林业科学 ›› 2022, Vol. 58 ›› Issue (3): 20-30.doi: 10.11707/j.1001-7488.20220303
李聪1,吕晶花1,陆梅1,*,杨志东1,刘攀1,任玉连3,杜凡2
收稿日期:
2020-09-02
出版日期:
2022-03-25
发布日期:
2022-06-02
通讯作者:
陆梅
基金资助:
Cong Li1,Jinghua Lu1,Mei Lu1,*,Zhidong Yang1,Pan Liu1,Yulian Ren3,Fan Du2
Received:
2020-09-02
Online:
2022-03-25
Published:
2022-06-02
Contact:
Mei Lu
摘要:
目的: 探究文山国家级自然保护区土壤微生物生物量碳氮沿海拔地带性植被的分布特征及其关键调控因子,为理解亚热带森林土壤碳氮循环过程及其调控机制提供基础数据参考。方法: 以保护区低海拔亚热带季风常绿阔叶林、中海拔半湿润常绿阔叶林和高海拔中山湿性常绿阔叶林3种典型地带性植被类型为研究对象,采用氯仿熏蒸法研究土壤微生物生物量碳氮含量沿海拔和土层的变化,并运用偏Mantel检验、Fourth-Corner方法解析植被多样性、土壤性质与微生物生物量碳氮之间的关系。结果: 1) 土壤微生物生物量碳氮含量的海拔变化差异显著(P < 0.05)。3个地带性植被群落的土壤微生物生物量碳氮含量随海拔升高呈增加趋势,即亚热带季风常绿阔叶林(15.75和2.84 mg·kg-1) < 半湿润常绿阔叶林(28.05和4.95 mg·kg-1) < 中山湿性常绿阔叶林(41.61和7.80 mg·kg-1)。2)各地带性植被带土壤微生物生物量碳氮含量均随土层加深而呈显著的减小趋势(P < 0.05),0~10 cm土层微生物生物量碳氮含量分别是40~50 cm的4.26和3.22倍,且亚热带季风常绿阔叶林微生物生物量碳氮含量变幅(7.21和3.42倍)最大。3) 偏Mantel相关性检验结果表明,微生物生物量碳氮含量与土壤全氮含量、有机质含量和pH值的关联性最强(P < 0.01,r≥0.75),而与土壤含水量、密度、全钾含量的关联性次之(P < 0.05,r>0.5);Fourth-Corner分析结果表明,亚热带季风常绿阔叶林的土壤微生物生物量碳氮含量仅与植被多样性(Shannon指数,Margalef指数,Pielou指数)极显著负相关(P < 0.01);而在半湿润常绿阔叶林和中山湿性常绿阔叶林中,微生物生物量碳氮含量与土壤pH值呈极显著负相关(P < 0.01),与枯落物厚度、有机质含量和全氮含量极显著正相关(P < 0.01)。结论: 保护区土壤微生物生物量碳氮含量沿海拔变化主要受土壤全氮含量、有机质含量和pH值调控;低海拔样地土壤微生物生物量碳氮含量主要受植物群落多样性所调控,而高海拔样地土壤微生物生物量碳氮含量的主控因子为枯落物厚度、pH值、有机质含量和全氮含量。
中图分类号:
李聪,吕晶花,陆梅,杨志东,刘攀,任玉连,杜凡. 文山国家级自然保护区不同海拔地带性植被的土壤微生物生物量碳氮分布特征[J]. 林业科学, 2022, 58(3): 20-30.
Cong Li,Jinghua Lu,Mei Lu,Zhidong Yang,Pan Liu,Yulian Ren,Fan Du. Distribution of Soil Microbial Biomass Carbon and Nitrogen across Different Altitudinal Vegetation Zones in Wenshan National Nature Reserve[J]. Scientia Silvae Sinicae, 2022, 58(3): 20-30.
表1
样地基本情况"
项目 Item | 亚热带季风常绿阔叶林 Subtropical monsoon evergreen broad-leaved forest | 半湿润常绿阔叶林 Sub-humid evergreen broad-leaved forest | 中山湿性常绿阔叶林 Humid evergreen broad-leaved forest |
海拔Altitudes/m | 1 480 | 1 660 | 1 760 |
经纬度 Latitude and longitude | 104°46′22.83″—104°49′19.38″E,23°21′51.32″—23°22′28.46″N | 104°42′35.26″E—104°46′46.16″E,23°22′27.24″—23°22′30.18″N | 104°41′20.61″—104°41′24.52″E,23°21′10.06″N″—23°21′39.11″N |
坡度Slope | 30°~42° | 5°~10° | 30°~34° |
坡向Aspect | 阳坡Sunny slope | 阴坡Shady slope | 阴坡Shady slope |
优势植物(重要值) Dominant plant(important value) | 窄叶锥Castanopsis choboensis(31.22%)、瓦山锥Castanopsis ceratacantha(21.05%)、罗浮锥Castanopsis fabri(15.62%)、滇润楠Machilus nanmu(15.10%)、截果石栎Lithocarpus truncatus(12.94%) | 木荷Schima superba(35.96%)、方竹Chimonobambusa qundrangularis (23.65%)、青冈Cyclobalanopsis glauca(22.23%) | 栎类Quercus(47.06%)、玉山竹Yushania niitakayamensi(17.54%) |
Margalef指数Margalef index | 12.71 | 11.67 | 10.68 |
Simpson指数Simpson index | 0.87 | 1.57 | 1.88 |
Shannon指数Shannon index | 3.26 | 2.68 | 2.29 |
Pielou指数Pielou index | 1.13 | 1.08 | 0.85 |
郁闭度Canopy density | 0.75 | 0.85 | 0.95 |
平均高度Mean height/m | 12.40 | 16.50 | 20.67 |
平均胸径Mean DBH/cm | 9.33 | 18.09 | 24.16 |
枯落物厚度Litter thickness/cm | 3 | 15 | 23 |
土壤类型Soil type | 黄红壤Yellow-red soil | 黄壤Yellow soil | 黄壤Yellow soil |
母质Parent material | 石英砂岩Sandstone | 粉砂岩Siltstone | 砂页岩Sand shale |
表2
不同地带性植被各土层土壤因子①"
土层 Soil layer/cm | 含水量 Moisture content(%) | 密度 Density/(g·cm-3) | 温度 Temperature/℃ | pH | 有机质含量 Organic matter content/(g·kg-1) | 全氮含量 Total nitrogen content/(g·kg-1) | 全磷含量 Total phosphorus content/(g·kg-1) | 全钾含量 Total potassium content/(g·kg-1) |
L0-10 | 45.96±1.53Ac | 1.17±0.01Ea | 16.75±0.01Ea | 4.75±0.20Ea | 134.39±2.27Ac | 1.23±0.02Ac | 1.88±0.06Ab | 20.86±0.79Ac |
L10-20 | 36.54±1.39Bc | 1.29±0.01Da | 16.91±0.01Da | 4.85±0.23Da | 74.13±1.91Bc | 0.83±0.01Bc | 1.61±0.05Bb | 19.11±0.11Bc |
L20-30 | 31.66±1.33Cc | 1.47±0.02Ca | 17.28±0.03Ca | 4.92±0.17Ca | 48.96±1.77Cc | 0.61±0.01Cc | 1.27±0.12Cb | 18.13±0.21Cc |
L30-40 | 25.66±1.23Dc | 1.60±0.02Ba | 17.46±0.02Ba | 5.38±0.19Ba | 30.96±1.32Dc | 0.45±0.01Dc | 0.74±0.02Db | 17.15±0.09Dc |
L40-50 | 18.08±1.22Ec | 1.62±0.03Aa | 17.59±0.02Aa | 5.79±0.26Aa | 20.74±1.02Ec | 0.34±0.01Ec | 0.64±0.02Eb | 14.40±2.82Dc |
M0-10 | 55.17±2.36Ab | 0.96±0.01Eb | 11.26±0.02Eb | 3.72±0.14Eb | 172.74±2.50Ab | 2.03±0.01Ab | 1.01±0.02Ac | 40.76±2.15Ab |
M10-20 | 43.43±1.77Bb | 1.08±0.01Db | 11.64±0.01Db | 4.58±0.11Db | 124.51±1.85Bb | 1.28±0.01Bb | 0.82±0.02Bc | 36.81±1.11Bb |
M20-30 | 37.33±1.53Cb | 1.16±0.01Cb | 11.80±0.02Cb | 4.64±0.12Cb | 91.8±1.57Cb | 1.07±0.01Cb | 0.58±0.01Cc | 34.03±1.02Cb |
M30-40 | 33.24±1.36Db | 1.28±0.01Bb | 12.12±0.03Bb | 4.69±0.12Bb | 80.32±1.31Db | 0.93±0.01Db | 0.36±0.01Dc | 27.37±0.94Db |
M40-50 | 28.93±1.31Eb | 1.31±0.02Ab | 12.58±0.03Ab | 4.96±0.18Ab | 67.55±1.19Eb | 0.70±0.01Eb | 0.30±0.01Ec | 23.98±0.93Eb |
H0-10 | 66.78±2.45Aa | 0.78±0.01Ec | 6.42±0.01Ec | 3.58±0.27Ec | 246.01±2.72Aa | 3.16±0.03Aa | 2.67±0.02Aa | 46.91±2.64Aa |
H10-20 | 48.96±1.82Ba | 0.83±0.01Dc | 6.71±0.01Dc | 3.99±0.20Dc | 197.74±2.54Ba | 2.35±0.01Ba | 2.36±0.01Ba | 42.67±0.86Ba |
H20-30 | 45.99±1.49Ca | 0.98±0.01Cc | 7.01±0.02Cc | 4.30±0.22Cc | 146.47±2.03Ca | 1.49±0.03Ca | 2.00±0.01Ca | 40.13±0.45Ca |
H30-40 | 41.89±1.35Da | 1.10±0.02Bc | 7.18±0.01Bc | 4.37±0.20Bc | 124.40±1.87Da | 1.32±0.01Da | 1.73±0.02Da | 37.29±0.79Da |
H40-50 | 38.44±1.32Ea | 1.18±0.01Ac | 7.33±0.02Ac | 4.61±0.21Ac | 93.39±1.37Ea | 0.97±0.04Ea | 1.44±0.03Ea | 34.78±0.58Ea |
表3
土壤环境因子与微生物生物量碳氮含量的偏Mantel检验①"
项目 Item | 土壤因子 Soil chemical and physical factors | 偏曼特尔相关系数r Mantel statistic r | P |
SMC | SOM | 0.95 | 0.001** |
TN | 0.88 | 0.001** | |
pH | -0.86 | 0.002** | |
MC | 0.63 | 0.02* | |
BD | -0.59 | 0.02* | |
TK | 0.56 | 0.03* | |
ST | -0.38 | 0.06 | |
TP | 0.35 | 0.06 | |
SMN | SOM | 0.89 | 0.001** |
TN | 0.91 | 0.001** | |
pH | -0.75 | 0.008** | |
MC | 0.64 | 0.02* | |
BD | -0.57 | 0.03* | |
TK | 0.54 | 0.04* | |
ST | -0.36 | 0.06 | |
TP | 0.25 | 0.07 |
表4
不同海拔地带性植被环境因子与微生物生物量碳氮含量的Fourth-Corner分析①"
项目 Item | 检测变量(双向) Test variables(two-sided) | 观测值 Observation | 观测值标准差 Standard deviation of observation | 显著值 Significant value(P) |
亚热带季风常绿阔叶林 Subtropical monsoon evergreen broad-leaved forest | R和SMC R and SMC | -0.070 635 07 | -2.851 809 | 0.003** |
H和SMC H and SMC | -0.072 509 73 | -2.848 700 | 0.003** | |
Jsw和SMC Jsw and SMC | -0.070 635 07 | -2.851 809 | 0.003** | |
R和SMN R and SMN | -0.072 548 94 | -2.865 944 | 0.003** | |
H和SMN H and SMN | -0.074 440 20 | -2.861 782 | 0.003** | |
Jsw和SMN Jsw and SMN | -0.072 548 94 | -2.865 944 | 0.003** | |
半湿润常绿阔叶林 Sub-humid evergreen broad-leaved forest | R和SMC(R and SMC) | -0.070 573 53 | -2.742.777 | 0.006** |
H和SMC H and SMC | -0.072 233 63 | -2.738 047 | 0.006** | |
LT和SMC LT and SMC | 0.072 509 74 | 2.739 971 | 0.005** | |
pH和SMC pH and SMC | -0.072 512 12 | -2.740 179 | 0.005** | |
SOM和SMC SOM and SMC | 0.072 297 41 | 2.740 084 | 0.005** | |
TN和SMC TN and SMC | 0.072 297 41 | 2.740 084 | 0.005** | |
R和SMN R and SMN | -0.072 479 87 | -2.750 572 | 0.006** | |
H和SMN H and SMN | -0.074 136 70 | -2.744 387 | 0.006** | |
LT和SMN LT and SMN | 0.074 440 21 | 2.746 916 | 0.005** | |
pH和SMN pH and SMN | -0.074 445 30 | -2.747 206 | 0.005** | |
SOM和SMN SOM and SMN | 0.074 222 30 | 2.747 027 | 0.005** | |
TN和SMN TN and SMN | 0.074 222 30 | 2.747 027 | 0.005** | |
中山湿性常绿阔叶林 Humid evergreen broad-leaved forest | D和SMC D and SMC | 0.072 509 73 | 2.809 210 | 0.002** |
LT和SMC LT and SMC | 0.066 492 08 | 2.811 670 | 0.002** | |
pH和SMC pH and SMC | -0.073 261 46 | -2.790 082 | 0.002** | |
SOM和SMC SOM and SMC | 0.073 776 54 | 2.785 768 | 0.002** | |
TN和SMC TN and SMC | 0.070 212 51 | 2.784 512 | 0.002** | |
D和SMN D and SMN | 0.074 440 20 | 2.833 079 | 0.002** | |
LT和SMN LT and SMN | 0.068 271 35 | 2.835 772 | 0.002** | |
pH和SMN pH and SMN | -0.074 988 71 | -2.806 957 | 0.002** | |
SOM和SMN SOM and SMN | 0.075 469 33 | 2.801 224 | 0.002** | |
TN和SMN TN and SMN | 0.071 799 44 | 2.799 165 | 0.002** |
曹瑞, 吴福忠, 杨万勤, 等. 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 2016, 27 (4): 1257- 1264. | |
Cao R , Wu F Z , Yang W Q , et al. Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. The Journal of Applied Ecology, 2016, 27 (4): 1257- 1264. | |
陈金磊, 方晰, 辜翔, 等. 中亚热带2种森林群落组成、结构及区系特征. 林业科学, 2019, 55 (2): 159- 172. | |
Chen J L , Fang X , Gu X , et al. Composition, structure, and floristic characteristics of two forest communities in the central-subtropical China. Scientia Silvae Sinicae, 2019, 55 (2): 159- 172. | |
丛静, 刘晓, 卢慧, 等. 神农架自然保护区土壤微生物生物量碳、氮沿海拔梯度的变化及其影响因素. 生态学杂志, 2014, 33 (12): 3381- 3887. | |
Cong J , Liu X , Lu H , et al. Changes of soil microbial biomass carbon and nitrogen along the altitudinal gradient and its influence factors in Shennongjia Natural Reserve, China. Chinese Journal of Ecology, 2014, 33 (12): 3381- 3387. | |
段春燕, 何成新, 沈育伊, 等. 桂北不同林龄桉树人工林土壤微生物数量和酶活性特征研究. 广西植物, 2020, 40 (12): 1877- 1888.
doi: 10.11931/guihaia.gxzw201903019 |
|
Duan C Y , He C X , Shen Y Y , et al. Study on soil microbe quantity and enzyme activity characteristics in eucalyptus plantations of different ages at North Guangxi. Guihaia, 2020, 40 (12): 1877- 1888.
doi: 10.11931/guihaia.gxzw201903019 |
|
胡彦, 赵艳. 文山州境内自然保护区国家级珍稀植物初报. 陕西师范大学学报(自然科学版), 2004, 39 (s1): 126- 129. | |
Hu Y , Zhao Y . Introduction of rare plants in Wenshan prefecture. Journal of Shaanxi Normal University(Natural Science Edition), 2004, 39 (s1): 126- 129. | |
黄乐乐. 2015. 中国境内中越边境地区苔类植物区系研究. 上海: 华东师范大学. | |
Huang L L. 2015. Studies on the liverwort of the Sino-Vietnam border area. Shanghai: East China Normal University. [in Chinese] | |
贾国梅, 何立, 程虎, 等. 三峡库区不同植被土壤微生物生物量碳氮磷生态化学计量特征. 水土保持研究, 2016, 23 (4): 23- 27. | |
Jia G M , He L , Cheng H , et al. Ecological stoichiometry characteristics of soil microbial biomass carbon, nitrogen and phosphorus under different vegetation covers in Three Gorges Reservoir Area. Research of Soil and Water Conservation, 2016, 23 (4): 23- 27. | |
康海军, 李春光. 武夷山亚热带常绿阔叶林土壤养分及酶活性对氮沉降的响应. 水土保持研究, 2019, 26 (2): 93- 99. | |
Kang H J , Li C G . Responses of soil nutrients and enzyme activities to nitrogen deposition in subtropical evergreen broad-leaved forest in Wuyishan Mountain. Research of Soil and Water Conservation, 2019, 26 (2): 93- 99. | |
李品, 木勒德尔·吐尔汗拜, 田地, 等. 全球森林土壤微生物生物量碳氮磷化学计量的季节动态. 植物生态学报, 2019, 43 (6): 532- 542. | |
Li P , Muledeer T , Tian D , et al. Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems. Chinese Journal of Plant Ecology, 2019, 43 (6): 532- 542. | |
李文周, 赵盼盼, 徐建国, 等. 不同海拔对戴云山黄山松林土壤速效养分和微生物生物量的影响. 福建林业, 2019, 201 (2): 41- 44.
doi: 10.3969/j.issn.1003-4382.2019.02.014 |
|
Li W Z , Zhao P P , Xu J G , et al. Effects of different elevations on soil available nutrients and microbial biomass in Pinus taiwanensis forest of Daiyunshan mountain. Fujian Forestry, 2019, 201 (2): 41- 44.
doi: 10.3969/j.issn.1003-4382.2019.02.014 |
|
李鑫, 都李萍, 徐婷婷, 等. 植物群落组成对人工湿地微生物群落影响. 生态学杂志, 2014, 33 (6): 1508- 1514. | |
Li X , Du L P , Xu T T , et al. Effects of plant community composition on microbial community in constructed wetlands. Chinese Journal of Ecology, 2014, 33 (6): 1508- 1514. | |
李艳琼, 黄玉清, 徐广平, 等. 桂林会仙喀斯特湿地芦苇群落土壤养分及微生物活性. 生态学杂志, 2018, 37 (4): 24- 34. | |
Li Y Q , Huang Y Q , Xu G P , et al. Characteristics of soil nutrients and microbial activities of reed vegetation in the Huixian karst wetland, Guilin, China. Chinese Journal of Ecology, 2018, 37 (4): 24- 34. | |
梁国华, 吴建平, 熊鑫, 等. 鼎湖山不同演替阶段森林土壤pH值和土壤微生物生物量碳氮对模拟酸雨的响应. 生态环境学报, 2015, 25 (6): 911- 918. | |
Liang G H , Wu J P , Xiong X , et al. Responses of soil pH value and soil microbial biomass carbon and nitrogen to simulated acid rain in three successional subtropical forests at Dinghushan Nature Reserve. Ecology and Environmental Sciences, 2015, 25 (6): 911- 918. | |
柳杨, 何先进, 侯恩庆, 等. 鼎湖山森林演替和海拔梯度上的土壤微生物生物量碳氮变化. 生态学杂志, 2017, 36 (2): 287- 294. | |
Liu Y , He X J , Hou E Q , et al. Changes in microbial biomass carbon and nitrogen in forest floor litters and mineral soils along forest succession and altitudinal gradient in subtropical China. Chinese Journal of Ecology, 2017, 36 (2): 287- 294. | |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版, 2000. | |
Lu R K . Soil agrochemical analysis method. Beijing: China Agricultural Science and Technology Press, 2000. | |
马和平, 郭其强, 刘合满, 等. 西藏色季拉山东麓垂直带土壤碳氮分布特征及其影响因素. 西北农林科技大学学报: 自然科学版, 2013, 41 (1): 91- 96. | |
Ma H P , Guo Q Q , Liu He M , et al. Distribution and affecting factors of soil organic carbon and total nitrogen along the altitudinal belt in the eastern Sejila Mountain of Tibet. Journal of Northwest A & F University(Natural Science Edition), 2013, 41 (1): 91- 96. | |
覃光莲, 谭劲英. Mantel方法在生态学中的应用. 生物数学学报, 2014, 29 (3): 507- 512. | |
Qin G L , Tan J Y . Application of mantel method in ecology. Journal of Biomathematics, 2014, 29 (3): 507- 512. | |
全飞, 李君, 兰国玉, 等. 西双版纳热带森林土壤微生物生物量碳氮碳与生物功能研究. 西部林业科学, 2019, 48 (6): 133- 140. 133-140, 155 | |
Quan F , Li J , Lan G Y , et al. Soil microbial biomass carbon soil microbial carbon and biological function of tropical forest in Xishuangbanna. Journal of West China Forestry Science, 2019, 48 (6): 133- 140. 133-140, 155 | |
任玉连, 曹乾斌, 李聪, 等. 南滚河自然保护区森林群落特征与土壤性质之间关联分析. 西北林学院学报, 2019, 34 (3): 50- 59.
doi: 10.3969/j.issn.1001-7461.2019.03.08 |
|
Ren Y L , Cao Q B , Li C , et al. Correlation analysis between forest community characteristics and soil characteristics in Nangunhe Nature Reserve. Journal of Northwest Forestry University, 2019, 34 (3): 50- 59.
doi: 10.3969/j.issn.1001-7461.2019.03.08 |
|
任玉连, 陆梅, 曹乾斌, 等. 南滚河自然保护区森林土壤酶活性对海拔升高的响应. 林业科学, 2020, 56 (4): 22- 34. | |
Ren Y L , Lu M , Cao Q B , et al. Response of forest soil enzyme activities to elevation in Nangunhe Natural Reserve. Scientia Silvae Sinicae, 2020, 56 (4): 22- 34. | |
赛牙热木·哈力甫, 艾克拜尔·伊拉洪, 宋瑞清, 等. 察布查尔县草原土壤微生物量与土壤理化性质相关性研究. 草业学报, 2017, 26 (9): 36- 44. | |
Saiyaremu H , Aikebaier Y L H , Song R Q , et al. Correlations between soil microbial biomass and soil physical and chemical properties in grassland in Chabuchaer County. Acta Prataculturae Sinica, 2017, 26 (9): 36- 44. | |
田琴, 牛春梅, 谷口武士, 等. 黄土丘陵区植被类型与土壤微生物区系及生物量的关系. 生态学报, 2017, 37 (20): 6847- 6854. | |
Tian Q , Niu C M , Taniguchi W S , et al. Relationship among vegetation types and soil microbial biomass in the Loess Hilly region of China. Acta Ecologica Sinica, 2017, 37 (20): 6847- 6854. | |
涂志华, 尉永键, 范志平, 等. 太子河源流域不同类型水源涵养林土壤微生物生物量碳氮碳、氮的季节动态. 生态学杂志, 2018, 37 (7): 2139- 2147. | |
Tu Z H , Wei Y J , Fan Z P , et al. Seasonal variations of soil microbial biomass C and N in different types of water conservation forest in the headstream of Taizi River watershed. Chinese Journal of Ecology, 2018, 37 (7): 2139- 2147. | |
王传杰, 王齐齐, 徐虎, 等. 长期施肥下农田土壤-有机质-微生物的碳氮磷化学计量学特征. 生态学报, 2018, 38 (11): 3848- 3858. | |
Wang C J , Wang Q Q , Xu H , et al. Carbon, nitrogen, and phosphorus stoichiometry characteristics of bulk soil, organic matter, and soil microbial biomass under long-term fertilization in cropland. Acta Ecologica Sinica, 2018, 38 (11): 3848- 3858. | |
王革. 云南省5个自然保护区蝶类多样性与相似性比较研究. 林业调查规划, 2016, 41 (2): 51- 55.
doi: 10.3969/j.issn.1671-3168.2016.02.011 |
|
Wang G . Diversity and similarity comparison research on butterfly in five nature reserves of Yunnan Province. Forest Inventory & Planning, 2016, 41 (2): 51- 55.
doi: 10.3969/j.issn.1671-3168.2016.02.011 |
|
王慧颖, 徐明岗, 马想, 等. 长期施肥下我国农田土壤微生物及氨氧化菌研究进展. 中国土壤与肥料, 2018, 274 (2): 7- 18. | |
Wang H Y , Xu M G , Ma X , et al. Research advances of microorganism and ammonia oxidizing bacteria under long-term fertilization in Chinese typical cropland. Soil & Fertilizer Sciences in China, 2018, 274 (2): 7- 18. | |
王宁, 王美菊, 李世兰, 等. 降水变化对红松阔叶林土壤微生物生物量生长季动态的影响. 应用生态学报, 2015, 26 (5): 1297- 1305. | |
Wang N , Wang M J , Li S L , et al. Effects of precipitation variation on growing seasonal dynamics of soil microbial biomass in broadleaved Korean pine mixed forest. The Journal of Applied Ecology, 2015, 26 (5): 1297- 1305. | |
王宁, 杨雪, 李世兰, 等. 不同海拔红松混交林土壤微生物量碳、氮的生长季动态. 林业科学, 2016, 52 (1): 150- 158. | |
Wang N , Yang X , Li S L , et al. Seasonal dynamics of soil microbial biomass carbon soil microbial carbon-nitrogen in the Korean pine mixed forests along elevation gradient. Scientia Silvae Sinicae, 2016, 52 (1): 150- 158. | |
王琴, 李菊, 孙辉. 海拔梯度上西南亚高山-高山土壤微生物生物量碳季节动态. 四川农业大学学报, 2013, 31 (4): 386- 392.
doi: 10.3969/j.issn.1000-2650.2013.04.005 |
|
Wang Q , Li J , Sun H . Seasonal dynamics of MBC along elevational gradients of subalpine-alpine in the Southwestern China. Journal of Sichuan Agricultural University, 2013, 31 (4): 386- 392.
doi: 10.3969/j.issn.1000-2650.2013.04.005 |
|
王琇瑜, 黄晓霞, 和克俭, 等. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系. 草业学报, 2020, 29 (8): 6- 17. | |
Wang X Y , Huang X X , He K J , et al. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in Northwestern Yunnan Province, China. Acta Prataculturae Sinica, 2020, 29 (8): 6- 17. | |
王云霞, 马军. 不同林龄华北落叶松白桦混交林土壤微生物生物量碳氮含量研究. 林业资源管理, 2018, 47 (4): 55- 60. | |
Wang Y X , Ma J . Research on soil microbial biomass carbon and nitrogen in Larch-Betulaplatylla mixed forests of different ages. Forest Resources Management, 2018, 47 (4): 55- 60. | |
吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量碳氮测定方法及其应用. 北京: 气象出版社, 2006. | |
Wu J S , Lin Q M , Huang Q Y , et al. Determination method and application of soil microbial biomass carbon soil microbial carbon and nitrogen. Beijing: China Meteorological Press, 2006. | |
杨刚, 何寻阳, 王克林, 等. 不同植被类型对土壤微生物生物量碳氮及土壤呼吸的影响. 土壤通报, 2008, 39 (1): 189- 191.
doi: 10.3321/j.issn:0564-3945.2008.01.036 |
|
Yang G , He X Y , Wang K L , et al. Effects of vegetation types on soil micro-biomass carbon, nitrogen and soil respiration. Chinese Journal of Soil Science, 2008, 39 (1): 189- 191.
doi: 10.3321/j.issn:0564-3945.2008.01.036 |
|
杨宇明, 田昆, 和世钧, 等. 云南文山自然保护区综合科学考察报告. 北京: 科学出版社, 2008. | |
Yang Y M , Tian K , He S J , et al. Comprehensive scientific investigation report of Wenshan Nature Reserve, Yunnan Province. Beijing: Science Press, 2008. | |
姚兰, 张焕朝, 胡立煌, 等. 黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系. 浙江农林大学学报, 2019, 36 (6): 1069- 1076. | |
Yao L , Zhang H C , Hu L H , et al. Soil labile organic carbon and nitrogen and their relationship with enzyme activities in different vegetation zones along an altitudinal gradient on Mount Huangshan. Journal of Zhejiang A&F University, 2019, 36 (6): 1069- 1076. | |
曾晓敏, 高金涛, 范跃新, 等. 中亚热带森林转换对土壤磷积累的影响. 生态学报, 2018, 38 (13): 4879- 4887. | |
Zeng X M , Gao J T , Fan Y X , et al. Effect of soil factors after forest conversion on the accumulation of phosphorus species in mid-subtropical forests. Acta Ecologica Sinica, 2018, 38 (13): 4879- 4887. | |
张义凡, 刘学东, 陈林, 等. 荒漠草原3种典型群落类型的土壤微生物量碳氮研究. 西北植物学报, 2017, 37 (2): 363- 371. | |
Zhang Y , Liu X , Chen L , et al. Soil microbial biomass carbon and nitrogen in 3 typical communities of desert grassland. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37 (2): 363- 371. | |
章英才, 王俊. 植物学实验. 银川: 宁夏人民出版社, 2007. | |
Zhang Y C , Wang J . Experiment of botany. Yinchuan: Ningxia Peoples Publishing House, 2007. | |
赵盼盼, 周嘉聪, 林开淼, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响. 生态学报, 2019, 39 (8): 2676- 2686. | |
Zhao P P , Zhou J C , Lin K M , et al. Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Province. Acta Ecologica Sinica, 2019, 39 (8): 2676- 2686. | |
Ashraf M N , Abrar M M . Soil and microbial biomass stoichiometry regulate soil organic carbon and nitrogen mineralization in rice-wheat rotation subjected to long-term fertilization. Journal of Soils and Sediments, 2020, 20 (8): 3103- 3113.
doi: 10.1007/s11368-020-02642-y |
|
Kiran B , Vijyeta M , Kirtika P , et al. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena, 2018, 171, 125- 135.
doi: 10.1016/j.catena.2018.07.001 |
|
Ravindran A , Yang S S . Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils. Journal of Microbiology, Immunology and Infection, 2015, 48 (4): 362- 369.
doi: 10.1016/j.jmii.2014.02.003 |
|
Xu W F , Yuan W P . Responses of microbial biomass carbon and nitrogen to experimental warming: a meta-analysis. Soil Biology and Biochemistry, 2017, 115, 265- 274.
doi: 10.1016/j.soilbio.2017.08.033 |
|
Zhou Y , Clark M , Su J , et al. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil, 2015, 386 (1): 171- 183. | |
Zhu H , Zhou S , Yan L , et al. Studies on the evergreen broad-leaved forests of Yunnan, southwestern China. The Botanical Review, 2019, 85 (2): 131- 148.
doi: 10.1007/s12229-019-09210-1 |
[1] | 祝乐,许晨阳,耿增超,刘莉丽,侯琳,王志康,王强,陈树兰,李倩倩. 秦岭3种天然林细根分布特征及其与土壤理化性质的关系[J]. 林业科学, 2020, 56(2): 24-31. |
[2] | 李伟成, 盛海燕, 蒋跃平, 温星. 基塘系统不同竹林土壤CO2通量特征及其影响因子[J]. 林业科学, 2018, 54(8): 13-22. |
[3] | 邵霜霜, 师庆东. 基于FVC的新疆植被覆盖度时空变化[J]. 林业科学, 2015, 51(10): 35-42. |
[4] | 李胜蓝, 方晰, 项文化, 孙伟军, 张仕吉. 湘中丘陵区4种森林类型土壤微生物生物量碳氮含量[J]. 林业科学, 2014, 50(5): 8-16. |
[5] | 张超;黄清麟;朱雪林;张晓红;普布顿珠;旦增. 基于ETM+和DEM的西藏灌木林遥感分类技术[J]. 林业科学, 2011, 47(1): 15-21. |
[6] | 王齐瑞; 樊 巍 谭晓风. 杏-紫花苜蓿生草栽培系统根系分布及生长动态*[J]. 林业科学, 2008, 44(8): 141-144. |
[7] | 廖富林 杨期和 胡玉佳. 广东梅州国家重点保护野生植物研究[J]. 林业科学, 2005, 41(4): 100-105. |
[8] | 张劲松 孟平 尹昌君. 果农复合系统中果树根系空间分布特征[J]. 林业科学, 2002, 38(4): 30-33. |
[9] | 陈雄文 张新时 周广胜 陈锦正. 中国东北样带(NECT)森林区域中主要树种空间分布特征[J]. 林业科学, 2000, 36(6): 35-38. |
[10] | 赵忠 马刊欣 段安安. 毛白杨外生菌根类型及其生态学特性的研究[J]. , 1993, 29(1): 12-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||