常安然, 李佳, 张耸, 等. 2017. 基于宏基因组学16S rDNA测序对烟草根际土壤细菌群落组成分析.中国农业科技导报, 19(2):43-50.
(Chang A R, Li J, Zhang S, et al. 2017. Analysis of bacterial community structure in rhizosphere soil of tobacco based on the metagenomics 16S rDNA sequencing technology. Journal of Agricultural Science and Technology, 19(2):43-50.[in Chinese])
陈龙池, 廖利平, 汪思龙, 等. 2002. 香草醛和对羟基苯甲酸对杉木幼苗生理特性的影响. 应用生态学报, 13(10):1291-1294.
(Chen L C, Liao L P, Wang S L, et al. 2002. Effect of vanillin and P-hydroxybenzoic acid on physiological characteristics of Chinese fir seedlings. Chinese Journal of Applied Ecology, 13(10):1291-1294.[in Chinese])
陈永亮, 韩士杰, 周玉梅, 等. 2002. 胡桃楸、落叶松纯林及其混交林根际土壤有效磷特性的研究. 应用生态学报, 13(7):790-794.
(Chen Y L, Han S J, Zhou Y M, et al. 2002. Characteristics of available P in the rhizosphere soil pure Juglans mandshurica and Larix gmelinii and their mixed plantation. Chinese Journal of Applied Ecology, 13(7):790-794.[in Chinese])
程瑞梅, 肖文发, 王晓荣, 等. 2010. 三峡库区植被不同演替阶段的土壤养分特征. 林业科学, 46(9):1-6.
(Cheng R M, Xiao W F, Wang X R, et al. 2010. Soil nutrient characteristics in different vegetation successional stages of three gorges reservoir area. Scientia Silvae Sinicae, 46(9):1-6.[in Chinese])
何斌, 梁伟克, 陈文军, 等. 2002. 湿地松、杉木林取代马尾松林后土壤肥力的差异. 东北林业大学学报, 30(6):11-13.
(He B, Liang W K, Chen W J, et al. 2002. Difference of soil fertilities following replacement of Pinus massoniana plantation by Pinus elliottii plantation and Cunninghamia lanceolata plantation. Journal of Northeast Forestry University, 30(6):11-13.[in Chinese])
何友军, 王清奎, 汪思龙, 等. 2006. 杉木人工林土壤微生物生物量碳氮特征及其与土壤养分的关系. 应用生态学报, 17(12):2292-2296.
(He Y J, Wang Q K, Wang S L, et al. 2006. Characteristics of soil microbial biomass carbon and nitrogen and their relationships with soil nutrients in Cunninghamia lanceolata plantations. Chinese Journal of Applied Ecology, 17(12):2292-2296.[in Chinese])
李胜蓝, 方晰, 项文化, 等. 2014. 湘中丘陵区4种森林类型土壤微生物生物量碳氮含量. 林业科学, 50(5):8-16.
(Li S L, Fang X, Xiang W H, et al. 2014. Soil microbial biomass carbon and nitrogen concentrations in four subtropical forests in hilly region of central Hunan province, China. Scientia Silvae Sinicae, 50(5):8-16.[in Chinese])
李婷婷. 2011. 浙江开化县林场杉木理论出材率表编制方法研究. 北京:北京林业大学硕士学位论文.
(Li T T. 2011. Construction of theoretical merchantable volume tables of Cunninghamia lanceolata in Kaihua forest farm. Beijing:MS thesis of Beijing Forestry University.[in Chinese])
刘丽, 徐明恺, 汪思龙, 等. 2013. 杉木人工林土壤质量演变过程中土壤微生物群落结构变化. 生态学报, 33(15):4692-4706.
(Liu L, Xu M K, Wang S L, et al. 2013. Effect of different Cunninghamia lanceolata plantation soil qualities on soil microbial community structure. Acta Ecologica Sinica, 33(15):4692-4706.[in Chinese])
鲁如坤. 2000. 土壤农业化学分析方法. 北京:中国农业科技出版社.
(Lu R K. 2000. Soil argrochemistry analysis protocoes. Beijing:China Agriculture Science Press.[in Chinese])
彭新华, 张斌, 赵其国. 2004. 土壤有机碳库与土壤结构稳定性关系的研究进展. 土壤学报, 41(4):618-623.
(Peng X H, Zhang B, Zhao Q G. 2004. A review on relationship between soil organic carbon pools and soil structure stability. Acta Pedologica Sinica, 41(4):618-623.[in Chinese])
王士亚. 2016. 连栽障碍地杉木无性系土壤酶活性及微生物功能多样性分析. 福州:福建农林大学硕士学士论文.
(Wang S Y. 2016. Analysis of the soil enzyme activity and microbial functional diversity of Cunninghamia lanceolata clones in continuous planting obstacles soil of Cunninghamia lanceolata. Fuzhou:MS thesis of Fujian Agriculture & Forestry University.[in Chinese])
王文波,王延平,王华田,等. 2016. 杨树人工林连作与轮作对土壤氮素细菌类群和氮素代谢的影响. 林业科学, 52(5):45-54.
(Wang W B, Wang Y P, Wang H T, et al. 2016. Effects of different continuous cropping and rotation of poplar plantation on soil nitrogen bacteria community and nitrogen metabolism. Scientia Silvae Sinicae, 52(5):45-54.[in Chinese])
夏志超, 孔垂华, 王朋, 等. 2012. 杉木人工林土壤微生物群落结构特征. 应用生态学报, 23(8):2135-2140.
(Xia Z C, Kong C H, Wang P, et al. 2012. Characteristics of soil microbial community structure in Cunninghamia lanceolata plantation. Chinese Journal of Applied Ecology, 23(8):2135-2140.[in Chinese])
杨玉盛, 陈银秀, 何宗明, 等. 2004. 福建柏和杉木人工林凋落物性质的比较. 林业科学, 40(1):2-10.
(Yang Y S, Chen Y X, He Z M, et al. 2004. Comparatively study on litter properties between plantations of Fokienia hodginsii and Cunninghamia lanceolata. Scientia Silvae Sinicae, 40(1):2-10.[in Chinese])
张志才. 2012. 第1代与第2代9年生杉木林分生产力及土壤肥力比较. 福建林业科技, 39(3):83-87.
(Zhang Z C. 2012. Comparison of productivity and soil properties between the first and second generations of 9-year-old Cunninghamia lanceolata plantations. Journal of Fujian Forestry Science and Technology, 39(3):83-87.[in Chinese])
Barns S M. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Applied & Environmental Microbiology, 65(4):1731-1737.
Barns S M, Cain E C, Sommerville L, et al. 2007. Acidobacteria Phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Applied & Environmental Microbiology, 73(9):3113-6.
Hu J, Yang H, Long X, et al. 2016. Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area. Scientific Reports, 6:21938.
Jones R T, Robeson M S, Lauber C L, et al. 2009. A comprehensive survey of soil Acidobacterial diversity using pyrosequencing and clone library analyses. Isme Journal, 3(4):442.
Kielak A M, van Veen J A, Kowalchuk G A. 2010. Comparative analysis of Acidobacterial genomic fragments from terrestrial and aquatic metagenomic libraries, with emphasis on Acidobacteria subdivision 6. Applied & Environmental Microbiology, 76(20):6769-6777.
Kielak A, Pijl A S, van Veen J A, et al. 2009. Phylogenetic diversity of Acidobacteria in a former agricultural soil. Isme Journal, 3(3):378-382.
Kishimoto N, Kosako Y, Tano T. 1993. Acidiphilium aminolytica sp. nov.:An acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment. Current Microbiology, 27(3):131-136.
Li H, Wang X, Liang C, et al. 2015. Aboveground-belowground biodiversity linkages differ in early and late successional temperate forests. Scientific Reports, 5(X):12234.
Liles M R, Manske B F, Bintrim S B, et al. 2003. A census of rRNA genes and linked genomic sequences within a soil metagenomic library. Appl Environ Microbiol, 69(5):2684-2691.
Liu J J, Sui Y Y, Yu Z H, et al. 2015. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology & Biochemistry, 83(1):29-39.
Ludwig W, Bauer S H, Bauer M, et al. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. Fems Microbiology Letters, 153(1):181-190.
Lu S P, Gischkat S, Reiche M, et al. 2010. Ecophysiolog y of Fe-cycling bacteria in acidic sediments. Applied and Environmental Microbiology, 76:8174-8183.
Naether A, Foesel B U, Naegele V, et al. 2012. Environmental factors affect Acidobacterial communities below the subgroup level in grassland and forest soils. Applied & Environmental Microbiology, 78(20):7398-406.
Navarrete A A, Kuramae E E, de Hollander M, et al. 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. Fems Microbiology Ecology, 83(3):607-621.
Pankratov T A, Ivanova A O, Dedysh S N, et al. 2011. Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environmental Microbiology, 13:1800-1814.
Quaiser A, Ochsenreiter T, Lanz C, et al. 2003. Acidobacteria form a coherent but highly diverse group within the bacterial domain:evidence from environmental genomics. Molecular Microbiology, 50(2):563-575.
Radajewski S, Webster G, Reay D S, et al. 2002. Identification of active methylotroph populations in an acidic forest soil by stable-isotope probing. Microbiology, 148:2331-2342.
Schnitzer S A, Klironomos J N, Hillerislambers J, et al. 2011. Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92(2):296-303.
Ward N L, Challacombe J F, Janssen P H, et al. 2009. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied & Environmental Microbiology, 75(7):2046.
Zhang Y G, Cong J, Lu H, et al. 2014. Community structure and elevational diversity patterns of soil Acidobacteria. Journal of Environmental Sciences(China), 26(8):1717-1724. |