陈法霖, 郑 华, 欧阳志云, 等. 2011. 土壤微生物群落结构对凋落物组成变化的响应. 土壤学报, 48(3): 603-611.
(Chen F L, Zheng H, Ouyang Z Y, et al. 2011. Responses of microbial community structure to the leaf litter composition. Acta Pedologica Sinica, 48(3): 603-611.[in Chinese])
谢祖彬, 刘 琦, 许燕萍, 等. 2011. 生物炭研究进展及其研究方向. 土壤, 43(6): 857-861.
(Xie Z B, Liu Q, Xu Y P, et al. 2011. Advances and perspectives of biochar research. Soils, 43(6): 857-861.[in Chinese])
尹云锋, 张 鹏, 雷海迪, 等. 2014. 不同热解温度对生物质炭化学性质的影响. 热带作物学报, 35(8): 1496-1500.
(Yin Y F, Zhang P, Lei H D, et al. 2014. Influence of different pyrolysis temperature on chemical properties of biochar. Chinese Journal of Tropical Crops, 35(8): 1496-1500.[in Chinese])
张 彪, 高 人, 杨玉盛, 等. 2010. 万木林自然保护区不同林分土壤可溶性有机氮含量. 应用生态学报, 21(7): 1635-1640.
(Zhang B, Gao R, Yang Y S, et al. 2010. Soil soluble organic nitrogen content in different forest stands in Wanmulin Nature Reserve. Chinese Journal of Applied Ecology, 21(7): 1635-1640.[in Chinese])
郑璐嘉, 黄志群, 何宗明, 等. 2015. 林龄, 叶龄对亚热带杉木人工林碳氮稳定同位素组成的影响. 林业科学, 51(1): 22-28.
(Zheng L J, Huang Z Q, He Z M, et al. 2015. Influence of forest and foliar ages on the composition of stable carbon and nitrogen isotope of Cunninghamia lanceolata in Subtropic China. Scientia Silvae Sinicae, 51(1): 22-28.[in Chinese])
Ameloot N, De Neve S, Jegajeevagan K, et al. 2013. Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 57: 401-410.
Ameloot N, Sleutel S, Das K C, et al. 2015. Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties. Global Change Biology Bioenergy, 7(1): 135-144.
Bamminger C, Marschner B, Jüschke E. 2014. An incubation study on the stability and biological effects of pyrogenic and hydrothermal biochar in two soils. European Journal of Soil Science, 65(1): 72-82.
Bergemn S P, Bradley R L, Munson A, et al. 2013. Physico-chemical and functional characteristics of soil charcoal produced at five different temperatures. Soil Biology and Biochemistry, 58: 140-146.
Chen J H, Liu X Y, Zheng J W, et al. 2013. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Applied Soil Ecology, 71: 33-44.
Denef K, Roobroeck D, Wadu M C W M, et al. 2009. Microbial community composition and rhizodeposit-carbon assimilation in differently managed temperate grassland soils. Soil Biology and Biochemistry, 41(1): 144-153.
Diedhiou S, Dossa E L, Badiane A N, et al. 2009. Decomposition and spatial microbial heterogeneity associated with native shrubs in soils of agroecosystems in semi-arid Senegal. Pedobiologia, 52(4): 273-286.
Drake J A, Carrucan A, Jackson W R, et al. 2015. Biochar application during reforestation alters species present and soil chemistry. Science of the Total Environment, 514: 359-365.
Falkowski P G, Fenchel T, Delong E F. 2008. The microbial engines that drive Earth's biogeochemical cycles. Science, 320(5879): 1034-1039.
Farrell M, Kuhn T K, Macdonald L M, et al. 2013. Microbial utilisation of biochar-derived carbon. Science of the Total Environment, 465: 288-297.
Frostegård Å, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22(1): 59-65.
Frostegård Å, Tunlid A, Bååth E. 2011. Use and misuse of PLFA measurements in soils. Soil Biology and Biochemistry, 43(8): 1621-1625.
Gomez J D, Denef K, Stewart C E, et al. 2014. Biochar addition rate influences soil microbial abundance and activity in temperate soils. European Journal of Soil Science, 65(1): 28-39.
Joseph S D, Camps-Arbestain M, Lin Y, et al. 2010. An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48(7): 501-515.
Keith A, Singh B, Singh B P. 2011. Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil. Environmental Science and Technology, 45(22): 9611-9618.
Kennedy A C, Smith K L. 1995. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 170(1): 75-86.
Kramer C, Gleixner G. 2008. Soil organic matter in soil depth profiles: distinct carbon preferences of microbial groups during carbon transformation. Soil Biology and Biochemistry, 40(2): 425-433.
Kuzyakov Y, Subbotina I, Chen H Q, et al. 2009. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41(2):210-219.
Landesman W J, Dighton J. 2010. Response of soil microbial communities and the production of plant-available nitrogen to a two-year rainfall manipulation in the New Jersey Pinelands. Soil Biology and Biochemistry, 42(10): 1751-1758.
Lehmann J, Gaunt J, Rondon M. 2006. Bio-char sequestration in terrestrial ecosystems-a review. Mitigation and Adaptation Strategies for Global Change, 11(2): 395-419.
Lehmann J, Rillig M C, Thies J, et al. 2011. Biochar effects on soil biota-a review. Soil Biology and Biochemistry, 43(9): 1812-1836.
Liang B, Lehmann J, Sohi S P, et al. 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry, 41(2): 206-213.
Maestrini B, Herrmann A M, Nannipieri P, et al. 2014. Ryegrass-derived pyrogenic organic matter changes organic carbon and nitrogen mineralization in a temperate forest soil. Soil Biology and Biochemistry, 69: 291-301.
Mašek O, Brownsort P, Cross A, et al. 2013. Influence of production conditions on the yield and environmental stability of biochar. Fuel, 103(1): 151-155.
McCarthy A J, Williams S T. 1992. Actinomycetes as agents of biodegradation in the environment-a review. Gene, 115(1/2): 189-192.
Novak J M, Busscher W J, Watts D W, et al. 2012. Biochars impact on soil-moisture storage in an ultisol and two aridisols. Soil Science, 177(5): 310-320.
Novak J M, Busscher W J, Watts D W, et al. 2010. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154(3/4): 281-288.
Prayogo C, Jones J E, Baeyens J, et al. 2014. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50(4): 695-702.
Ringelberg D B, Stair J O, Almeida J, et al. 1997. Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. Journal of Environmental Quality, 26(2): 495-503.
Sohi S P, Krull E, Lopez-Capel E, et al. 2010. A review of biochar and its use and function in soil. Advances in Agronomy, 105(1): 47-82.
Swallow M, Quideau S A, MacKenzie M D, et al. 2009. Microbial community structure and function: the effect of silvicultural burning and topographic variability in northern Alberta. Soil Biology and Biochemistry, 41(4): 770-777.
Watzinger A, Feichtmair S, Kitzler B, et al. 2014. Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C-labelled biochar as revealed by 13C-PLFA analyses: results from a short-term incubation and pot experiment. European Journal of Soil Science, 65(1): 40-51.
White D C, Davis W M, Nickels J S, et al. 1979. Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia, 40(1): 51-62.
Whitman T, Enders A, Lehmann J. 2014. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization bplants. Soil Biology and Biochemistry, 73: 33-41.
Zavalloni C, Alberti G, Biasiol S, et al. 2011. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study. Applied Soil Ecology, 50(1): 45-51.
Zimmerman A R, Gao B, Ahn M Y. 2011. Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biology and Biochemistry, 43(6): 1169-1179. |