexistence in species-rich plant communities. Nature Ecology & Evolution, 2021, 5 (7): 965- 973. | |
Woodward F I, Cramer W. Plant functional types and climatic change: introduction. Journal of Vegetation Science, 1996, 7 (3): 306- 308.
doi: 10.1111/j.1654-1103.1996.tb00489.x |
|
Xu Z H, Ren H, Wei X, et al. Distribution and conservation status of Camellia longzhouensis (Theaceae), a critically endangered plant species endemic to southern China. Global Ecology and Conservation, 2021, 27, e01585.
doi: 10.1016/j.gecco.2021.e01585 |
|
Zhang Q W, Zhu S D, Jansen S, et al. Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China. Functional Ecology, 2021, 35 (3): 566- 577.
doi: 10.1111/1365-2435.13731 |
|
Zhang Z H, Hu G, Zhu J D, et al. Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China. Ecological Research, 2010, 25 (6): 1151- 1160.
doi: 10.1007/s11284-010-0740-0 |
|
Zhang Z H, Hu G, Zhu J D, et al. Stand structure, woody species richness and composition of subtropical karst forests in Maolan, south-west China. Journal of Tropical Forest Science, 2012, 24 (4): 498- 506. | |
Zhang Z H, Hu G, Zhu J D, et al. Aggregated spatial distributions of species in a subtropical karst forest, southwestern China. Journal of Plant Ecology, 2013, 6 (2): 131- 140.
doi: 10.1093/jpe/rts027 |
[1] | 夏虹,夏春燕,宋海燕,杜羽,陶建平. 重庆金佛山3种喀斯特森林群落木本植物种子雨、土壤种子库与幼苗更新[J]. 林业科学, 2022, 58(1): 1-11. |
[2] | 姚杰, 张春雨, 赵秀海. 吉林蛟河阔叶红松林树种空间分布格局及其种间关联性[J]. 林业科学, 2018, 54(8): 23-31. |
[3] | 王家鸣, 许涵, 李意德, 林明献, 周璋, 骆土寿, 陈德祥. 地形异质性对尖峰岭热带山地雨林木本植物群落结构及多样性的影响[J]. 林业科学, 2018, 54(1): 1-11. |
[4] | 林英华, 贾旭东, 徐演鹏, 李慧仁, 刘学爽, 徐永波, 韦昌雷, 刘三章, 王立中. 大兴安岭典型森林沼泽类型地表土壤动物群落与生态位分析[J]. 林业科学, 2015, 51(12): 53-62. |
[5] | 姜俊;赵秀海. 吉林蛟河针阔混交林群落优势种群种间联结性[J]. 林业科学, 2011, 47(12): 149-153. |
[6] | 陈俊华;刘兴良 何飞 刘世荣. 卧龙巴朗山川滇高山栎灌丛主要木本植物种群生态位特征[J]. 林业科学, 2010, 46(3): 23-28. |
[7] | 王祥福 郭泉水 巴哈尔古丽 刘正宇 任明波. 崖柏群落优势乔木种群生态位[J]. 林业科学, 2008, 44(4): 6-13. |
[8] | 龙翠玲;余世孝. 茂兰喀斯特森林的林隙物种组成动态及更新模式*[J]. 林业科学, 2007, 43(9): 7-12. |
[9] | 郭逍宇 张金屯 宫辉力 张桂莲 董志. 安太堡露天矿区人工植被的物种多度分布分析[J]. 林业科学, 2007, 43(3): 118-121. |
[10] | 李德志 石强 臧润国 王绪平 盛丽娟 朱志玲 王长爱. 物种或种群生态位宽度与生态位重叠的计测模型[J]. 林业科学, 2006, 42(7): 95-103. |
[11] | 龙翠玲;余世孝 魏鲁明 熊志斌. 茂兰喀斯特森林干扰状况与林隙特征[J]. 林业科学, 2005, 41(4): 13-19. |
[12] | 陈存及 陈新芳 刘金福 董建文 陈世品. 人工-天然杉阔混交林种群生态位及竞争研究[J]. 林业科学, 2004, 40(1): 78-83. |
[13] | 喻理飞 朱守谦 叶镜中 魏鲁明 陈正仁. 退化喀斯特森林自然恢复过程中群落动态研究[J]. 林业科学, 2002, 38(1): 1-7. |
[14] | 喻理飞 朱守谦 叶镜中 魏鲁明 陈正仁. 退化喀斯特森林自然恢复评价研究[J]. 林业科学, 2000, 36(6): 12-19. |
[15] | 刘济明. 茂兰喀斯特森林主要树种的繁殖更新对策[J]. 林业科学, 2000, 36(5): 114-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||