 
		林业科学 ›› 2023, Vol. 59 ›› Issue (5): 109-120.doi: 10.11707/j.1001-7488.LYKX20220093
收稿日期:2022-02-18
									
				
									
				
									
				
											出版日期:2023-05-25
									
				
											发布日期:2023-08-02
									
			通讯作者:
					郝德君
											E-mail:dejunhao@163.com
												基金资助:
        
               		Jingting Wang,Shouyin Li,Zhuang Zuo,Wenxuan Xu,Dejun Hao*( )
)
			  
			
			
			
                
        
    
Received:2022-02-18
									
				
									
				
									
				
											Online:2023-05-25
									
				
											Published:2023-08-02
									
			Contact:
					Dejun Hao   
											E-mail:dejunhao@163.com
												摘要:
目的: 探究香樟齿喙象与香樟互作中的寄主选择和适应机制,明确香樟齿喙象幼虫对芳樟醇、桉叶油素胁迫生境下的生长发育适应性及其解毒代谢方式,以阐明香樟齿喙象专性为害香樟的潜在机制。方法: 采用人工饲料混药法,测定香樟齿喙象初孵幼虫取食不同质量分数芳樟醇和桉叶油素3天后的死亡率,明确香樟齿喙象幼虫对2种萜类物质的敏感性。分别设定10.0 、19.7 mg·g?1的芳樟醇及5.0、15.2 mg·g?1的桉叶油素进行长期取食处理,测定香樟齿喙象幼虫阶段的存活曲线、发育历期、体重等生长发育指标,明确香樟齿喙象幼虫对2种萜类物质的生物学响应。利用qRT-PCR技术,测定香樟齿喙象4龄幼虫取食芳樟醇和桉叶油素后的解毒酶基因(细胞色素P450酶、羧酸酯酶、UDP-葡萄糖醛酸转移酶、谷胱甘肽-S-转移酶和ABC转运蛋白)和表皮蛋白基因的相对表达量变化。结果: 芳樟醇和桉叶油素在2种处理质量分数条件长期胁迫下,对香樟齿喙象幼虫的生长发育产生显著的抑制作用,并且抑制作用随质量分数增加而增强,即发育历期延长、体重降低以及死亡率提高。此外,还表现出幼虫在蜕皮期前后出现高频死亡的特征。相较于桉叶油素,香樟齿喙象幼虫对芳樟醇表现出更强的耐受性。qRT-PCR结果显示,芳樟醇胁迫能够显著地诱导香樟齿喙象幼虫体内细胞色素P450酶和表皮蛋白的基因表达,而桉叶油素取食胁迫下仅有1条UDP-葡萄糖醛酸转移酶的基因表达量显著上调。结论: 香樟齿喙象幼虫对2种寄主植物次生物质的取食胁迫产生不同生理适应性。同时,其幼虫的解毒酶相关基因和表皮蛋白基因对2种萜类物质胁迫的表达响应模式存在差异性。香樟齿喙象幼虫能够有目的地调控不同生理适应机制,以克服不同的寄主次生物质防御,以实现寄主定殖和种群暴发。
中图分类号:
王璟廷,李寿银,左壮,徐文轩,郝德君. 芳樟醇、桉叶油素取食胁迫下香樟齿喙象(鞘翅目:象甲科)幼虫的生长发育及抗性基因的转录表达[J]. 林业科学, 2023, 59(5): 109-120.
Jingting Wang,Shouyin Li,Zhuang Zuo,Wenxuan Xu,Dejun Hao. Growth, Development and the Resistance Gene Transcriptional Expression of Pagiophloeus tsushimanus(Coleoptera: Curculionidae) Larvae after Feeding on Linalool and Eucalyptol[J]. Scientia Silvae Sinicae, 2023, 59(5): 109-120.
 
												
												表1
所选香樟齿喙象有关解毒酶基因和表皮蛋白基因转录组基因序列引物"
| 基因 Gene | 引物序列(5'?3') Primer sequence(5'?3') | Tm/℃ | 产物大小 Product size/bp | 扩增效率 Amplification efficiency(%) | 
| RPS3 | AACGATTGGGCATCTTCAT | 54.0 | 139 | 113.7 | 
| CACAGGATCATTTGCTGGA | 56.0 | |||
| 18S RNA | GGCATCGTCCTAACACCCA | 60.0 | 124 | 91.6 | 
| CCGCTAGAGGCGTTTCATC | 60.0 | |||
| CYP-1 | CATCTGCTTCTTCGGACTG | 58.0 | 95 | 107.9 | 
| TTATGGGTCTCATTTGGGT | 54.0 | |||
| CYP-2 | AATCAGGAGGGCTCTACAT | 56.0 | 116 | 101.9 | 
| GAAATACTCATAATCCGTTG | 49.3 | |||
| CYP-3 | GTCCTTGGTCCCGATGCTC | 62.0 | 89 | 111.7 | 
| ACGCCGCCGAATCTTACTC | 60.0 | |||
| CYP-4 | TCCTTGGTCCCGATGCTC | 58.0 | 86 | 106.4 | 
| CGCCGCCGAATCTTACTC | 58.0 | |||
| CYP-5 | TTCTCCAGGGAACAAGCAC | 58.0 | 115 | 98.1 | 
| TGGCGTCACCACAGATGTA | 58.0 | |||
| GST-1 | GCTGGTGGGTCAACAGATCA | 57.7 | 82 | 92.5 | 
| AGCGTCTGGCTTCCTTTCAA | 56.9 | |||
| GST-2 | CTTCTATGAGCCCCTACTGCC | 57.6 | 137 | 109.2 | 
| ATTCTCCCCGTTCAGCTCG | 57.6 | |||
| GST-3 | ACGAAGCGTGTGGAATGAGAT | 56.5 | 144 | 95.6 | 
| TGATCTGTTGACCCACCAGC | 57.7 | |||
| GST-4 | AACTTGGCACATGCCACAAC | 56.8 | 129 | 99.3 | 
| CGTACCGAGAGCATGTTGGA | 57.3 | |||
| GST-5 | GAGTTTCTCAAAGCGTCGCC | 57.0 | 118 | 93.5 | 
| TCGTAATCGCCCAGAGCATC | 57.5 | |||
| COE-1 | AGGAGCAAGCAGATTCACGA | 56.4 | 105 | 94.0 | 
| AGCTTCCAAATCCTCATCCCT | 55.8 | |||
| COE-2 | CCCCGAACAATCAACGCTTC | 57.2 | 136 | 97.6 | 
| TGCCTCCTTCCATAACGGAT | 55.8 | |||
| COE-3 | GGGATCGGGTTCGGAACAAA | 58.0 | 139 | 94.0 | 
| CGCATTTCCGGGAGTTTCCA | 58.5 | |||
| COE-4 | GATCTTTGGGCAAAGTGCCG | 57.5 | 140 | 91.3 | 
| CTTGACGTGCCCTTGTTGTC | 57.1 | |||
| COE-5 | GACCAGTTTCCTGCTAGCGAT | 57.3 | 93.0 | 97.3 | 
| TGGTTCGGGAGTTGGGTTTC | 57.9 | |||
| UGT-1 | GAATGCGGCCAAAGCTGAAA | 56.8 | 123.0 | 99.8 | 
| ACCTGTGCTTTGTATCGGGG | 57.8 | |||
| UGT-2 | TGATCAGCCCATGAGTTCCT | 55.8 | 97.0 | 105.6 | 
| ATCAACGGCAGCATAGCGTA | 56.8 | |||
| UGT-3 | CCCCGATACAAAGCACAGGT | 57.8 | 135.0 | 97.1 | 
| ACTGGGAGATTGCAGATGCC | 57.9 | |||
| UGT-4 | CCTCCGAAGAAACTTCCGCA | 57.8 | 88.0 | 104.4 | 
| TCAAGTTCGACCCCATGCTG | 57.9 | |||
| UGT-5 | GCCGGCATTAGATTGCCTTG | 57.4 | 133.0 | 93.7 | 
| TAGTCCTCGTGCTTCTGCAA | 56.1 | |||
| ABC-1 | GCCAACACTCCGCAAACATT | 56.7 | 147.0 | 98.0 | 
| TTGTCCAGCTCGTTTCTGCT | 56.9 | |||
| ABC-2 | TCTCGTGCTGTTAGGGGAGA | 57.8 | 102.0 | 94.6 | 
| AGTTGAGGTAGGGTGCCTGA | 58.2 | |||
| ABC-3 | ATTCCTCCTCTTCTCCGGCT | 58.1 | 132.0 | 100.9 | 
| GCCCTGTTGAAGCCATAGGT | 57.9 | |||
| ABC-4 | GAGGATGCGCATAGCGTTAG | 56.2 | 95.0 | 98.0 | 
| CGCAAGCGTCCAAATCCAAA | 56.7 | |||
| ABC-5 | TGTGGGACCTTCTGTTGAGC | 57.6 | 133.0 | 100.4 | 
| GGCGTTCCGTGGGAGTTTAT | 58.0 | |||
| CP-1 | AGCGGTGGGTTCTTTGTGTA | 56.0 | 95.0 | 100.9 | 
| CCCTGGTTGATTCTGACGGA | 56.0 | |||
| CP-2 | ACTCCAGTCGTCCTCCAAG | 60.0 | 88.0 | 102.9 | 
| AACCGTTCTCGTCTGCTAC | 58.0 | |||
| CP-3 | CTACCCACAACAAGGCGGAT | 60.0 | 83.0 | 114.9 | 
| ATCCTGCACTTGGGGGAATG | 56.0 | |||
| CP-4 | CAAGAATCTCGTCGTGGTG | 58.0 | 93.0 | 115.6 | 
| TGGGTCAGCGGTGTAATC | 56.0 | |||
| CP-5 | TGGGTCAGCGGTGTAATC | 56.3 | 198.0 | 90.6 | 
| CTACGACAGCGTTGAAGC | 56.0 | 
 
												
												表2
香樟齿喙象有关解毒酶基因和表皮蛋白基因转录组基因序列同源性分析"
| 昆虫种类 Species | GenBank 登录号 GenBank accession No. | 基因 Gene | 匹配度 Identity(%) | 长度 Length/bp | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019761906.1 | RPS3 | 48.78 | 370 | 
| 红棕象甲 Rhynchophorus ferrugineus | KAF7284967.1 | 18S RNA | 88.2 | 230 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | AFI45038.1 | CYP-1 | 45.62 | 488 | 
| 华山松大小蠹 Dendroctonus armandi | ALD15919.1 | CYP-2 | 54.83 | 507 | 
| 米象 Sitophilus oryzae | XP_030748038.1 | CYP-3 | 47.64 | 509 | 
| 米象 Sitophilus oryzae | XP_030758350.1 | CYP-4 | 42.92 | 506 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | AFI45002.1 | CYP-5 | 85.29 | 697 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | AFE62899.1 | GST-1 | 68.23 | 207 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019759096.1 | GST-2 | 95 | 377 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | AEE62899.1 | GST-3 | 68.09 | 207 | 
| 米象 Sitophilus oryzae | XP_030752825.1 | GST-4 | 95.64 | 378 | 
| 香樟齿喙象 Pagiophloeus tsushimanus | QCX41803.1 | GST-5 | 94.44 | 126 | 
| 红棕象甲 Rhynchophorus ferrugineus | KAF7281696.1 | COE-1 | 60.65 | 553 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | ERL87113.1 | COE-2 | 81.75 | 481 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | ENN80857.1 | COE-3 | 61.11 | 188 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019756056.1 | COE-4 | 66.04 | 559 | 
| 华山松大小蠹 Dendroctonus armandi00 | AYN64429.1 | COE-5 | 78.19 | 552 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019756751.1 | UGT-1 | 84.35 | 525 | 
| 稻水象甲 Lissorhoptrus oryzophilus | AVT42216.1 | UGT-2 | 65.24 | 524 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019756751.1 | UGT-3 | 84 | 525 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019771423.1 | UGT-4 | 68.38 | 519 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | AEE61792.1 | UGT-5 | 73.91 | 523 | 
| 米象 Sitophilus oryzae | XP_030757858.1 | ABC-1 | 96.19 | 609 | 
| 米象 Sitophilus oryzae | XP_030757858.2 | ABC-2 | 94.01 | 609 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019764834.1 | ABC-3 | 87.78 | 687 | 
| 米象 Sitophilus oryzae | XP_030758286.1 | ABC-4 | 93.75 | 621 | 
| 玉米根萤叶甲 Diabrotica virgifera virgifera | XP_028153387.1 | ABC-5 | 73.58 | 400 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019767588.1 | CP-1 | 93.55 | 229 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | KAH1004877.1 | CP-2 | 82.81 | 132 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019761931.1 | CP-3 | 74.43 | 211 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | XP_019767588.1 | CP-4 | 93.44 | 229 | 
| 中欧山松大小蠹 Dendroctonus ponderosae | KAH1013867.1 | CP-5 | 66.9 | 178 | 
 
												
												表1
2种质量分数芳樟醇和桉叶油素胁迫下对香樟齿喙象幼虫体重和蛹重的影响①"
| 药剂 Pesticides | 质量分数 Mass fraction/(mg·g?1) | 体重 Weight/mg | ||||
| 虫龄 Instar | 蛹 | |||||
| 1st-2nd | 2nd-3rd | 3rd-4th | 4th-5th | Pupation | ||
| 对照组 Control | — | 4.84±0.15a | 11.18±0.60a | 22.53±1.26a | 38.42±2.55a | 126.04±1.85a | 
| 芳樟醇 Linalool | 10.0 | 4.15±0.12b | 7.97±0.33b | 17.04±1.17b | 24.01±1.89b | 103.01±4.08bc | 
| 19.7 | 3.31±0.06c | 6.26±0.32c | 10.09±0.61c | 16.41±1.17c | 87.16±2.72c | |
| 桉叶油素 Eucalyptol | 5.0 | 4.32±0.20b | 8.36±0.36b | 17.66±1.08b | 26.65±2.14b | 118.64±3.03ab | 
| 15.2 | 4.02±0.10b | 8.17±0.30b | 14.86±0.82c | 21.61±0.98b | 96.05±4.49c | |
 
												
												表2
2种质量分数芳樟醇和桉叶油素引起的香樟齿喙象幼虫相关表现指数"
| 药剂 Pesticides | 质量分数 Mass fraction/(mg·g?1) | 虫龄 Instar | ||||
| 1st | 2nd | 3rd | 4th | 5th | ||
| 对照组Control | — | 0.476 | 0.708 | 0.984 | 1.185 | 1.187 | 
| 芳樟醇Linalool | 10.0 | 0.330 | 0.404 | 0.837 | 0.617 | 0.865 | 
| 19.7 | 0.086 | 0.326 | 0.355 | 0.467 | 0.800 | |
| 桉叶油素Eucalyptol | 5.0 | 0.297 | 0.423 | 0.657 | 0.728 | 1.098 | 
| 15.2 | 0.158 | 0.356 | 0.581 | 0.613 | 0.673 | |
| 陈澄宇, 康志娇, 史雪岩, 等. 昆虫对植物次生物质的代谢适应机制及其对昆虫抗药性的意义. 昆虫学报, 2015, 58 (10): 1126- 1139. | |
| Chen C Y, Kang Z J, Shi X Y, et al. Metabolic adaptation mechanisms of insects to plant secondary metabolites and their implications for insecticide resistance of insects. Acta Entomologica Sinica, 2015, 58 (10): 1126- 1139. | |
| 陈高满, 陈展博, 葛 辉, 等. 苹果蠹蛾细胞色素P450基因CYP332A19和CYP337B19的克隆及表达分析. 昆虫学报, 2020, 63 (8): 941- 951. | |
| Chen G M, Chen Z B, Ge H, et al. Cloning and expression analysis of cytochrome P450 Genes CYP332A19 and CYP337B19 in the codling moth, Cydia pomonella (Lepedotera: Tortricidae) . Acta Entomologica Sinica, 2020, 63 (8): 941- 951. | |
| 黄俊浩, 吴时英, 高 磊, 等. 中国新记录种——香樟齿喙象的鉴别与为害. 浙江农林大学学报, 2014, 31 (5): 764- 767. | |
| Huang J H, Wu S Y, Gao L, et al. Diagnosis and damage of weevil pest Pagiophloeus tsushimanus on camphor tree . Journal of Zhejiang AF University, 2014, 31 (5): 764- 767. | |
| 李寿银, 陈 聪, 李 慧, 等. 取食含不同植物源成分的饲料对香樟齿喙象幼虫生长发育及体内解毒酶活性的影响. 昆虫学报, 2019, 62 (11): 1286- 1296. | |
| Li S Y, Chen C, Li H, et al. Effects of feeding on diets containing components of different plants on the development and detoxifying enzyme activities in Pagiophloeus tsushimanus (Coleptera: Curculionidae) larvae . Acta Entomologica Sinica, 2019, 62 (11): 1286- 1296. | |
| 梁 欣, 陈 斌, 乔 梁. 昆虫表皮蛋白基因研究进展. 昆虫学报, 2014, 57 (09): 1084- 1093. | |
| Liang X, Chen B, Qiao L. Research progress in insect cuticle protein genes. Acta Entomologica Sinica, 2014, 57 (09): 1084- 1093. | |
| 刘兴平, 陈春平, 王国红, 等. 2003. 我国松树诱导抗虫性研究进展. 林业科学, 39(5): 119−128. | |
| Liu X P, Chen C P, Wang G H, et al. 2003. Progress in induced resistance of pines. Scientia Silvae Sinicae, 39(5) : 119−128.[in Chinese] | |
| 孙雅雯, 郑 彬. 昆虫表皮与化学杀虫剂抗性机制关系的研究进展. 中国病原生物学杂志, 2015, 10 (11): 1055- 1059. | |
| Sun Y W, Zheng B. Advances in the study of the relationship between insect cuticle proteins and insecticide resistance. Journal of Pathogen Biology, 2015, 10 (11): 1055- 1059. | |
| 谢 辉, 王 燕, 刘银泉, 等. 2012. 植物组成型防御对植食性昆虫的影响, 植物保护, 38(1): 1−5. | |
| Xie H, Wang Y, Liu Y Q, et al. 2012. The influence of plant constitutive defense system on phytophagous insects. Plant Protection, 38(1): 1−5.[in Chinese] | |
| 张 峰, 毕良武, 赵振东. 樟树植物资源分布及化学成分研究进展. 天然产物研究与开发, 2017, 29 (3): 517- 531. | |
| Zhang F, Bi L W, Zhao Z D. Review on plant resources and chemical composition of camphor tree. Natural Product Research and Development, 2017, 29 (3): 517- 531. | |
| Adamski Z, Korolczuk D, Purgiel M, et al. Effect of fenitrothion on Spodoptera exigua larval development and ultrastructure of follicle cells . Biologia, 2009, 64 (1): 197- 202. doi: 10.2478/s11756-009-0022-x | |
| Awolola T S, Oduola O A, Strode C, et al. Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria . Transactions of the Royal Society of Tropical Medicine & Hygiene, 2009, 103 (11): 1139- 1145. doi: 10.1016/j.trstmh.2008.08.021 | |
| Balabanidou V, Grigoraki L, John V. Insect cuticle: a critical determinant of insecticide resistance. Current Opinion in Insect Science, 2018, 27, 68- 74. doi: 10.1016/j.cois.2018.03.001 | |
| Birnbaum S S, Abbot P. Gene expression and diet breadth in plant-feeding insects: summarizing trends. Trends in Ecology & Evolution, 2020, 35, 259- 277. doi: 10.1016/j.tree.2019.10.014 | |
| Blomquist G J, Tittiger C, Maclean M, et al. Cytochromes P450: terpene detoxification and pheromone production in bark beetles. Current Opinion in Insect Science, 2021, 43, 97- 102. doi: 10.1016/j.cois.2020.11.010 | |
| Charles J P. The regulation of expression of insect cuticle protein genes. Insect Biochemistry Molecular Biology, 2010, 40, 205- 213. doi: 10.1016/j.ibmb.2009.12.005 | |
| Chen C, Li S, Zhu H, et al. Identification and evaluation of reference genes for gene expression analysis in the weevil pest Pagiophloeus tsushimanus using RT-qPCR . Journal of Asia-Pacific Entomology, 2020, 23 (2): 336- 344. doi: 10.1016/j.aspen.2020.01.010 | |
| Chen C, Zhang C, Li S, et al. Biological traits and life history of Pagiophloeus Tsushimanus (Coleoptera: Curculionidae), a weevil pest on camphor trees in China . Journal of Forestry Research, 2021a, 32 (5): 1979- 1988. doi: 10.1007/s11676-020-01227-2 | |
| Chen C, Zhu H, Li S, et al. Insights into chemosensory genes of Pagiophloeus tsushimanus adults using transcriptome and QRT-PCR analysis . Comparative Biochemistry and Physiology Part D:Genomics and Proteomics, 2021b, 37, 100785. doi: 10.1016/j.cbd.2020.100785 | |
| Chiu C C, Keeling C I, Bohlmann J. The cytochrome P450 CYP6DE1 catalyzes the conversion of alpha-pinene into the mountain pine beetle aggregation pheromone trans-verbenol. Science Report, 2019a, 9, 1477. doi: 10.1038/s41598-018-38047-8 | |
| Chiu C C, Keeling C I, Bohlmann J. Functions of mountain pine beetle cytochromes P450 CYP6DJ1, CYP6BW1 and CYP6BW3 in the oxidation of pine monoterpenes and diterpene resin acids. Plos On, 2019b, 14 (5): e0216753. doi: 10.1371/journal.pone.0216753 | |
| Dai L, Ma M, Wang C, et al. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): expression profiles of different stages and responses to host allelochemicals . Insect Biochemistry and Molecular Biology, 2015, 65, 35- 46. doi: 10.1016/j.ibmb.2015.08.004 | |
| Després L, David J P, Gallet C. The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution, 2007, 22 (6): 298- 307. doi: 10.1016/j.tree.2007.02.010 | |
| Fang F J, Wang W J, Zhang D H, et al. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens . Parasitology Research, 2015, 114, 4421- 4429. doi: 10.1007/s00436-015-4683-9 | |
| Halon E, Eakteiman G, Moshitzky P, et al. Only a minority of broad-range detoxification genes respond to a variety of phytotoxins in generalist Bemisia tabaci species. Scientific Reports, 2015, 5, 17975. doi: 10.1038/srep17975 | |
| Heidel-Fischer H, Vogel H. Molecular mechanisms of insect adaptation to plant secondary compounds. Current Opinion in Insect Science, 2015, 8, 8- 14. doi: 10.1016/j.cois.2015.02.004 | |
| Hu B, Zhang S H, Ren M M, et al. The expression of Spodoptera exigua P450 and UGT genes: tissue specificity and response to insecticides . Insect Science, 2019, 26 (2): 199- 216. doi: 10.1111/1744-7917.12538 | |
| Huang X Z, Xiao Y T, Köllner T G, et al. The terpene synthase gene family in Gossypium hirsutum harbors a linalool synthase GhTPS12 implicated in direct defence responses against herbivores . Plant, Cell & Environment, 2017, 41 (1): 261- 274. doi: 10.1111/pce.13088 | |
| Li S Y, Chen C, Jia Z Y, et al. Offspring performance and female preference of Pagiophloeus tsushimanus (Coleoptera: Curculionidae) on three Lauraceae tree species: a potential risk of host shift caused by larval experience . Journal of Applied Entomology, 2021, 145 (6): 530- 542. doi: 10.1111/jen.12865 | |
| Li S Y, Wang J T, Chen C, et al. Tolerance, biochemistry and related gene expression in Pagiophloeus tsushimanus (Coleoptera: Curculionidae) exposed to chemical stress from headspace host-plant volatiles . Agricultural and Forest Entomology, 2022, 24 (2): 189- 203. doi: 10.1111/afe.12482 | |
| Lilly D G, Latham S L, Webb C E, et al. Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L . (Hemiptera:Cimicidae). Plos One, 2016, 11 (4): e0153302. doi: 10.1371/journal.pone.0153302 | |
| Loivamaki M, Mumm R, Dicke M, et al. Isoprene interferes with the attraction of body-guards by herbaceous plants. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17430- 17435. doi: 10.1073/pnas.0804488105 | |
| Matthews B B, dos Santos G, Crosby M A, et al. Gene Model Annotations for Drosophila melanogaster: Impact of High-Throughput Data . G3-Genes Genomes Genetics, 2015, 5 (8): 1721- 1736. doi: 10.1534/g3.115.018937 | |
| Maurya A K, Patel R C, Frost C J. Acute toxicity of the plant volatile indole depends on herbivore specialization. Journal of Pest Science, 2020, 93, 1107- 1117. doi: 10.1007/s10340-020-01218-6 | |
| Mccallum E J, Cunningham J P, Lucker J, et al. Increased plant volatile production affects oviposition, but not larval development, in the moth Helicoverpa armigera . Journal of Experimental Biology, 2011, 214 (21): 3672- 3677. doi: 10.1242/jeb.059923 | |
| Mithofer A, Bloand W. Plant defense against herbivores: chemical aspects. Annual Review Plant Biology, 2012, 63, 431- 450. doi: 10.1146/annurev-arplant-042110-103854 | |
| Moussian B, 2010. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochemistry and Molecular Biology, 40(5): 363-375. DOI: 10.1016/j.cois.2017.11.009 | |
| Nishida R. Chemical ecology of insect-plant interactions: ecological significance of plant secondary metabolites. Bioscience Biotechnology and Biochemistry, 2014, 78 (1): 1- 13. doi: 10.1080/09168451.2014.877836 | |
| Pan C, Yun Z, Mo J. The clone of laccase gene and its potential function in cuticular penetration resistance of Culex pipiens pallens to fenvalerate . Pesticide Biochemistry and Physiology, 2009, 93 (3): 105- 111. doi: 10.1016/j.pestbp.2008.12.003 | |
| Pinto L, Fiuza L M. PCR and bioassays screening of bacillus thuringiensis isolates from rice-fields of Rio Grande Do Sul, specific to Lepidopterans and Coleopterans . Brazilian Journal of Microbiology, 2003, 34 (4): 305- 310. DOI: 10.1590/S1517-83822003000400003. | |
| Richards S, Gibbs R A, Weinstock G M, et al. The genome of the model beetle and pest Tribolium castaneum . Nature, 2008, 452 (7190): 949- 955. doi: 10.1038/nature06784 | |
| Sabina B, Wannes D, Robert G, et al. Transcriptome profiling of a Spirodiclofen susceptible and resistant strain of the european red mite Panonychus ulmi using strand-specific RNA-seq . BMC Genomics, 2015, 16, 974. doi: 10.1186/s12864-015-2157-1 | |
| Seybold S J, Huber D, Lee J. Pine monoterpenes and pine bark beetles: a marriage of convenience for defense and chemical communication. Phytochemical Review, 2006, 5, 143- 178. doi: 10.1007/s11101-006-9002-8 | |
| Sfara V, Zerba E N, Alzogaray R A. Fumigant insecticidal activity and repellent effect of five essential oils and seven monoterpenes on first-instar nymphs of Rhodnius prolixus . Journal of Medical Entomology, 2009, 46 (3): 511- 515. doi: 10.1603/033.046.0315 | |
| Song G P, Hu D K, Tian H, et al. 2016. Synthesis and larvicidal activity of novel thenoylhydrazide derivatives. Scientific Reports, 6: 22977. DOI: 10.1038/srep22977 | |
| Soto I M, Carreira V P, Corio C, et al. Differences in tolerance to host cactus alkaloids in Drosophila koepferae and Dbuzzatii . PLoS One, 2014, 9 (2): e88370. doi: 10.1371/journal.pone.0088370 | |
| Wei C, Zhou S, Li W, et al. Chemical composition and allelopathic, phytotoxic and pesticidal activities of Atriplex cana ledeb . (Amaranthaceae) essential oil. Chemistry & Biodiversity, 2019, 16 (4): e1800595. | |
| Willoughby L, Chung H, Lumb C, et al. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital . Insect Biochemistry & Molecular Biology, 2006, 36 (12): 934- 942. doi: 10.1016/j.ibmb.2006.09.004 | |
| Yactayo-Chang J P, Tang H V, Mendoza J, et al. 2020. Plant defense chemicals against insect pests. Agronomy. 10(8): 1156. DOI: 10.3390/agronomy10081156 | |
| Yahouedo G A, Chandre F, Rossignol M, et al. 2017. Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Scientific Reports. 7: 11091. DOI: 10.1038/s41598-017-11357-z | 
| [1] | 谭明涛,姜礅,武帅,张杰,刘磊,赵佳齐,孟昭军,严善春. 美国白蛾对摩西球囊霉定殖银中杨的适应和生理响应[J]. 林业科学, 2022, 58(6): 88-94. | 
| [2] | 韩小红, 卢赐鼎, 华银, 林浩宇, 是雨霏, 吴松青, 张飞萍, 梁光红. 星天牛转录组及三大解毒酶家族相关基因系统发育分析[J]. 林业科学, 2019, 55(5): 104-113. | 
| [3] | 曾健勇, 张方明, 吴玥, 张婷婷, 张国财. 阿维菌素与杀铃脲对舞毒蛾幼虫的联合作用机制[J]. 林业科学, 2018, 54(12): 110-115. | 
| [4] | 孙骊珠, 罗兰, 袁忠林. 马缨丹提取物对黄胸散白蚁体内酶活性的影响[J]. 林业科学, 2017, 53(5): 107-115. | 
| [5] | 张雄帅, 周国娜, 高宝嘉. 油松毛虫体内酶系对油松诱导抗性的响应机制[J]. 林业科学, 2014, 50(10): 181-187. | 
| [6] | 田雨浓;马伟;韦庆慧;韩旭洋;罗帅;陈旭日;邱本军;马玲. α-蒎烯对大麦虫体内解毒酶活性的影响[J]. 林业科学, 2013, 49(4): 152-156. | 
| [7] | 鄢杰明;钟华;严俊鑫;严善春. 多杀菌素对舞毒蛾幼虫解毒酶活性的影响[J]. 林业科学, 2012, 48(9): 82-87. | 
| [8] | 廖月枝;严善春;曹传旺;刘丹. 甲氧虫酰肼对舞毒蛾幼虫解毒酶及其体内蛋白质表达的影响[J]. 林业科学, 2012, 48(8): 99-105. | 
| [9] | 张雁;郭同斌;诸葛强. 转Bt基因南林895杨对杨扇舟蛾体内酶的影响[J]. 林业科学, 2012, 48(6): 95-99. | 
| [10] | 刘丹;严善春;曹传旺;廖月枝. 多杀菌素对黄褐天幕毛虫解毒酶及保护酶的影响[J]. 林业科学, 2012, 48(4): 67-74. | 
| [11] | 冯春富;严善春;鲁艺芳;胡晓. 兴安落叶松诱导抗性对舞毒蛾幼虫解毒酶活性的影响[J]. 林业科学, 2011, 47(8): 102-107. | 
| [12] | 杨秀艳 雷海清 李发勇 闫田力 吴志钢 何家骅. 矾矿废弃地生态修复植物种的筛选*[J]. 林业科学, 2009, 12(4): 14-18. | 
| [13] | 郭同斌 嵇保中 诸葛强 黄敏仁. 转基因杨树对杨小舟蛾幼虫解毒酶活性的影响[J]. 林业科学, 2007, 43(5): 59-63. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||