|  | 陈哲, 吴敏娜, 秦红灵, 等.  土壤微生物溶磷分子机理研究进展. 土壤学报, 2009, 46 (5): 925- 931. doi: 10.3321/j.issn:0564-3929.2009.05.022
 | 
																													
																						|  | Chen Z ,  Wu M N ,  Qin H L , et al.  Advances in research on molecular mechanisms of phosphate-solubilizing microorganisms in soil. Acta Pedologica Sinica, 2009, 46 (5): 925- 931. doi: 10.3321/j.issn:0564-3929.2009.05.022
 | 
																													
																						|  | 冯哲叶, 陈莎莎, 王文超, 等.  几株溶磷细菌的筛选和鉴定及其溶磷效果. 南京农业大学学报, 2017, 40 (5): 842- 849. | 
																													
																						|  | Feng Z Y ,  Chen S S ,  Wang W C , et al.  Screening and identification of several phosphate-solubilizing bacteria and effect of their P-solubility. Journal of Nanjing Agricultural University, 2017, 40 (5): 842- 849. | 
																													
																						|  | 焦子伟, 张相锋, 努尔买买提, 等.  pqq基因簇在Escherichia coli DH5α中表达及对其溶磷促生的影响. 农业资源与环境学报, 2016, 33 (1): 43- 48. | 
																													
																						|  | Jiao Z W ,  Zhang X F ,  Nuer M , et al.  Expression pqq gene cluster and its effects on mineral phosphate solubilization and plant promotion in Escherichia coli DH5α. Journal of Agriculutral Resources and Environment, 2016, 33 (1): 43- 48. | 
																													
																						|  | 居正英. 2008. 茄子内生枯草芽孢杆菌(Bacillus subtilis)29-12防病促生生理生化研究. 福州: 福建农林大学硕士学位论文. | 
																													
																						|  | Ju Z Y. 2008. The research on biochemistry mechanism of biological control diseases and promotion growth of plants by endophytic bacteria(Baeillus subtilis)29-12. Fuzhou: MS thesis of Fujian Agriculture and Forestry University. [in Chinese] | 
																													
																						|  | 李阜棣.  土壤微生物学. 北京: 中国农业出版社, 1996. | 
																													
																						|  | Li F D .  Soil microbiology. Beijing: China Agriculture Press, 1996. | 
																													
																						|  | 刘辉, 吴小芹, 陈丹.  4种外生菌根真菌对难溶性磷酸盐的溶解能力. 西北植物学报, 2010, 30 (1): 143- 149. | 
																													
																						|  | Liu H ,  Wu X Q ,  Chen D .  Ability of dissolving insoluble phosphate by four ectomycorrhizal fungi. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30 (1): 143- 149. | 
																													
																						|  | 刘辉, 吴小芹, 任嘉红, 等.  荧光假单胞菌与红绒盖牛肝菌共接种对杨树氮代谢和矿质元素含量的影响. 林业科学, 2018, 54 (10): 56- 63. doi: 10.11707/j.1001-7488.20181007
 | 
																													
																						|  | Liu H ,  Wu X Q ,  Ren J H , et al.  Effect of co-inoculation Pseudomonas fluorescens and Xerocomus chrysenteron on the nitrogen metabolism and mineral element contents of poplar. Scientia Silvae Sinicae, 2018, 54 (10): 56- 63. doi: 10.11707/j.1001-7488.20181007
 | 
																													
																						|  | 刘辉, 吴小芹, 任嘉红, 等.  荧光假单胞菌与红绒盖牛肝菌共接种对杨树根际土壤酶活性及微生物多样性的影响. 林业科学, 2019, 55 (1): 22- 30. | 
																													
																						|  | Liu H ,  Wu X Q ,  Ren J H , et al.  Effect of co-inoculation with Pseudomonas fluorescens and Xerocomus chrysenteron on the soil enzyme activity and microbial diversity in Poplar rhizosphere. Scientia Silvae Sinicae, 2019, 55 (1): 22- 30. | 
																													
																						|  | 刘辉, 吴小芹, 任嘉红, 等.  一株荧光假单胞菌的溶磷特性及其对杨树的促生效果. 林业科学, 2013, 49 (9): 112- 118. | 
																													
																						|  | Liu H ,  Wu X Q ,  Ren J H , et al.  Phosphate-dissolving characteristics and growth promoting effect of Pseudomonas fluorescens JW-JS1 on poplar seedlings. Scientia Silvae Sinicae, 2013, 49 (9): 112- 118. | 
																													
																						|  | 孙真, 郑亮, 邱浩斌.  植物根际促生细菌定殖研究进展. 生物技术通报, 2017, 33 (2): 8- 15. | 
																													
																						|  | Sun Z ,  Zheng L ,  Qiu H B .  Research advances on colonization of plant growth-promoting rhizobacteria. Biotechnology Bulletin, 2017, 33 (2): 8- 15. | 
																													
																						|  | 王恒煦, 刘泽平, 王志刚, 等.  3株芽孢杆菌在水稻根际定殖促生及其在土壤中的存活. 生态与农村环境学报, 2019, 35 (7): 892- 899. | 
																													
																						|  | Wang H X ,  Liu Z P ,  Wang Z G , et al.  Colonization and growth promotion of three Bacillus strains in rice rhizosphere and their survival in soil. Journal of Ecology and Rural Environment, 2019, 35 (7): 892- 899. | 
																													
																						|  | 王树起, 韩晓增, 严君, 等.  低分子量有机酸对大豆磷积累和土壤无机磷形态转化的影响. 生态学杂志, 2009, 28 (8): 1550- 1554. | 
																													
																						|  | Wang S Q ,  Han X Z ,  Yan J , et al.  Effects of low molecular weight organic acids on P accumulation in soybean (Glycine max L.) and inorganic P form transformation in soil. Chinese Journal of Ecology, 2009, 28 (8): 1550- 1554. | 
																													
																						|  | 王长方, 游泳, 王俊, 等.  利福平标记的青枯菌株在姜块中增殖动态研究初报. 福建农业学报, 2006, 21 (2): 109- 112. | 
																													
																						|  | Wang C F ,  You Y ,  Wang J , et al.  Proliferation of Ralstonia solanacearum marked with rifampicin on the tuber of ginger. Fujian Journal of Agricultural Sciences, 2006, 21 (2): 109- 112. | 
																													
																						|  | 杨顺, 杨婷, 林斌, 等.  两株溶磷真菌的筛选、鉴定及溶磷效果的评价. 微生物学报, 2018, 58 (2): 264- 273. | 
																													
																						|  | Yang S ,  Yang T ,  Lin B , et al.  Isolation and evaluation of two phosphate-dissolving fungi. Acta Microbiologica Sinica, 2018, 58 (2): 264- 273. | 
																													
																						|  | 杨美英, 王春红, 武志海, 等.  不同条件下两株溶磷菌溶磷量及葡萄糖脱氢酶基因表达与酶活分析. 微生物学报, 2016, 56 (4): 651- 663. | 
																													
																						|  | Yang M Y ,  Wang C H ,  Wu Z H , et al.  Phosphorus dissolving capability, glucose dehydrogenase gene expression and activity of two phosphate solubilizing bacteria. Acta Microbiologica Sinica, 2016, 56 (4): 651- 663. | 
																													
																						|  | 姚如斌, 吴小芹.  高效解磷细菌与菌根真菌菌剂交互作用对杨树的促生效应. 南京林业大学学报: 自然科学版, 2012, 36 (5): 170- 173. | 
																													
																						|  | Yao R B ,  Wu X Q .  Interaction between high effective phosphate-solubilizing bacteria and mycorrhizal fungi and its effects on poplar growth. Journal of Nanjing Forestry University: Natural Science Edition, 2012, 36 (5): 170- 173. | 
																													
																						|  | 曾丽琼. 2010. 几种优良外生菌根菌的应用和胶丸菌剂的制备. 南京: 南京林业大学硕士学位论文. | 
																													
																						|  | Zeng L Q. 2010. Field application of ectomycorrhizal fungi and study on the process of capsules microbial agent. Nanjing: MS thesis of Nanjing Forestry University. [in Chinese] | 
																													
																						|  | 张英, 芦光新, 谢永丽, 等.  溶磷菌分泌有机酸与溶磷能力相关性研究. 草业学报, 2015, 23 (5): 1033- 1038. | 
																													
																						|  | Zhang Y ,  Lu G X ,  Xie Y L , et al.  The relationship between organic acid secreted from phosphorus-solubilizing bacteria and the phosphate-solubilizing ability. Acta Agrestia Sinica, 2015, 23 (5): 1033- 1038. | 
																													
																						|  | 赵小蓉, 林启美, 李保国.  溶磷菌对4种难溶性磷酸盐溶解能力的初步研究. 微生物学报, 2002, 42 (2): 236- 241. | 
																													
																						|  | Zhao X R ,  Lin Q M ,  Li B G .  The solubilization of four insoluble phosphates by some microorganisms. Acta Microbiologica Sinica, 2002, 42 (2): 236- 241. | 
																													
																						|  | 朱培淼, 杨兴明, 徐阳春, 等.  高效解磷细菌的筛选及其对玉米苗期生长的促进作用. 应用生态学报, 2007, 18 (1): 107- 112. | 
																													
																						|  | Zhu P M ,  Yang X M ,  Xu Y C , et al.  High effective phosphate-solubilizing bacteria: Their isolation and promoting effect on corn seedling growth. Chinese Journal of Applied Ecology, 2007, 18 (1): 107- 112. | 
																													
																						|  | Antoun H .  Beneficial microorganisms for the sustainable use of phosphates in agriculture. Procedia Engineering, 2012, 46, 62- 67. | 
																													
																						|  | Babu-Khan S ,  Yeo T C ,  Martin W L , et al.  Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 1995, 61 (3): 972- 978. | 
																													
																						|  | Chen Q ,  Liu S .  Identification and characterization of the phosphate-solubilizing bacterium Pantoea sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology, 2019, 10, 2171. | 
																													
																						|  | Chen Y P ,  Rekha P D ,  Arun A B , et al.  Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 2006, 34 (1): 33- 41. | 
																													
																						|  | Collavino M M ,  Sansberro P A ,  Mroginski L A , et al.  Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biology and Fertility of Soils, 2010, 46 (7): 727- 738. | 
																													
																						|  | Gupta M ,  Bisht S ,  Singh B , et al.  Enhanced biomass and steviol glycosides in Stevia rebaudiana treated with phosphate-solubilizing bacteria and rock phosphate. Plant Growth Regulation, 2011, 65 (3): 449- 457. | 
																													
																						|  | Johansson J F ,  Paul L R ,  Finlay R D .  Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiology Ecology, 2004, 48 (1): 1- 13. | 
																													
																						|  | Khan M S ,  Zaidi A ,  Wani P A .  Role of phosphate-solubilizing microorganisms in sustainable agriculture-a review. Agronomy for Sustainable Development, 2007, 27 (1): 29- 43. | 
																													
																						|  | Kucey R M N .  Effect of Penicillium bilaji on the solubility and uptake of P and micronutrients from soil by wheat. Canadian Journal of Soil Science, 1988, 68 (2): 261- 270. | 
																													
																						|  | Kucey R M N ,  Janzen H H ,  Leggett M E .  Microbially mediated increases in plant-available phosphorus. Advances in Agronomy, 1989, 42, 199- 228. | 
																													
																						|  | Li Z ,  Bai T S ,  Dai L T , et al.  A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Scientific Report, 2016, 6, 25313. | 
																													
																						|  | Liu H ,  Wu X Q ,  Ren J H , et al.  Isolation and identification of phosphobacteria in poplar rhizosphere from different regions of China. Pedosphere, 2011, 21 (1): 90- 97. | 
																													
																						|  | Mamta ,  Rahi P ,  Pathania V , et al.  Stimulatory effect of phosphate-solubilizing bacteria on plant growth, stevioside and rebaudioside-a contents of Stevia rebaudiana Bertoni. Applied Soil Ecology, 2010, 46 (2): 222- 229. | 
																													
																						|  | Oliveria C A ,  Alves V M C ,  Marriel I E , et al.  Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome. Soil Biology and Biochemistry, 2009, 41 (9): 1782- 1787. | 
																													
																						|  | Park K H ,  Lee C Y ,  Son H J .  Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities. Letters in Applied Microbiology, 2009, 49 (2): 222- 228. | 
																													
																						|  | Seshadri S ,  Ignacimuthu S ,  Lakshminarasimhan C .  Effect of nitrogen and carbon sources on the inorganic phosphate solubilizing by different Aspergillus niger strains. Chemical Engineering Communications, 2004, 191 (8): 1043- 1052. | 
																													
																						|  | Song O R ,  Lee S J ,  Lee Y S , et al.  Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology, 2008, 39 (1): 151- 156. | 
																													
																						|  | Suleman M ,  Yasmin S ,  Rasul M , et al.  Phosphate solubilizing bacteria with glucose dehydrogenase gene for phosphorus uptake and beneficial effects on wheat. PLoS ONE, 2018, 13 (9): e0204408. | 
																													
																						|  | Theoduloz C ,  Vega A ,  Salazar M , et al.  Expression of a Bacillus thuringiensis δ-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants(Lycopersicon esculentum, Mills). Journal of Applied Microbiology, 2003, 94 (3): 375- 381. | 
																													
																						|  | Tyl C, Sadler G D. 2017. pH and titratable acidity//Nielsen S. (eds) Food Analysis. Food Science Text Series. Springer, Cham: 389-406. | 
																													
																						|  | Vyas P ,  Gulati A .  Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 2009, 9, 174. | 
																													
																						|  | Wang Z ,  Xu G Y ,  Ma P D , et al.  Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese Cabbage(Brassica campestris ssp. chinensis). Frontiers in Microbiology, 2017, 8, 1270. |