林业科学 ›› 2016, Vol. 52 ›› Issue (4): 100-109.doi: 10.11707/j.1001-7488.20160412
王微1,2, 胡凯2, 党成强1, 陶建平1
收稿日期:
2015-03-21
修回日期:
2016-02-25
出版日期:
2016-04-25
发布日期:
2016-05-05
通讯作者:
陶建平
基金资助:
Wang Wei1,2, Hu Kai2, Dang Chengqiang1, Tao Jianping1
Received:
2015-03-21
Revised:
2016-02-25
Online:
2016-04-25
Published:
2016-05-05
摘要: 本文综述了细根在凋落物层的觅食行为与策略,细根生长与凋落物数量、质量及分解过程的关系,细根生长与凋落物分解的相互作用机制及影响因素等以期为理解森林生态系统中细根对凋落物分解的作用机制以及凋落物分解对细根生长的影响提供依据。一方面,凋落物的数量和质量影响细根生长,地上凋落物的数量影响细根的觅食行为,并驱动细根在凋落物层的生长动态,凋落物质量的差异也对细根的生长产生影响,不同性质的地上凋落物对细根的生长是促进还是阻碍主要取决于分解过程中所产生的养分以及多酚含量的正平衡或负平衡;另一方面,生长进入凋落物层的细根通过根际激发效应、养分吸收以及共生真菌等作用综合影响凋落物的分解过程,生活的细根对凋落物分解的激发效应主要表现在根系分泌物控制微生物群落的活力及组成,进而加速或抑制凋落物分解;N的有效性是影响凋落物分解的重要因素,处于分解后期的凋落物层中生长的细根,通过吸收凋落物表面矿化形成的大量无机N,避免过量的N对微生物群落及其生境的不利影响;根系的共生伙伴——菌根真菌也对凋落物的分解产生重要影响,这与真菌类型及其分泌的酶和有机酸有关。未来该领域应注重全球变化背景下细根生长对凋落物分解作用机制以及细根的分支结构与其获取凋落物层养分功能的联系等方面的研究。
中图分类号:
王微, 胡凯, 党成强, 陶建平. 凋落物分解与细根生长的相互作用[J]. 林业科学, 2016, 52(4): 100-109.
Wang Wei, Hu Kai, Dang Chengqiang, Tao Jianping. Interaction of Litter Decomposition and Fine-Root Growth[J]. Scientia Silvae Sinicae, 2016, 52(4): 100-109.
陈莎莎, 刘鸿雁, 郭大立. 2010. 内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局. 植物生态学报, 34(9):1007-1015. (Chen S S, Liu H Y, Guo D L. 2010. Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia. Chinese Journal of Plant Ecology, 34(9):1007-1015.[in Chinese]) 陈玉平, 吴佳斌, 张 曼, 等. 2012. 枯落物处理对森林土壤碳氮转化过程影响研究综述. 亚热带资源与环境学报, 7(2):84-94. (Chen Y P, Wu J B, Zhang M, et al. 2012. Research advances of effects of detritus input and removal on dynamics of carbon and nitrogen in forest soils. Journal of Subtropical Resources and Environment, 7(2):84-94.[in Chinese]) 贺金生, 王政权, 方精云. 2004.全球变化下的地下生态学:问题与展望. 科学通报, 49(134):1226-1233. (He J S, Wang Z Q, Fang J Y. 2004. Belowground ecology under global change:problems and prospects. Chinese Science Bulletin, 49(134):1226-1233.[in Chinese]) 黄锦学, 凌 华, 杨智杰, 等. 2012. 中亚热带细柄阿丁枫和米槠群落细根的生产和死亡动态. 生态学报, 32(14):4472-4480. (Huang J X, Ling H, Yang Z J, et al.2012. Estimating fine root production and mortality in subtropical Altingia grlilipes and Castanopsis carlesii forests.Acta Ecologica Sinica, 32(14):4472-4480.[in Chinese]) 刘延滨, 牟 溥. 2010. 植物养分捕获的菌根塑性——外生菌根的塑性. 植物生态学报, 34(12):1472-1484. (Liu Y B, Mu P. 2010. Mycorrhizal plasticity of plant nutrient foraging:a review of ectomycorrhizal plasticity. Chinese Journal of Plant Ecology, 34(12):1472-1484.[in Chinese]) 马承恩, 孔德良, 陈正侠, 等. 2012. 根系在凋落物层中的生长及其对凋落物分解的影响. 植物生态学报, 36(11):1197-1204. (Ma C E, Kong D L, Chen Z X, et al.2012. Root growth into litter layer and its impact on litter decomposition:a review. Chinese Journal of Plant Ecology, 36(11):1197-1204.[in Chinese]) 潘复静, 张 伟, 王克林, 等. 2011. 典型喀斯特峰丛洼地植被群落凋落物C:N:P生态化学计量特征. 生态学报, 31(2):335-343. (Pan F J, Zhang W, Wang K L, et al.2011. Litter C:N:P ecological stoichiometry character of plant communities in typical Karst peak-cluster depression. Acta Ecologica Sinica, 31(2):335-343.[in Chinese]) 汪思龙, 陈楚莹. 1992. 凋落物对土壤酸化的缓冲及其对根系生长的影响. 生态学杂志, 11(4):11-17. (Wang S L, Chen C Y. 1992. Buffering of forest litter to soil acidification and its effect on root growth. Chinese Journal of Ecology, 11(4):11-17.[in Chinese]) 杨万勤, 邓仁菊, 张 健. 2007. 森林凋落物分解及其对全球气候变化的响应. 应用生态学报, 18(12):2889-2895. (Yang W Q, Deng R J, Zhang J. 2007. Forest litter decomposition and its responses to global climate change. Chinese Journal of Applied Ecology, 18(12):2889-2895.[in Chinese]) 査同刚, 张志强, 孙 阁, 等.2012. 凋落物分解主场效应及其土壤生物驱动.生态学报, 32(24):7991-8000. (Zha T G, Zhang Z Q, Sun G, et al.2012. Home-field advantage of litter decomposition and its soil biological driving mechanism:a review.Acta Ecologica Sinica, 32(24):7991-8000.[in Chinese]) Achat D L, Bakker M R, Trichet P. 2008. Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. Journal of Forest Research, 13(3):165-175. Adamek M, Corre M D, Hölscher D. 2011. Responses of fine roots to experimental nitrogen addition in a tropical lower montane rain forest, Panama. Journal of Tropical Ecology, 27(1):73-81. Alarcon-Gutierrez E, Floch C, Ziarelli F, et al. 2008. Characterization of a mediterranean litter by 13C CPMAS NMR:relationships between litter depth, enzyme activities and temperature. European Journal of Soil Science, 59(3):486-495. Baize D, Girard M C. 1995. Referentiel pedologique. Paris:Institut National de la Recherche Agronomique, 332. Bennett J N, Andrew B, Prescott C E. 2002. Vertical fine root distributions of western redcedar, western hemlock, and salal in old-growth cedar hemlock forests on northern Vancouver Island. Canadian Journal of Forest Research, 32(7):1208-1216. Benzing D H. 1991. Aerial roots and their environments//Wiasel Y, Eshel A, Kafkafi U. Plant roots:the hidden half. NewYork:Marcel Dekker, Inc., 867-886. Berg B, Mcclaugherty C. 2008. Plant litter:decomposition, humus formation, carbon sequestration. 2nd ed. Berlin:Springer-Verlag. Bonanomi G, Incerti G, Barile E, et al. 2011. Phytotoxicity, not nitrogen immobilization, explains plant litter inhibitory effects:evidence from solid-state 13C NMR spectroscopy. New Phytologist, 191(4):1018-1030. Bonkowski M, Scheu S, Schaefer M. 1998. Interactions of earthworms(Octolasion lacteum), millipedes(Glomeris marginata) and plants(Hordelymus europaeus) in a beechwood on a basalt hill:implications for litter decomposition and soil formation. Applied Soil Ecology, 9(1/3):161-166. Børja I, DeWit H A, Steffenrem A, et al. 2008. Stand age and fine root biomass, distribution and morphology in a Norway spruce chronosequence in southeast Norway. Tree Physiology, 28(5):773-784. Borken W, Kossmann G, Matzner E. 2007. Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands. Plant and Soil, 292(1/2):79-93. Bughio F A, Mangrio S M, Abro S A, et al. 2013. Physio-morphological responses of native Acacia nilotica to eucalyptus allelopathy. Pakistan Journal of Botany, 45(1):97-105. Chapin F S, Matson P A, Mooney H A. 2002. Principles of terrestrial ecosystem ecology. New York:Springer-Verlag, 6-137. Chen H, Dong S, Liu L, et al. 2013. Effects of experimental nitrogen and phosphorus addition on litter decomposition in an old-growth tropical forest. PLoS One, 8(12):1-8. Cheng L, Booker F L, Tu C, et al. 2012. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337(6098):1084-1087. Cheng W, Parton W J, Gonzalez-Meler M A, et al. 2014. Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201(1):31-44. Clemmensen K E, Bahr A, Ovaskainen O, et al. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 339(6127):1615-1618. Colpaert J V, Vanlaere A. 1996. A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytologist, 134(1):133-141. Coomes D A, Grubb P J. 2000. Impacts of root competition in forests and woodlands:a theoretical framework and review of experiments. Ecological Monographs, 70(2):171-207. Cotrufo M F. 2006. Quantity of standing litter:a driving factor of root dynamics. Plant and Soil, 281(1/2):1-3. Craine J M, Morrow C, Fierer N. 2007. Microbial nitrogen limitation increases decomposition. Ecology, 88(8):2105-2113. Crow S E, Lajtha K, Bowden R D, et al. 2009. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Management, 258(10):2224-2232. de Graaff M A, Classen A T, Castro H F, et al. 2010. Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytologist, 188(4):1055-1064. Dijkstra F A, Carrillo Y, Pendall E, et al. 2013. Rhizosphere priming:a nutrient perspective. Frontiers in Microbiology, 4:1-8. Dijkstra F A, Cheng W. 2007. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10(11):1046-1053. Fahey T J, Hughes J W. 1994. Fine root dynamics in a northern hardwood forest ecosystem, hubbard brook experimental forest, NH. Journal of Ecology, 82(3):533-548. Fellbaum C R, Gachomo E W, Beesetty Y, et al. 2012. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, 109(7):2666-2671. Fontaine S, Barot S, Barre P, et al. 2007. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450(7167):277-280. Fujimaki R, Mcgonigle T P, Takeda H. 2004. Soil micro-habitat effects on fine roots of Chamaecyparis obtusa Endl.:a field experiment using root ingrowth cores. Plant and Soil, 266(1):325-332. Gadgil R L, Gadgil P D. 1971. Mycorrhiza and litter decomposition. Nature, 233(5315):133-135. Gavito M E, Olsson P A. 2003. Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. Fems Microbiology Ecology, 45(2):181-187. Herrera R, Merida T, Stark N, et al. 1978. Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften, 65(4):208-209. Hertel D, Leuschner C, Lscher D H. 2003. Size and structure of fine root systems in old-growth and secondary tropical montane forests(Costa Rica). Biotropica, 35(2):143-153. Hilli S, Stark S, Derome J. 2008. Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11(2):270-282. Hobbie S E. 2005. Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems, 8(6):644-656. Hodge A, Campbell C D, Fitter A H. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413(6853):297-299. Hodge A, Fitter A H. 2010a. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences, 107(31):13754-13759. Hodge A, Helgason T, Fitter A H. 2010b. Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3(4):267-273. Hölscher D, Dunker B, Harbusch M, et al. 2009. Fine root distribution in a lower montane rain forest of Panama. Biotropica, 41(3):312-318. Hopkins F, Gonzalez-Meler M A, Flower C E, et al. 2013. Ecosystem-level controls on root-rhizosphere respiration. New Phytologist, 199(2):339-351. Janssens I A, Dieleman W, Luyssaert S, et al. 2010. Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3(5):315-322. Jenny H. 1941. Factors of soil formation:a system of quantitative pedology. New York:McGraw-Hill. Kemmitt S J, Lanyon C V, Waite I S, et al. 2008. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective. Soil Biology and Biochemistry, 40(1):61-73. Kiers E T, Duhamel M, Beesetty Y, et al. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333(6044):880-882. Knops J, Bradley K L, Wedin D A. 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecology Letters, 5(3):454-466. Knorr M, Frey S D, Curtis P S. 2005. Nitrogen additions and litter decomposition:a meta-analysis. Ecology, 86(12):3252-3257. Koide R T, Fernandez C W, Peoples M S. 2011. Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition?.New Phytologist, 191(2):508-14. Koide R T, Wu T. 2003. Ectomycorrhizas and retarded decomposition in a Pinus resinosa plantation. New Phytologist, 158(2):401-407. Kong D, Ma C. 2014a. Acquisition of ephemeral module in roots:a new view and test. Scientific Reports, 4:1-4. Kong D, Ma C, Zhang Q, et al. 2014b. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 203(3):863-872. Kuchenbuch R O, Ingram K T, Buczko U. 2006. Effects of decreasing soil water content on seminal lateral roots of young maize plants. Journal of Plant Nutrition and Soil Science, 169(6):841-848. Kuzyakov Y, Hill P W, Jones D L. 2007. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant and Soil, 290(1-2):293-305. Kuzyakov Y. 2010. Priming effects:interactions between living and dead organic matter. Soil Biology and Biochemistry, 42(9):1363-1371. Kuzyakov Y, Xu X. 2013. Competition between roots and microorganisms for nitrogen:mechanisms and ecological relevance. New Phytologist, 198(3):656-669. Leppälammi-Kujansuu J, Aro L, Salemaa M, et al. 2014. Fine root longevity and carbon input into soil from below-and aboveground litter in climatically contrasting forests. Forest Ecology and Management, 326:79-90. Lima T T, Miranda I S, Vasconcelos S S. 2010. Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytologist, 187(3):622-630. Lindahl B R D, Trumbore S E, Gberg H P, et al. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173(3):611-620. Lopez-Iglesias B, Olmo M, Gallardo A, et al. 2014. Short-term effects of litter from 21 woody species on plant growth and root development. Plant and Soil, 381(1/2):177-191. Manzoni S, Jackson R B, Trofymow J A, et al. 2008. The global stoichiometry of litter nitrogen mineralization. Science, 321(5889):684-686. Manzoni S, Trofymow J A, Jackson R B, et al. 2010. Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80(1):89-106. Mayor J, Henkel T W. 2006. Do ectomycorrhizas alter leaf litter decomposition in mono dominant tropical forests of Guyana?. New Phytologist, 169(3):579-588. Moore T R, Trofymow J A, Prescott C E, et al. 2006. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in canadian forests. Ecosystems, 9(1):46-62. Mun H. 2009. Weight loss and nutrient dynamics during leaf litter decomposition of Quercus mongolica in Mt. Worak National Park. Journal of Ecology and Environment, 32(2):123-127. Nasholm T, Ekblad A, Nordin A, et al. 1998. Boreal forest plants take up organic nitrogen. Nature, 392(6679):914-916. Norby R J, Jackson R B. 2000. Root dynamics and global change:seeking an ecosystem perspective. New Phytologist, 147(1):3-12. Nottingham A T, Turner B L, Winter K, et al. 2013. Root and arbuscular mycorrhizal mycelial interactions with soil microorganisms in lowland tropical forest. Fems Microbiology Ecology, 85(1):37-50. Olsson P A, Chalet M, Baath E, et al. 1996. Ectomycorrhizal mycelia reduce bacterial activity in a sandy soil. Fems Microbiology Ecology, 21(2):77-86. Orwin K H, Kirschbaum M U F, StJohn M G, et al. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage:a model-based assessment. Ecology Letters, 14(5):493-502. Osono T, Hirose D, Fujimaki R. 2006. Fungal colonization as affected by litter depth and decomposition stage of needle litter. Soil Biology and Biochemistry, 38(9):2743-2752. Park B B, Yanai R D, Fahey T J, et al. 2008. Fine root dynamics and forest production across a calcium gradient in northern hardwood and conifer ecosystems. Ecosystems, 11(2):325-341. Parton W, Silver W L, Burke I C, et al. 2007. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315(5810):361-364. Pérez-Corona M E, De Aldana B R V. 2013. Allelopathic potential of invasive Ulmus pumila on understory plant species. Allelopathy Journal, 32(1):101-112. Persson H Å, Stadenberg I. 2010. Fine root dynamics in a Norway spruce forest(Picea abies(L.) Karst) in eastern Sweden. Plant and Soil, 330(1/2):329-344. Persson H Å, Stadenberg I. 2009. Spatial distribution of fine-roots in boreal forests in eastern Sweden. Plant and Soil, 318(1/2):1-14. Persson H Å. 2012. The high input of soil organic matter from dead tree fine roots into the forest soil. International Journal of Forestry Research, 1-9. Phillips R P, Finzi A C, Bernhardt E S. 2011. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14(2):187-194. Phillips R P, Meier I C, Bernhardt E S, et al. 2012. Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 15(9):1042-1049. Pregitzer K S, DeForest J L, Burton A J, et al. 2002. Fine root architecture of nine north american trees. Ecological Monographs, 72(2):293-309. Prévost-Bouré N C, Soudani K, Damesin C, et al. 2010. Increase in aboveground fresh litter quantity over-stimulates soil respiration in a temperate deciduous forest.Applied Soil Ecology, 46(1):26-34. Querejeta J, Egerton-warburton L M, Allen M F. 2003. Direct nocturnal water transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia, 134(1):55-64. Read D J, Perez-Moreno J. 2003. Mycorrhizas and nutrient cycling in ecosystems-a journey towards relevance?. New Phytologist, 157(3):475-492. Rosling A, Lindahl B D, Taylor A F S, et al. 2004. Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. Fems Microbiology Ecology, 47(1):31-37. Rosling A. 2009. Trees, mycorrhiza and minerals-field relevance of in vitro experiments. Geomicrobiology Journal, 26(6):389-401. Sanchez F G. 2001. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality. Forest Ecology and Management, 152(1):85-96. Sayer E J, Powers J S, Tanner E V J. 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoS ONE, 2(12):1-6. Sayer E J, Tanner E V J, Cheesman A W. 2006. Increased litterfall changes fine root distribution in a moist tropical forest.Plant and Soil, 281(1/2):5-13. Schimel D S. 1995. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1(1):77-91. Seeber J, Seeber G U H, Kössler W, et al. 2005. Abundance and trophic structure of macro-decomposers on alpine pastureland(Central Alps, Tyrol):effects of abandonment of pasturing. Pedobiologia, 49(3):221-228. Stark N M, Jordan C F. 1978. Nutrient retention by the root mat of an Amazonian rain forest. Ecology, 59(3):434-437. Subke J, Hahn V, Battipaglia G, et al. 2004. Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia, 139(4):551-559. Sullivan B W, Hart S C. 2013. Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient. Soil Biology and Biochemistry, 58(2):293-301. Tian D, Peng Y, Yan W, et al. 2010. Effects of thinning and litter fall removal on fine root production and soil organic carbon content in masson pine plantations. Pedosphere, 20(4):486-493. Tiunov A V, Scheu S. 2005. Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia, 142(4):636-642. Tobon C, Sevink J, Verstraten J M. 2004. Litterflow chemistry and nutrient uptake from the forest floor in northwest Amazonian forest ecosystems. Biogeochemistry, 69(3):315-339. Turner B L, Engelbrecht B M J. 2011. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry, 103(1-3):297-315. Wardle D A, Bardgett R D, Klironomos J N, et al. 2004. Ecological linkages between aboveground and belowground biota. Science, 304(5677):1629-1633. Went F W, Stark N. 1968. Mycorrhiza. Bioscience, 18(11):1035-1039. Xia M, Guo D, Pregitzer K S. 2010. Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188(4):1065-74. Yang X, Yang Z, Warren M W, et al. 2012. Mechanical fragmentation enhances the contribution of Collembola to leaf litter decomposition. European Journal of Soil Biology, 53:23-31. Yin H, Chen Z, Liu Q. 2012a. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 50(5):77-84. Yin H, Xu Z, Chen Z, et al. 2012b. Nitrogen transformation in the rhizospheres of two subalpine coniferous species under experimental warming. Applied Soil Ecology, 59(4):60-67. Yoccoz N G. 2012. The future of environmental DNA in ecology. Molecular Ecology, 21(8):2031-2038. Zhu B, Cheng W. 2011. Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 17(6):2172-2183. |
[1] | 王志康, 许晨阳, 耿增超, 刘莉丽, 侯琳, 杜璨, 王强, 吕东唯. 基于扣除根系体积新方法的秦岭辛家山2种林分土壤有机碳密度特征[J]. 林业科学, 2019, 55(6): 133-141. |
[2] | 何凌仙子, 贾志清, 刘涛, 李清雪, 张友焱, 石坤, 冯莉莉, 杨凯悦, 赵雪彬. 高寒沙地中间锦鸡儿和柠条锦鸡儿细根分解动态特征[J]. 林业科学, 2018, 54(2): 162-169. |
[3] | 刘浩, 陈思焜, 张敏新, 刘璨. 退耕还林工程对农户收入不平等影响的测度与分析 ——基于总收入决定方程的Shapley值分解[J]. 林业科学, 2017, 53(5): 125-133. |
[4] | 赵文瑞, 刘鑫, 张金池, 王玲, 谢德晋, 袁颖丹, 王金平, 王鹰翔. 添加酸雨酸度和硫氮比对麻栎林细根生长的影响[J]. 林业科学, 2017, 53(4): 158-165. |
[5] | 王振海, 殷秀琴, 张成蒙. 土壤动物在长白山臭冷杉凋落物分解中的作用[J]. 林业科学, 2016, 52(7): 59-67. |
[6] | 管云云, 费菲, 关庆伟, 陈斌. 林窗生态学研究进展[J]. 林业科学, 2016, 52(4): 91-99. |
[7] | 田晓敏, 闫海霞, 袁业, 葛兆轩, 黄选瑞, 张志东. 塞罕坝自然保护区物种丰富度对植被景观破碎化的响应及其空间尺度差异[J]. 林业科学, 2016, 52(12): 13-21. |
[8] | 李伟, 刘小飞, 陈光水, 赵本嘉, 邱曦, 杨玉盛. 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响[J]. 林业科学, 2016, 52(11): 11-18. |
[9] | 喻林华, 方晰, 项文化, 石俊, 刘兆丹, 李雷达. 亚热带4种林分类型枯落物层和土壤层的碳氮磷化学计量特征[J]. 林业科学, 2016, 52(10): 10-21. |
[10] | 许秀兰, 杨春琳, 田莎, 姜欣华, 刘韩, 刘应高. 华山松凋落针叶上的真菌多样性及4株真菌的纤维素分解能力[J]. 林业科学, 2016, 52(1): 80-88. |
[11] | 刘瑞强, 黄志群, 何宗明, 万晓华, 余再鹏, 郑璐嘉, 肖好燕. 根系去除对米老排和杉木凋落物分解的影响[J]. 林业科学, 2015, 51(9): 1-8. |
[12] | 李倩, 吴小芹, 叶建仁. 一种马尾松菌根辅助细菌——短芽孢杆菌的筛选及鉴定[J]. 林业科学, 2015, 51(5): 159-164. |
[13] | 牛小云, 孙晓梅, 陈东升, 张守攻. 日本落叶松人工林枯落物土壤酶活性[J]. 林业科学, 2015, 51(4): 16-25. |
[14] | 周艳, 陈训, 韦小丽, 伍庆, 李朝婵. 凋落物对迷人杜鹃幼苗更新和种子萌发的影响[J]. 林业科学, 2015, 51(3): 65-74. |
[15] | 奚祯苑, 刘丽娟, 陆灯盛, 葛宏立, 陈耀亮. 基于线性混合像元分解技术提取山核桃空间分布[J]. 林业科学, 2015, 51(10): 43-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||