欢迎访问林业科学,今天是

林业科学 ›› 2017, Vol. 53 ›› Issue (11): 20-28.doi: 10.11707/j.1001-7488.20171103

• 论文与研究报告 • 上一篇    下一篇

元谋干热河谷旱季植被覆盖度的时空异质性

欧朝蓉1,2, 朱清科1, 孙永玉3   

  1. 1. 西南林业大学地理学院 昆明 650224;
    2. 北京林业大学水土保持学院 北京 100083;
    3. 中国林业科学研究院资源昆虫研究所 昆明 650216
  • 收稿日期:2017-02-24 修回日期:2017-10-23 出版日期:2017-11-25 发布日期:2017-12-13
  • 基金资助:
    国家重点研发计划(2017YFC0505102);中国林业科学研究院中央级公益性科研院所基本科研业务费专项资金资助项目(CAFYBB2017ZA002-4)。

Temporal and Spatial Heterogeneity of the Vegetation Coverage in the Dry Season in Yuanmou Dry-Hot Valley

Ou Zhaorong1,2, Zhu Qingke1, Sun Yongyu3   

  1. 1. School of Geography, Southwest Forestry University Kunming 650224;
    2. School of Water and Soil Conservation, Beijing Forestry University Beijing 100083;
    3. The Research Institute of Resources Insects, Chinese Academy of Forestry Kunming 650216
  • Received:2017-02-24 Revised:2017-10-23 Online:2017-11-25 Published:2017-12-13

摘要: [目的]探究2008-2016年元谋干热河谷植被覆盖的时空异质性,分析植被覆盖度变化的原因,为区域植被生态保护提供基础数据和理论依据。[方法]以2008,2010,2012,2014和2016年5期Landsat遥感影像为数据源,以ENVI为技术平台,采用像元二分法获取研究区5个时期的研究区植被覆盖度数据,确定植被覆盖度等级和分类标准,利用地理空间分析法研究不同年份植被覆盖度特征,分析各高程带植被覆盖度的构成状况;在ArcGIS支持下提取各年份不同等级植被覆盖度的面积,通过GIS叠置分析获取2008和2016年的植被覆盖度转移矩阵;以与研究区等面积的空间格网对不同年份的植被覆盖度进行空间采样,以多元统计法计算格网点植被覆盖度标准差和回归斜率研究植被覆盖度的时间演变特征。[结果]研究区植被覆盖度以龙川江河谷及金沙江河谷为界表现出东高西低、南高北低,且自河谷坝区向中高山呈现中低-低-中-中高的整体空间格局;5个时段植被覆盖度分别为0.562,0.586,0.494,0.578和0.566;中高山区Ⅰ和Ⅱ级植被覆盖度的区域面积分别占研究区Ⅰ和Ⅱ级植被覆盖度总面积的60%和50%以上,坝周低山区和中低山区Ⅲ和Ⅳ级植被覆盖度的区域面积分别占研究区Ⅲ和Ⅳ级植被覆盖度总面积的70%~80%;河谷区坝区的Ⅴ级植被覆盖度的区域面积占研究区Ⅴ级植被覆盖率总面积的60%以上;8年来不同等级植被覆盖度的转移面积占区域总面积的61.03%,Ⅰ级植被覆盖度中有95.19 km2向Ⅱ级植被覆盖度转移;年际间植被覆盖度标准差(SD)为0~0.541,植被覆盖度增加的区域面积和减少的区域面积之比为10:9,呈显著性减少和显著性增长的区域面积分别占研究区面积的9.132%和6.794%。[结论]干热河谷植被覆盖度空间地带差异明显;植被覆盖度偏低,植被覆盖度等级间转换较为频繁;植被覆盖度年际间变化幅度不大,植被覆盖度呈增长的区域面积略大于减少区域面积,但呈显著性减少的区域面积大于呈显著性增长的区域面积;东部和南部的中高山地带植被覆盖度的结构恶化。应继续强化退耕还林还草、强化天然林保护等措施的力度,降低中高山和中低山的人为干扰强度,在河谷坝区和坝周低山积极开展人工植被恢复工作,促进区域植被生态的可持续发展。

关键词: 干热河谷, 植被覆盖度, 时空异质性, GIS, RS, 空间格局, 年际波动, 人为干扰

Abstract: [Objective]Temporal and spatial heterogeneity of vegetation cover in Yuanmou dry-hot valley from 2008 to 2016 was studied to analyze the causes for VFC change, in order to provide basic data and a theoretical basis for ecological protection of regional vegetation.[Method]Based on remote sensing images of Landsat ETM and OLI in five periods (2008, 2010, 2012, 2014 and 2016), we obtained VFC data of the five periods by using pixel dichotomy method with ENVI as technical platform. Base on determining the classification criteria for the vegetation coverage levels, some geospatial analysis methods were used to study characteristics of VFC degree, and to analyze composition of VFC degree in each elevation belt. Area of different VFC degree in each year was calculated by ArcGIS, as well as a VFC transfer matrix of different VFC degree was obtained by GIS overlay analysis between 2008 and 2016. Spatial samplings of vegetation coverage in different years were carried out with spatial grids with an area equal to the study area, then standard deviation and regression slope of vegetation coverage were calculated by multivariate statistical method to analyze time evolutionary characteristics of the vegetation coverage.[Result]Spatial pattern of vegetation coverage in Yuanmou dry-hot valley was characterized by middle-low, low, middle and high from the valley dam area to the middle-high mountains, higher vegetation coverage in east and south direction rather than in west and north direction, bounded by Longchuan river valley and Jinshajiang river valley. The values of vegetation coverage of the whole study area were respectively 0.562 in 2008, 0.586 in 2010, 0.494 in 2012, 0.578 in 2014, and 0.566 in 2016. The areas of VFC at level Ⅰ and level Ⅱ in the middle-high mountains respectively accounted for 60% and 50% of the total area of VFC at level Ⅰ and level Ⅱ in the study area. The total area of VFC at level Ⅲ and level Ⅳ in the low-mountain and low-middle mountains around the dam accounted for 70% to 80% of the total area of VFC at level Ⅲ and level Ⅳ in the study area. The area of VFC at level Ⅴ in the valley area accounted for more than 60% of the total area of VFC at level Ⅴ in the study area. The transfer area of different VFC degree accounted for 61.03% of the total area in the study area in the past eight years. There were 95.19 km2 transferring from VFC level Ⅰ to Level Ⅱ. The standard deviation (SD) of vegetation coverage was 0-0.541. The ratio of increased area of vegetation coverage to reduced area was 10:9, while the significantly reduced area and the significantly increased area respectively accounted for 9.132% and 6.794% of the study area.[Conculsion] Spatial differences of vegetation coverage in dry-hot valley were significant. VFC value of the whole study area was relatively low, and VFC transformation was relatively frequent. Annual variation of vegetation coverage was not significant. The increased area of vegetation coverage was slightly larger than the reduced area of vegetation coverage, but the significantly reduced area of vegetation coverage was greater than the significantly increased area of vegetation coverage. Vegetation coverage in the middle-high mountainous areas in the east and south was deteriorated. We should continue to strengthen measures of land conversion from farming to forests and grasses, strengthening natural forests protection, reducing intensity of human disturbance in the middle-high mountains and the low mountains. Artificial vegetation restoration should actively be carried out to promote continuous development of regional vegetation ecology.

Key words: dry-hot valley, vegetation coverage, temporal and spatial heterogeneity, GIS, RS, spatial pattern, interannual fluctuation, human disturbance

中图分类号: