林业科学 ›› 2017, Vol. 53 ›› Issue (7): 134-148.doi: 10.11707/j.1001-7488.20170714
刘清旺1, 李世明1, 李增元1, 符利勇1, 胡凯龙1,2
收稿日期:
2016-04-13
修回日期:
2016-07-06
出版日期:
2017-07-25
发布日期:
2017-08-23
通讯作者:
李世明
基金资助:
Liu Qingwang1, Li Shiming1, Li Zengyuan1, Fu Liyong1, Hu Kailong1,2
Received:
2016-04-13
Revised:
2016-07-06
Online:
2017-07-25
Published:
2017-08-23
摘要: 森林空间结构及动态变化规律对森林经营管理、生态环境建模等具有重要意义,无人机激光雷达与摄影测量能够获取丰富的森林空间结构和类型信息,在单木、林分尺度森林环境长时间序列监测方面具有无可比拟的优势。无人机激光雷达系统一般搭载多回波/全波形激光扫描仪,配备高精度全球导航卫星系统&惯性测量单元(GNSS&IMU)等传感器,以保证激光脉冲回波信号的几何定位精度。无人机摄影测量系统通常搭载可见光(RGB)/多光谱相机,配备低精度GNSS&IMU,通过高重叠率航片的三维重建算法自动解算航片内外方位元素,生成具有相对参考坐标的图像及点云,采用地面控制点(GCPs)、参考影像等方式进行几何精校正,对于连续覆盖的森林区域,使用高精度GNSS、稳定平台等可以提高图像匹配精度。通过单木分割法可以提取单木结构信息,从激光雷达点云或摄影测量重建点云中识别树冠顶点、树冠边界、位置等属性,也可以将点云投影到体元空间或者生成冠层高度模型(CHM),在此基础上识别单木特征。林分结构信息提取常采用高度分布法,从点云中直接计算高度分位数、回波指数等点云特征量,或者按照指定的高度间隔生成频率或强度合成波形,计算波形分位数、波形前沿、波形后沿等波形特征量,根据点云特征量、波形特征量与地面测量值之间的关系估测森林结构参数。激光雷达点云和摄影测量重建点云均能用于提取林下地形,对于低郁闭度区域二者相差不大,对于高郁闭度区域摄影测量重建点云提取的林下地形精度较低。多时相无人机激光雷达和摄影测量相结合,可以监测人工修枝、择伐、火灾、病虫害等引起的森林结构变化以及枝叶生长、落叶等物候变化。无人机激光雷达与摄影测量提取的森林结构参数精度受采集方式、数据处理算法、森林生长季节、地形等因素影响,尚未形成适合林业推广应用的成熟技术体系。无人机系统飞行应当遵照国家/当地法律法规以及相关规定条款的约束,我国按照空机质量、起飞全重等指标对无人机进行分类管理。未来无人机数据获取与处理系统将更加智能化、微型化、低成本化,更好地满足林业应用业务需求。
中图分类号:
刘清旺, 李世明, 李增元, 符利勇, 胡凯龙. 无人机激光雷达与摄影测量林业应用研究进展[J]. 林业科学, 2017, 53(7): 134-148.
Liu Qingwang, Li Shiming, Li Zengyuan, Fu Liyong, Hu Kailong. Review on the Applications of UAV-Based LiDAR and Photogrammetry in Forestry[J]. Scientia Silvae Sinicae, 2017, 53(7): 134-148.
崔红霞, 林宗坚, 孙 杰. 2005. 无人机遥感监测系统研究. 测绘通报, (5): 11-14. (Cui H X, Lin Z J, Sun J. 2005. Research on UAV remote sensing system. Bulletin of Surveying and Mapping, (5): 11-14.[in Chinese]) 狄颖辰, 陈云坪, 陈莹莹, 等. 2011. 无人机图像拼接算法综述. 计算机应用, 31(1): 170-174. (Di Y C, Chen Y P, Chen Y Y,et al. 2011. Survey on image mosaic algorithm of unmanned aerial vehicle. Journal of Computer Applications, 31(1): 170-174. [in Chinese]) 范承啸, 韩 俊, 熊志军, 等. 2009. 无人机遥感技术现状与应用. 测绘科学, 34(5): 214-215. (Fan C X, Han J, Xiong Z J,et al. 2009. Application and status of unmanned aerial vehicle remote sensing technology. Science of Surveying and Mapping, 34(5): 214-215. [in Chinese]) 何 诚, 张思玉, 姚树人. 2014. 旋翼无人机林火点定位技术研究. 测绘通报, (12): 24-27. (He C, Zhang S Y, Yao S R. 2014. Forest fires locating technology based on rotor UAV. Bulletin of Surveying and Mapping, (12): 24-27.[in Chinese]) 洪 宇, 龚建华, 胡社荣, 等. 2008. 无人机遥感影像获取及后续处理探讨. 遥感技术与应用, 23(4): 462-466. (Hong Y, Gong J H, Hu S R,et al. 2008. Discussion on UAV remote sensing image capture and disposal. Remote Sensing Technology and Application, 23(4): 462-466. [in Chinese]) 洪运富, 杨海军, 李 营, 等. 2015. 水源地污染源无人机遥感监测. 中国环境监测, 31(5): 163-166. (Hong Y F, Yang H J, Li Y,et al. 2015. Monitoring of water source using unmanned aerial vehicle remote sensing technology. Environmental Monitoring in China, 31(5): 163-166. [in Chinese]) 胡根生, 张学敏, 梁 栋, 等. 2013. 基于加权支持向量数据描述的遥感图像病害松树识别. 农业机械学报, 44(5): 258-263. (Hu G S, Zhang X M, Liang D,et al. 2013. Infected pine recognition in remote sensing images based on weighted support vector data description. Transactions of the Chinese Society for Agricultural Machinery, 44(5): 258-263. [in Chinese]) 胡根生, 张学敏, 梁 栋. 2014. 基于WWSVDD 多分类的遥感图像病害松树识别. 北京邮电大学学报, 37(2): 23-27. (Hu G S, Zhang X M, Liang D. 2014. Infected pine recognition in remote sensing images using WWSVDD multi-classification. Journal of Beijing University of Posts and Telecommunications, 37(2): 23-27. [in Chinese]) 贾建军, 舒 嵘, 王斌永. 2006. 无人机大面阵CCD相机遥感系统. 光电工程, 33(8): 90-93. (Jia J J, Shu R, Wang B Y. 2006. Large frame CCD camera system for unmanned aircraft remote sensing.Opto-Electronic Engineering, 33(8): 90-93. [in Chinese]) 金 伟, 葛宏立, 杜华强, 等. 2009. 无人机遥感发展与应用概况. 遥感信息, (1): 88-92. (Jin W, Ge H L, Du H Q,et al. 2009. A review on unmanned aerial vehicle remote sensing and its application. Remote Sensing Information, (1): 88-92. [in Chinese]) 李德仁, 李 明. 2014. 无人机遥感系统的研究进展与应用前景. 武汉大学学报:信息科学版, 39(5): 505-513, 540. (Li D R, Li M. 2014. Research advance and application prospect of unmanned aerial vehicle remote sensing system. Geomatics and Information Science of Wuhan University, 39(5): 505-513, 540.[in Chinese]) 李宇昊. 2007. 无人机在林业调查中的应用实验. 林业资源管理, (4): 69-73. (Li Y H. 2007. Experiment on using unmanned aerial vehicle in forest investigation. Forest Resources Management, (4): 69-73.[in Chinese]) 刘清旺, 李增元, 陈尔学, 等. 2010. 机载LIDAR点云数据估测单株木生物量. 高技术通讯, 20(7): 765-770. (Liu Q W, Li Z Y, Chen E X, et al. 2010. Estimating biomass of individual trees using point cloud data of airborne LIDAR. Chinese High Technology Letters, 20(7): 765-770. [in Chinese]) 刘清旺, 李增元, 陈尔学, 等. 2008. 利用机载激光雷达数据提取单株木树高和树冠. 北京林业大学学报, 30(6): 83-89. (Liu Q W, Li Z Y, Chen E X, et al. 2008. Extracting individual tree heights and crowns using airborne LIDAR data. Journal of Beijing Forestry University, 30(6): 83-89. [in Chinese]) 吕书强, 晏 磊, 张 兵, 等. 2007. 无人机遥感系统的集成与飞行试验研究. 测绘科学, 32(1): 84-86. (Lü S Q, Yan L, Zhang B,et al. 2007. The integration and flight experiment of UAV remote sensing system. Science of Surveying and Mapping, 32(1): 84-86 [in Chinese]) 马瑞升, 杨 斌, 张利辉, 等. 2012. 微型无人机林火监测系统的设计与实现. 浙江农林大学学报, 29(5): 783-789. (Ma R S, Yang B, Zhang L H, et al. 2012. Design and implementation of a forest fire monitoring system using a miniature unmanned aerial vehicle. Journal of Zhejiang A&F University, 29(5): 783-789. [in Chinese]) 秦 博, 王 蕾. 2002. 无人机发展综述. 飞航导弹, (8): 4-10. (Qin B, Wang L. 2002. Review of the development of UAV. Aerodynamic Missile Journal, (8): 4-10.[in Chinese]) 孙 杰, 林宗坚, 崔红霞. 2003. 无人机低空遥感监测系统. 遥感信息, (1): 49-50, 27. (Sun J, Lin Z J, Cui H X. 2003. Alow-altitude UAV remote sensing monitoring system. Remote Sensing Information, (1): 49-50, 27. [in Chinese]) 汪 沛, 罗锡文, 周志艳, 等. 2014. 基于微小型无人机的遥感信息获取关键技术综述. 农业工程学报, 30(18): 1-12. (Wang P, Luo X W, Zhou Z Y,et al. 2014. Key technology for remote sensing information acquisition based on micro UAV. Transactions of the Chinese Society of Agricultural Engineering, 30(18): 1-12. [in Chinese]) 王 峰, 吴云东. 2010. 无人机遥感平台技术研究与应用. 遥感信息, (2): 114-118. (Wang F, Wu Y D. 2010. Research and application of UAS borne remote sensing. Remote Sensing Information, (2): 114-118.[in Chinese]) 王利民, 刘 佳, 杨玲波, 等. 2013. 基于无人机影像的农情遥感监测应用. 农业工程学报, 29(18): 136-145. (Wang L M, Liu J, Yang L B,et al. 2013. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring. Transactions of the Chinese Society of Agricultural Engineering, 29(18): 136-145. [in Chinese]) 许子乾, 曹 林, 阮宏华, 等. 2015. 集成高分辨率UAV影像与激光雷达点云的亚热带森林林分特征反演. 植物生态学报, 39(7): 694-703. (Xu Z Q, Cao L, Ruan H H,et al. 2015. Inversion of subtropical forest stand characteristics by integrating very high resolution imagery acquired from UAV and LiDAR point-cloud. Chinese Journal of Plant Ecology, 39(7): 694-703. [in Chinese]) 杨 斌, 马瑞升, 何 立, 等. 2009. 基于颜色特征的遥感图像中烟的识别方法. 计算机工程, 35(7): 168-169. (Yang B, Ma R S, He L,et al. 2009. Method of identifying fume in remote sensing images based on color features. Computer Engineering, 35(7): 168-169. [in Chinese]) 杨海军, 李 营, 朱海涛, 等. 2015. 无人机遥感技术在环境保护领域的应用. 高技术通讯, 25(6): 607-613. (Yang H J, Li Y, Zhu H T,et al. 2015. UAV remote sensing’s applications in the environmental protection field. High Technology Letters, 25(6): 607-613. [in Chinese]) 张 波, 罗锡文, 兰玉彬, 等. 2015. 基于无线传感器网络的无人机农田信息监测系统. 农业工程学报, 31(17): 176-182. (Zhang B, Luo X W, Lan Y B,et al. 2015. Agricultural environment monitor system based on UAV and wireless sensor networks. Transactions of the Chinese Society of Agricultural Engineering, 31(17): 176-182. [in Chinese]) 张 增, 王 兵, 伍小洁, 等. 2015. 无人机森火灾监测中火情检测方法研究. 遥感信息, 30(1): 107-110, 124. (Zhang Z, Wang B, Wu X J,et al. 2015. An algorithm of forest fire detection based on UAV remote sensing. Remote Sensing Information, 30(1): 107-110, 124. [in Chinese]) 周洁萍, 龚建华, 王 涛, 等. 2008. 汶川地震灾区无人机遥感影像获取与可视化管理系统研究. 遥感学报, 12(6): 877-884. (Zhou J P, Gong J H, Wang T,et al. 2008. Study on UAV remote sensing image acquiring and visualization management system for the area affected by 5·12 Wenchuan Earthquake. Journal of Remote Sensing, 12(6): 877-884. [in Chinese]) 朱 锋, 肖 晖, 魏亚男. 2014. 无人机遥感影像镶嵌技术综述. 计算机工程与应用, 50(15): 38-41. (Zhu F, Xiao H, Wei Y N. 2014. Summary of UAV remote sensing image mosaicking technology. Computer Engineering and Applications, 50(15): 38-41.[in Chinese]) Alexander C. 2009. Delineating tree crowns from airborne laser scanning point cloud data using Delaunay triangulation. International Journal of Remote Sensing, 30(14): 3843-3848. Ambrosia V, Wegener S, Sullivan D, et al. 2003. Demonstrating UAV-aquired real-time thermal data over fires. Photogrametric Engineering and Remote Sensing, 69(4): 391-402. Amon P, Riegl U, Rieger P,et al. 2015. UAV-based laser scanning to meet special challenges in lidar surveying. Geomatics Indaba Proceedings 2015, 138-147. Axelsson P. 1999. Processing of laser scannerdata-algorithms and applications. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2/3): 138-147. Axelsson P. 2000. DEM generation from laser scanner data using adaptive TIN models. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XIX ISPRS Congress,XXXⅢ-B4, 110-117. Bendig J, Bolten A, Bareth G. 2012. Introducing alow-cost mini-UAV for thermal and multispectral-imaging. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXⅡ ISPRS Congress, XXXIX-B1, 345-349. Berman E S F, Fladeland M, Liem J, et al. 2012. Greenhouse gas analyzer for measurements of carbon dioxide, methane, and water vapor aboard an unmanned aerial vehicle. Sensors and Actuators B: Chemical, 169: 128-135. Brandtberg T, Warner T A, Landenberger R E,et al. 2003. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sensing of Environment, 85(3): 290-303. Brandtberg T. 2007. Classifying individual tree species underleaf-off and leaf-on conditions using airborne lidar. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5): 325-340. Breckenridge R P, Dakins M, Bunting S,et al. 2011. Comparison of unmanned aerial vehicle platforms for assessing vegetation cover in sagebrush steppe ecosystems. Rangeland Ecology & Management, 64(5): 521-532. Breckenridge R P, Dakins M, Bunting S,et al. 2012. Using unmanned helicopters to assess vegetation cover in sagebrush steppe ecosystems. Rangeland Ecology & Management, 65(4): 362-370. Choi K, Lee I, Hong J, et al. 2009. Developing aUAV-based rapid mapping system for emergency response. Proceedings of SPIE 7332, Unmanned Systems Technology XI, 733209. Colomina I, Molina P. 2014. Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS Journal of Photogrammetry and Remote Sensing, 92: 79-97. Córcoles J I, Ortega J F, Hernández D, et al. 2013. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosystems Engineering, 115(1): 31-42. Dandois J P, Ellis E C. 2013. High spatial resolutionthree-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sensing of Environment, 136: 259-276. Dandois J P, Ellis E C. 2010. Remote sensing of vegetation structure using computer vision. Remote Sensing, 2(4): 1157-1176. Dandois J P, Olano M, Ellis E C. 2015. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sensing, 7(10): 13895-13920. Díaz-Varela R A, Rosa R, León L, et al. 2015. High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials. Remote Sensing, 7(4): 4213-4232. Ditmer M A, Vincent J B, Werden L K,et al. 2015. Bears show a physiological but limited behavioral response to unmanned aerial vehicles. Current Biology, 25 (17): 2278-2283. Dunford R, Michel K, Gagnage M,et al. 2009. Potential and constraints of unmanned aerial vehicle technology for the characterization of mediterranean riparian forest. International Journal of Remote Sensing, 30(19): 4915-4935. Essen H, Johannes W, Stanko S,et al. 2012. High resolution W-band UAV SAR. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2012, 5033-5036. Floreano D, Wood R J. 2015. Science, technology and the future of small autonomous drones. Nature, 521(7553): 460-466. García-Gutiérrez J, Martínez-Álvarez F, Troncoso A, et al. 2015. A comparison of machine learning regression techniques for LiDAR-derived estimation of forest variables. Neurocomputing, 167: 24-31. Gehrke S, Downey M, Uebbing R, et al. 2012. A multi-sensor approach to semi-global matching. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXⅡ ISPRS Congress, XXXIX-B3, 17-22. Gehrke S, Uebbing R, Downey M,et al. 2011. Creating and using very high density point clouds derived from ADS imagery. Proceedings of the American Society of Photogrammetry and Remote Sensing 2011 Annual Conference. Getzin S, Nuske R S, Wiegand K. 2014. Using unmanned aerial vehicles (UAV) to quantify spatial gap patterns in forests. Remote Sensing, 6(8): 6988-7004. Ginzler C, Hobi M. 2015. Countrywidestereo-image matching for updating digital surface models in the framework of the Swiss national forest inventory. Remote Sensing, 7(4): 4343-4370. Gleasona C J, Im J. 2012. Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sensing of Environment, 125: 80-91. Glennie C, Brooks B, Ericksen T,et al. 2013. Compact multipurpose mobile laser scanning system — initial tests and results. Remote Sensing, 5(2): 521-538. Goodwin N, Coops N, Culvenor D. 2006. Assessment of forest structure with airborne LiDAR and the effects of platform altitude. Remote Sensing Environment, 103 (2): 140-152. Gottfried M, Hollaus M, Glira P, et al. 2015. First examples from the RIEGL VUX-SYS for forestry applications. In Proceedings of SilviLaser 2015, 105-107. Grenzdörffer G, Niemeyer F, Schmidt F. 2012. Development of four vision camera system for amicro-UAV. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXⅡ ISPRS Congress, XXXIX-B1, 369-374. Gupta S, Weinacker H, Koch B. 2010. Comparative analysis ofclustering-based approaches for 3-D single tree detection using airborne fullwave LiDAR data. Remote Sensing, 2 (4): 968-989. Hernández-Clemente R, Navarro-Cerrillo R M, Zarco-Tejad P J. 2012. Carotenoid content estimation in a heterogeneous conifer forest using narrow-band indices and PROSPECT + DART simulations. Remote Sensing of Environment, 127: 298-315. Hirshmuller H. 2008. Stereo processing bysemi-global matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2): 328-341. Holmgren J. 2004. Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scandinavian Journal of Forest Research, 19(6): 543-553. Hudak A T, Crookston N L, Evans J S,et al. 2008. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sensing of Environment, 112(5): 2232-2245. Hyyppa J, Hyyppa H, Leckie D, et al. 2008. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. International Journal of Remote Sensing, 29(5): 1339-1366. Immerzeel W W, Kraaijenbrink P D A, Shea J M,et al. 2014. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment, 150: 93-103. Jaakkola A, Hyyppä J, Kukko A,et al. 2010. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS Journal of Photogrammetry and Remote Sensing, 65(6): 514-522. Kaartinen H, Hyyppä J, Yu X,et al. 2012. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing, 4 (4): 950-974. Karma S, Zorba E, Pallis G C,et al. 2015. Use of unmanned vehicles in search and rescue operations in forest fires: advantages and limitations observed in a field trial. International Journal of Disaster Risk Reduction, 13: 307-312. Kelcey J., Lucieer A. 2012. Sensor correction and radiometric calibration of a 6-band multispectral imaging sensor for UAV remote sensing. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXⅡ ISPRS Congress,XXXIX-B1, 393-398. Koch B, Heyder U, Weinacker H.2006. Detection of individual tree crowns in airborne Lidar data. Photogrammetric Engineering & Remote Sensing, 72(4): 357-363. Lähivaara T, Seppänen A, Kaipio J P,et al. 2012. Bayesian approach to tree detection with airborne laser scanning. IEEE International Geoscience and Remote Sensing Symposium (IGRSS) 2012, 1641-1644. Lehmann J R K, Nieberding F, Prinz T, et al. 2015. Analysis of unmanned aerial system-based CIR images in forestry—a new perspective to monitor pest infestation levels. Forests, 6(3): 594-612. Li W, Guo Q. 2012. A new method for segmenting individual trees from the LiDAR point cloud. Photogrammetric Engineering & Remote Sensing, 78(1): 75-84. Lin Y, Hyyppä J, Jaakkola A. 2011.Mini-UAV-borne LIDAR for fine-scale mapping. IEEE Geoscience and Remote Sensing Letters, 8(3): 426-430. Lisein J,Pierrot-Deseilligny M, Bonnet S, et al. 2013. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests, 4(4): 922-944. Liu C C, Chen Y H, Wen H L. 2015. Supporting the annual international black-faced spoonbill census with a low-cost unmanned aerial vehicle. Ecological Informatics, 30: 170-178. Liu Q, Li Z, Chen E, et al. 2011. Feature analysis of LIDAR waveforms from forest canopies. Science China Earth Sciences, 54(8): 1206-1214. Maltamo M, Eerikainen K, Pitkanen J,et al. 2004. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 90(3): 319-330. Martínez-de Dios J R, Merino L, Caballero F, et al. 2006. Experimental results of automatic fire detection and monitoring with UAVs. Proceedings of V International Conference on Forest Fire Research. Masek J G, Hayes D J, Hughes M J,et al. 2015. The role of remote sensing in process-scaling studies of managed forest ecosystems. Forest Ecology and Management, 355: 109-123. McElhinny C, Gibbons P, Brack C,et al. 2005. Forest and woodland stand structural complexity: its definition and measurement. Forest Ecology and Management, 218(1/3): 1-24. Meng X, Currit N, Zhao K. 2010. Ground filtering algorithms for airborne LiDAR data: a review of critical issues. Remote Sensing, 2(3): 833-860. Merino L, Caballero F, Martínez de Dios J R,et al. 2006. A cooperative perception system for multiple UAVs: application to automatic detection of forest fires. Journal of Field Robotics, 23 (3/4): 165-184. Merino L, Caballero F, Martínez de Dios J R, et al. 2005. Cooperative fire detection using unmanned aerial vehicles. In Proceedings of the IEEE International Conference on Robotics and Automation, 1896-1901. Merino L. 2010. Automatic forest fire monitoring and measurement using unmanned aerial vehicles. VI International Conference on Forest Fire Research. Mesas-Carrascosa F J, Notario-García M D, de Larriva J E M, et al. 2014. Validation of measurements of land plot area using UAV imagery. International Journal of Applied Earth Observation and Geoinformation, 33: 270-279. Morsdorf F, Meier E, Allgöwer B,et al. 2003. Clustering in airborne laser scanning raw data for segmentation of single trees. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3-D reconstruction from airborne laserscanner and InSAR data, XXXIV-3/W13, 27-33. Naesset E. 2002. Predicting forest stand characteristics with airborne scanning laser using a practicaltwo-stage procedure and field data. Remote Sensing of Environment, 80(1): 88-99. Nagai M, Shibasaki R, Manandhar D,et al. 2004. Development of digital surface and feature extraction by integrating laser scanner and CCD sensor with IMU. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XX ISPRS Congress, XXXV-B5, 655-659. Nagai M, Tianen C, Shibasaki R, et al. 2009. UAV-borne 3-D mapping system by multisensor integration. IEEE Transactions on Geoscience and Remote Sensing, 47 (3): 701-708. Ni W, Liu J, Zhang Z,et al. 2015. Evaluation of UAV-based forest inventory system compared with LiDAR data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 3874-3877. Ollero A, Martínez-de-Dios J R, Merino L. 2006. Unmanned aerial vehicles as tools for forest-fire fighting. Proceedings of V International Conference on Forest Fire Research. Ota T, Ogawa M, Shimizu K,et al. 2015. Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest. Forests, 6(11): 3882-3898. Packalén P, Maltamo M. 2007. Thek-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs. Remote Sensing of Environment, 109(3): 328-341. Pajares G. 2015. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Engineering & Remote Sensing, 81 (4): 281-329. Penner M, Woods M, Pitt D A. 2015. Comparison of airborne laser scanning and image point cloud derived tree size class distribution models in Boreal Ontario. Forests, 6(11): 4034-4054. Popescu S C. 2007. Estimating biomass of individual pine trees using airborne lidar. Biomass and Bioenergy, 31(9): 646-655. Rehak M, Mabillard R, Skaloud J. 2013. Amicro-UAV with the capability of direct georeferencing. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, UAV-g 2013, XL-1/W2, 317-323. Reitberger J, Schnörr C, Krzystek P, et al. 2009. 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 561-574. Rejas J I, Sanchez A, Glez-de-Riveraa G, et al. 2015. Environment mapping using a 3D laser scanner for unmanned ground vehicles. Microprocessors and Microsystems, 39 (8): 939-949. Remy M A, de Macedo K A C, Moreira J R. 2012. The FirstUAV-based P- and X-band Interferometric SAR System. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 5041-5044. Rufino G, Moccia A. 2005. IntegratedVIS-NIR Hyperspectral/thermal-IR Electrooptical Payload System for a Mini-UAV. American Institute of Aeronautics and Astronautics, 647-664. Scherer S, Singh S, Chamberlain L,et al. 2008. Flying fast and low among obstacles: methodology and experiments. International Journal of Robotics Research, 27(5): 549-574. Scholtz A, Kaschwich C, Kruger A,et al. 2011. Development of a new multi-purpose UAS for scientific application. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), XXXVⅢ-1/C22, 149-154. Shahbazi M, Sohn G, Théau J,et al. 2015. Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling. Sensors, 15(11): 27493-27524. Snavely N, Seitz S M, Szeliski R. 2008. Modeling the world from Internet photo collections. International Journal of Computer Vision, 80(2): 189-210. St-Onge B, Audet F-A, Bégin J. 2015. Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds. Forests, 6(11): 3899-3922. St-Onge B, Vega C, Fournier R A, et al. 2008. Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. International Journal of Remote Sensing, 29(11): 3343-3364. Tulldahl H M, Bissmarck F, Larsson H, et al. 2015. Accuracy evaluation of 3D lidar data from small UAV. Proceedings of SPIE 9649, Electro-Optical Remote Sensing, Photonic Technologies, and Applications IX, 964903. Tulldahl H. M, Larsson H. 2014. Lidar on small UAV for 3D mapping. Proceedings of SPIE 9250,Electro-Optical Remote Sensing, Photonic Technologies, and Applications VⅢ, and Military Applications in Hyperspectral Imaging and High Spatial Resolution Sensing Ⅱ, 925009. Turner D, Lucieer A, Watson C. 2012. An automated technique for generating georectified mosaics fromultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sensing, 4(5): 1392-1410. Turner D, Lucieer A, Wallace L. 2014. Direct georeferencing of ultrahigh-resolution UAV imagery. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2738-2745. Vaughn N R, Moskal L M, Turnblom E C. 2012. Tree species detection accuracies using discrete point LiDAR and airborne waveform LiDAR. Remote Sensing,4(2): 377-403. Vauhkonen J, Ene L, Gupta S,et al. 2011. Comparative testing of single-tree detection algorithms under different types of forest. Forestry, 85(1): 27-40. Wallace L, Lucieer A, Malenovsk Z,et al. 2016. Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests, 7(3): 62. Wallace L, Lucieer A, Watson C,et al. 2012. Development of a UAV-LiDAR system with application to forest inventory. Remote Sensing, 4(6): 1519-1543. Wallace L, Lucieer A, Watson C S. 2014a. Evaluating tree detection and segmentation routines on very high resolution UAV LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 52(12): 7619-7628. Wallace L, Musk R, Lucieer A. 2014b. An assessment of the repeatability of automatic forest inventory metrics derived fromUAV-borne laser scanning data. IEEE Transactions on Geoscience and Remote Sensing, 52(11): 7160-7169. Wallace L, Watson C, Lucieer A. 2014c. Detecting pruning of individual stems using airborne laser scanning data captured from an Unmanned Aerial Vehicle. International Journal of Applied Earth Observation and Geoinformation, 30: 76-85. Wang Y, Weinacker H, Koch B,et al. 2008. Lidar point cloud based fully automatic 3D single tree modelling in forest and evaluations of the procedure. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXI ISPRS Congress, XXXVⅡ, 45-51. Waser L T, Fischer C, Wang Z,et al. 2015. Wall-to-wall forest mapping based on digital surface models from image-based point clouds and a NFI forest definition. Forests, 6(12): 4510-4528. Watts A C, Ambrosia V G, Hinkley E A. 2012. Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sensing, 4(6): 1671-1692. White J C, Wulder M A, Vastaranta M,et al. 2013. The utility of image-based point clouds for forest inventory: a comparison with airborne laser scanning. Forests, 4(3): 518-536. White J, Stepper C, Tompalski P, et al. 2015. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests, 6(10): 3704-3732. Xiang H., Tian L. 2011. Development of alow-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosystems Engineering, 108(2): 174-190. Yang B, Chen C. 2015. Automatic registration ofUAV-borne sequent images and LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 101: 262-274. Yu X, Hyyppä J, Vastaranta M,et al. 2011. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS Journal of Photogrammetry and Remote Sensing, 66(1): 28-37. Zahawi R A, Dandois J P, Holl K D,et al. 2015. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biological Conservation, 186: 287-295. Zarco-Tejada P J, Guillén-Climent M L, Hernández-Clemente R, et al. 2013. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agricultural and Forest Meteorology, 171- 172: 281- 294. Zarco-Tejada P J, Diaz-Varela R, Angileri V, et al. 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55: 89-99. Zhang C, Kovacs J M. 2012. The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13: 693-712. Zhang J, Hu J, Lian J,et al. 2016. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198: 60-69. Zhao K, Popescu S, Meng X,et al. 2011. Characterizing forest canopy structure with lidar composite metrics and machine learning. Remote Sensing of Environment, 115(8): 1978-1996. Zhou G, Yang J, Li X,et al. 2012. Advances of flash LiDAR development onboard UAV. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXⅡ ISPRS Congress, XXXIX-B3, 193-198. |
[1] | 刘萌萌, 李泽建, 唐也, 魏美才. 危害白榆的中国突瓣叶蜂属(膜翅目:叶蜂科)一新种[J]. 林业科学, 2019, 55(6): 74-80. |
[2] | 王志康, 许晨阳, 耿增超, 刘莉丽, 侯琳, 杜璨, 王强, 吕东唯. 基于扣除根系体积新方法的秦岭辛家山2种林分土壤有机碳密度特征[J]. 林业科学, 2019, 55(6): 133-141. |
[3] | 谷鑫志, 陈尔学, 李增元, 赵磊, 范亚雄, 王雅慧. 多极化星载SAR森林覆盖变化检测方法[J]. 林业科学, 2019, 55(5): 74-84. |
[4] | 杨玉萍, 潘存德, 余戈壁, 李贵华, 刘景, 崔倩, 刘博. 喀纳斯泰加林群落与环境和火干扰因子的关系[J]. 林业科学, 2019, 55(5): 114-124. |
[5] | 周彬, 雷凤瑶, 虞虎, 张亦弛. 四明山国家森林公园游客游憩动机[J]. 林业科学, 2019, 55(5): 163-168. |
[6] | 李丹, 张俊杰, 赵梦溪. 基于FCM和分水岭算法的无人机影像中林分因子提取[J]. 林业科学, 2019, 55(5): 180-187. |
[7] | 高文文, 曾源, 刘宇, 衣海燕, 吴炳方, 鞠洪波. 南水北调中线水源区2000—2015年森林动态变化遥感监测[J]. 林业科学, 2019, 55(4): 97-107. |
[8] | 夏永杰, 庞勇, 刘鲁霞, 陈博伟, 董斌, 黄庆丰. 高精度DEM支持下的多时期航片杉木人工林树高生长监测[J]. 林业科学, 2019, 55(4): 108-121. |
[9] | 刘海轩, 许丽娟, 吴鞠, 徐程扬. 城市森林降温效应影响因素研究进展[J]. 林业科学, 2019, 55(4): 144-151. |
[10] | 宋以宁, 刘文萍, 骆有庆, 宗世祥. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4): 187-195. |
[11] | 方祥, 王海晖, 陶骏骏, 盛昌栋. 林火蔓延过程中辐射换热和点燃特性分析[J]. 林业科学, 2019, 55(3): 97-105. |
[12] | 张元臣, 苏山玉, 刘苹, 张玉晓, 张坤朋, 王景顺. 栎空腔瘿蜂虫瘿内天敌调查及其优势天敌生物学特性[J]. 林业科学, 2019, 55(2): 137-142. |
[13] | 蔡小娜, 苏筱雨, 黄大庄, 沈佐锐. 基于几何形态测量学的天蛾科成虫数字化分类[J]. 林业科学, 2019, 55(1): 38-46. |
[14] | 曹丹丹, 魏建荣, 王伟超, 王丽平, 赵正萍, 刘曙雯, 嵇保中. 松材线虫病死木皮下的南京隐翅虫(鞘翅目:隐翅虫科)[J]. 林业科学, 2019, 55(1): 157-162. |
[15] | 陈亮, 周国模, 杜华强, 刘玉莉, 毛方杰, 徐小军, 李雪建, 崔璐, 李阳光, 朱迪恩. 基于随机森林模型的毛竹林CO2通量模拟及其影响因子[J]. 林业科学, 2018, 54(8): 1-12. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||