柳钦火. 2010. 定量遥感模型、应用及不确定性研究. 北京: 科学出版社.
(Liu Q H. 2010. The study of model, application, uncertainty about quantitative remote sensing. Beijing: Science Press.[in chinese])
石月婵,杨贵军,冯海宽,等. 2012. 北京山区森林叶面积指数季相变化遥感监测. 农业工程学报, 28(15): 133-139.
(Shi Y C, Yang G J, Feng H K, et al. 2012. Remote sensing of seasonal variability monitoring of forest LAI over mountain areas in Beijing. Transactions of the Chinese Society of Agricultural Engineering, 28(15): 133-139.[in chinese])
张晶晶, 赵 忠, 宋西德, 等. 2010. 渭北黄土高原人工刺槐林植物多样性动态. 西北植物学报, 30(12): 2490-2496.
(Zhang J J, Zhao Z, Song X D, et al. 2010. Biodiversity dynamics of artificial Robinia pseudoacacia forest in Weibei Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica, 30(12): 2490-2496.[in chinese])
赵安玖, 杨长青, 廖承云. 2014. 基于影像纹理特征的川西南山地常绿阔叶林有效叶面积指数的空间分析.应用生态学报, 25(11): 3237-3246
(Zhao A J, Yang C Q, Liao C Y. 2014. Spatial analysis of LAIe of montane evergreen broad-leaved forest in southwest Sichuan, Northwest China, based on image texture. Chinese Journal of Applied Ecology, 25(11): 3237-3246.[in chinese])
郑 元. 2010. 刺槐光合生理特征与固碳能力研究. 杨凌: 西北农林科技大学博士学位论文.
(Zheng Y. 2010. A study of photosynthetic and physiological characteristics and carbon fixation capacity of black locust (Robinia pseudoacacia). Yangling: PhD thesis of Northwest A&F University.[in chinese])
周 慧, 赵 忠, 周靖靖, 等. 2011. 黄土高原区不同密度刺槐林冠层结构特征及月动态变化. 林业科技开发, 25(5): 16-20.
(Zhou H, Zhao Z, Zhou J J, et al. 2011. Canopy structure of black locust plantations with different densities and monthly dynamics in the Loess Plateau. China Forestry Science and Technology, 25(5): 16-20.[in chinese])
周靖靖,赵 忠,刘金良,等. 2014. 基于快鸟影像纹理特性的刺槐林叶面积指数估算. 应用生态学报, 25(5): 1266-1274.
(Zhou J J, Zhao Z, Liu J L, et al. 2014. Estimating leaf area index of black locust (Robinia pseudoacacia L.) plantations based on texture parameters of Quickbird imagery. Chinese Journal of Applied Ecology, 25(5): 1266-1274.[in chinese])
Baret F, Guyot G. 1991. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote sensing of environment, 35(2): 161-173.
Barr A G, Black T, Hogg E, et al. 2004. Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126(3): 237-255.
Chen J M, Black T A. 1992. Defining leaf area index for non-flat leaves. Plant Cell and Environment, 15(4): 421-429.
Colombo R, Bellingeri D, Fasolini D, et al. 2003. Retrieval of leaf area index in different vegetation types using high resolution satellite data. Remote Sensing of Environment, 86(1): 120-131.
Gebreslasie M T, Ahmed F B, van Aardt J A N. 2011. Extracting structural attributes from IKONOS imagery for Eucalyptus plantation forests in KwaZulu-Natal, South Africa, using image texture analysis and artificial neural networks. International Journal of Remote Sensing, 32(22): 7677-7701.
Gray J, Song C. 2012. Mapping leaf area index using spatial, spectral and temporal information from multiple sensors. Remote Sensing of Environment, 119(16): 173-183.
Haralick R M, Shanmugam K, Dinstein I H. 1973. Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, 6: 610-621.
Kovacs J M, Wang J F, Flores-Verdugo F. 2005. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Extuarine Coastal and Shelf Science, 62(1/2): 377-384.
Kraus T, Schmidt M, Dech S W, et al. 2009. The potential of optical high resolution data for the assessment of leaf area index in East African rainforest ecosystems. International Journal of Remote Sensing, 30(19): 5039-5059.
Nemani R, Pierce L, Running S, et al. 1993. Forest ecosystem processes at the watershed scale: sensitivity to remotely-sensed leaf area index estimates. International Journal of Remote Sensing, 14(13): 2519-2534.
Nichol J E, Sarker M L R. 2011. Improved
biomass estimation using the texture parameters of two high-resolution optical sensors. IEEE Transactions on Geoscience and Remote Sensing, 49(3): 930-948.
Ota T, Mizoue N, Yoshida S. 2011. Influence of using texture information in remote sensed data on the accuracy of forest type classification at different levels of spatial resolution. Journal of Forest Research, 16(6): 432-437.
Ouma Y O, Tateishi R. 2006. Optimization of second-order grey-level texture in high-resolution imagery for statistical estimation of above-ground biomass. Journal of Environmental Informatics, 8(2): 70-85.
Rautiainen M, Heiskanen J, Korhonen L. 2012. Seasonal changes in canopy leaf area index and MODIS vegetation products for a boreal forest site in central Finland. Boreal Environment Research,
17(1): 72-84.
Sarker L R, Nichol J E. 2011. Improved forest biomass estimates using ALOS AVNIR-2 texture indices. Remote Sensing of Environment, 115(4): 968-977.
Song C, Dickinson M B. 2008. Extracting forest canopy structure from spatial information of high resolution optical imagery: tree crown size versus leaf area index. International Journal of Remote Sensing,
29(19): 5605-5622.
Sonnentag O, Chen J M, Roberts D A, et al. 2007. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing. Remote Sensing of Environment, 109(3): 342- 360.
Soudani K, Francois C, le Maire G, et al. 2006. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sensing of Environment, 102(1/2): 161-175.
Tian Q, Luo Z, Chen J M, et al. 2007. Retrieving leaf area index for coniferous forest in Xingguo County, China with Landsat ETM+ images. Journal of Environmental Management, 85: 624-627.
Tillack A, Clasen A, Kleinschmit B, et al. 2014. Estimation of the seasonal leaf area index in an alluvial forest using high-resolution satellite-based vegetation indices. Remote Sensing of Environment, 141: 52-63.
Wang Q, Adiku S, Tenhunen J, et al. 2005. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sensing of Environment, 94(2): 244-255.
Wood E M, Pidgeon A M, Radeloff V C, et al. 2012. Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 121: 516-526.
Wulder M, Franklin S, Lavigne M. 1996. High spatial resolution optical image texture for improved estimation of forest stand leaf area index. Canadian Journal of Remote Sensing, 22(4): 441-449.
Wulder M A, LeDrew E F, Franklin S E, et al. 1998. Aerial image texture information in the estimation of northern deciduous and mixed wood forest leaf area index (LAI). Remote Sensing of Environment, 64(1): 64-76.
Yuan J G, Niu Z, Wang X P. 2009. Atmospheric correction of hyperion hyperspectral image based on FLAASH. Spectroscopy and Spectral Analysis, 29(5): 1181-1185.
Zhou J J, Zhao Z, Zhao Q, et al. 2013. Quantification of aboveground forest biomass using Quickbird imagery, topographic variables, and field data. Journal of Applied Remote Sensing, 7(1): 073484. |