林业科学 ›› 2025, Vol. 61 ›› Issue (11): 92-101.doi: 10.11707/j.1001-7488.LYKX20240772
收稿日期:2024-12-17
修回日期:2025-06-16
出版日期:2025-11-25
发布日期:2025-12-11
通讯作者:
王娟
E-mail:wangjuan@bjfu.edu.cn
基金资助:
Jingjing Lei,Yingni Wang,Dan Liao,Yuxin Bao,Kexin Yang,Juan Wang*(
)
Received:2024-12-17
Revised:2025-06-16
Online:2025-11-25
Published:2025-12-11
Contact:
Juan Wang
E-mail:wangjuan@bjfu.edu.cn
摘要:
目的: 以包括大兴安岭、小兴安岭和长白山脉在内的整个东北地区天然次生林为研究对象,将其划分成大兴安岭、小兴安岭、张广才岭、长白山和辽东山区5个区域,以“区域”为哑变量对东北天然次生林进行立地质量评价,对比分析不同区域立地质量分布格局的差异,为东北天然次生林立地质量的精准评价和林分质量的精准提升提供一定依据。方法: 选取东北地区456块0.1 hm2永久性圆形样地为数据来源,依据Assmann标准筛选出优势木并考虑样地全部树种断面积加权的优势木高为基础建模数据,在7个常用的理论生长方程中选择出最佳导向曲线,采用广义代数差分法(GADA)推导立地形模型,将“区域”作为哑变量构建出最终的哑变量模型,选取决定系数(R2)、均方根误差(RMSE)和平均绝对误差(MAE)评价模型拟合优度。基于模型得到各区域的立地形值并对其进行分析比较,探讨东北天然次生林立地生产力的分布格局。结果: 采用GADA法推导的立地形模型的R2为0.335,将“区域”作为哑变量后各区域的R2显著提高,RMSE和MAE均有所下降。东北天然次生林立地质量空间分布呈现出显著异质性,优(A)和良(B)等级立地主要集中分布于大兴安岭和长白山主体区域。大兴安岭优(A)等级立地占比超过90%,立地质量等级占比自差(D)至优(A)呈递增趋势;小兴安岭中(C)、差(D)等级立地占比达80%以上,南部立地质量显著优于北部;张广才岭优(A)、良(B)等级立地仅占35.6%,且靠近长白山的区域立地质量更优;长白山优(A)、良(B)等级立地占比超过60%,整体立地质量呈上升趋势;辽东山区中(C)、差(D)等级立地占主导地位,空间分布呈现与长白山邻近区域质量提升的特征,不同区域立地质量分布也存在显著差异。结论: 在广义代数差分法基础上建立的以“区域”为哑变量的立地形模型,其拟合精度和预测能力显著增强。基于该模型对东北天然次生林进行立地质量评价,不同区域的立地质量分布格局存在显著差异。本研究可为实现森林资源可持续发展和生态保护提供一定的理论支持,未来研究应综合考虑环境因素,以深入理解森林生态系统的动态变化,为森林管理和保护策略提供指导。
中图分类号:
雷晶晶,王映霓,廖丹,包雨鑫,杨可馨,王娟. 基于哑变量的中国东北天然次生林立地质量评价[J]. 林业科学, 2025, 61(11): 92-101.
Jingjing Lei,Yingni Wang,Dan Liao,Yuxin Bao,Kexin Yang,Juan Wang. Site Quality Evaluation of Natural Secondary Forest in Northeast China Based on Dummy Variables[J]. Scientia Silvae Sinicae, 2025, 61(11): 92-101.
表1
研究区域优势木数据统计量①"
| 地区 Region | 样地数 Number | 树高Height/m | 胸径DBH/cm | |||||||
| 平均值 Mean | 最小值 Min. | 最大值 Max. | 标准差 SD | 平均值 Mean | 最小值 Min. | 最大值 Max. | 标准差 SD | |||
| DXA | 75 | 17.99 | 9.20 | 34.75 | 5.75 | 17.50 | 8.77 | 54.25 | 6.80 | |
| XXA | 73 | 10.31 | 6.51 | 17.37 | 2.53 | 14.03 | 8.04 | 26.09 | 3.69 | |
| CBS | 114 | 11.79 | 5.42 | 17.38 | 2.59 | 18.79 | 7.51 | 44.80 | 6.28 | |
| ZGC | 132 | 10.64 | 3.28 | 21.09 | 2.61 | 15.65 | 7.16 | 38.38 | 4.84 | |
| LDS | 62 | 10.47 | 5.41 | 16.05 | 2.59 | 16.04 | 7.51 | 33.66 | 5.33 | |
| ALL | 456 | 12.06 | 3.28 | 34.75 | 4.26 | 16.53 | 7.16 | 54.25 | 5.72 | |
表3
立地质量等级划分及描述"
| 等级 Level | 描述 Description | 立地形值 Site form (SF) values |
| A | 优 Highest site quality level | ≥ 四分之三分位点 ≥ Third quartile SF |
| B | 良 High-intermediate site quality level | ≥ 中位数且< 四分之三分位点 ≥ Median SF &<third quartile SF |
| C | 中 Low-intermediate site quality level | ≥ 四分之一分位点且<中位数 ≥ First quartile SF &<Median SF |
| D | 差 Lowest site quality level | < 四分之一分位点 < First quartile SF |
| 曹元帅, 孙玉军. 基于广义代数差分法的杉木人工林地位指数模型. 南京林业大学学报(自然科学版), 2017, 41 (5): 79- 84. | |
| Cao Y S, Sun Y J. Generalized algebraic difference site index model for Chinese fir plantation. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41 (5): 79- 84. | |
|
姜 鹏, 孙 悦, 许佳明, 等. 基于非线性混合效应的华东地区主要优势树种林分水平树高−胸径模型. 自然保护地, 2024, 4 (3): 65- 73.
doi: 10.12335/2096-8981.2024041901 |
|
|
Jiang P, Sun Y, Xu J M, et al. Tree height-diameter models of main tree species in east China based on nonlinear mixed-effects model. Natural Protected Areas, 2024, 4 (3): 65- 73.
doi: 10.12335/2096-8981.2024041901 |
|
| 李忠国, 孙晓梅, 陈东升, 等. 2011. 基于哑变量的日本落叶松生长模型研究. 西北农林科技大学学报(自然科学版), 39(8): 69−74. | |
| Li Z G, Sun X M, Chen D S, et al. 2011. Dummy variables model of increment of Larix kaempferi. Journal of Northwest A&F University (Natural Science Edition), 39(8): 69–74. [in Chinese] | |
|
马 炜, 孙玉军. 长白落叶松人工林立地指数表和胸径地位级表的编制. 东北林业大学学报, 2013, 41 (12): 21- 25, 38.
doi: 10.3969/j.issn.1000-5382.2013.12.006 |
|
|
Ma W, Sun Y J. Compilation of site index table and site class table for Larix olgensis plantations. Journal of Northeast Forestry University, 2013, 41 (12): 21- 25, 38.
doi: 10.3969/j.issn.1000-5382.2013.12.006 |
|
|
牛亦龙, 董利虎, 李凤日. 基于广义代数差分法的长白落叶松人工林地位指数模型. 北京林业大学学报, 2020, 42 (2): 9- 18.
doi: 10.12171/j.1000-1522.20190036 |
|
|
Niu Y L, Dong L H, Li F R. Site index model for Larix olgensis plantation based on generalized algebraic difference approach derivation. Journal of Beijing Forestry University, 2020, 42 (2): 9- 18.
doi: 10.12171/j.1000-1522.20190036 |
|
| 彭 娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型. 南京林业大学学报(自然科学版), 2018, 42 (3): 19- 27. | |
| Peng W, Li F R, Dong L H. Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province, China. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42 (3): 19- 27. | |
| 沈剑波, 雷相东, 雷渊才, 等. 长白落叶松人工林地位指数及立地形的比较研究. 北京林业大学学报, 2018, 40 (6): 1- 8. | |
| Shen J B, Lei X D, Lei Y C, et al. Comparison between site index and site form for site quality evaluation of Larix olgensis plantation. Journal of Beijing Forestry University, 2018, 40 (6): 1- 8. | |
|
沈剑波, 雷相东, 王虎威, 等. 针阔混交异龄林林分优势高的确定方法. 林业与环境科学, 2019, 35 (1): 43- 48.
doi: 10.3969/j.issn.1006-4427.2019.01.008 |
|
|
Shen J B, Lei X D, Wang H W, et al. Stand dominant height estimation of uneven-aged mixed coniferous and broad-leaved stands. Forestry and Environmental Science, 2019, 35 (1): 43- 48.
doi: 10.3969/j.issn.1006-4427.2019.01.008 |
|
| 宋长江. 2023. 帽儿山实验林场天然次生林立地质量综合评价. 哈尔滨: 东北林业大学. | |
| Song C J. 2023. Comprehansive evaluation of natural secondary forest site quality in Mao’ershan experimental forestry. Harbin: Northeast Forestry University. [in Chinese] | |
| 王君杰, 夏宛琦, 姜立春. 基于分位数回归和哑变量模型的大兴安岭兴安落叶松树高−胸径模型. 中南林业科技大学学报, 2020, 40 (9): 24- 32, 40. | |
| Wang J J, Xia W Q, Jiang L C. Height-diameter models for Larix gmelinii in Daxing’anling based on quantile regression and dummy variable model. Journal of Central South University of Forestry & Technology, 2020, 40 (9): 24- 32, 40. | |
|
吴璧芸, 雷相东, 何 潇, 等. 长白山天然针阔混交林优势高估计方法及立地质量评价. 林业科学, 2024, 61 (2): 85- 92.
doi: 10.11707/j.1001-7488.LYKX20240201 |
|
|
Wu B Y, Lei X D, He X, et al. Stand dominant height estimation methods and site quality assessment for natural mixed conifer-broadleaved forests in Changbai Mountains. Scientia Silvae Sinicae, 2024, 61 (2): 85- 92.
doi: 10.11707/j.1001-7488.LYKX20240201 |
|
|
张 超, 彭道黎, 黄国胜, 等. 基于森林清查数据的三峡库区林地立地质量评价. 东北林业大学学报, 2015, 43 (11): 56- 61.
doi: 10.3969/j.issn.1000-5382.2015.11.012 |
|
|
Zhang C, Peng D L, Huang G S, et al. Site quality evaluation in three gorges reservoir region based on forest inventory data. Journal of Northeast Forestry University, 2015, 43 (11): 56- 61.
doi: 10.3969/j.issn.1000-5382.2015.11.012 |
|
| 朱光玉, 康 立, 何海梅, 等. 基于树高-年龄分级的杉木人工林多形立地指数曲线模型研究. 中南林业科技大学学报, 2017, 37 (7): 18- 29. | |
| Zhu G Y, Kang L, He H M, et al. Study on polymorphic site index curve model based on height-age classification for Cunninghamia lanceolata plantation. Journal of Central South University of Forestry & Technology, 2017, 37 (7): 18- 29. | |
| 曾伟生, 唐守正, 夏忠胜, 等. 利用线性混合模型和哑变量模型方法建立贵州省通用性生物量方程. 林业科学研究, 2011, 24 (3): 285- 291. | |
| Zeng W S, Tang S Z, Xia Z S, et al. Using linear mixed model and dummy variable model approaches to construct generalized single-tree biomass equations in Guizhou. Forest Research, 2011, 24 (3): 285- 291. | |
|
Adame P, Cañellas I, Roig S, et al. Modelling dominant height growth and site index curves for rebollo oak (Quercus pyrenaica Willd.). Annals of Forest Science, 2006, 63 (8): 929- 940.
doi: 10.1051/forest:2006076 |
|
|
Aguirre A, Moreno-Fernández D, Alberdi I, et al. Mapping forest site quality at national level. Forest Ecology and Management, 2022, 508, 120043.
doi: 10.1016/j.foreco.2022.120043 |
|
| Assmann E, Davis P W. 1970. Principles of forest yield study. Oxford: Pergamon Press. | |
| Batho A, García O. 2006. De perthuis and the origins of site index: a historical note. Forest Biometry, Modelling and Information Sciences (FBMIS), 1: 1–10. | |
|
Benavides R, Roig S, Osoro K. Potential productivity of forested areas based on a biophysical model. a case study of a mountainous region in northern Spain. Annals of Forest Science, 2009, 66 (1): 108.
doi: 10.1051/forest/2008080 |
|
|
Bravo F, Montero G. High-grading effects on Scots pine volume and basal area in pure stands in northern Spain. Annals of Forest Science, 2003, 60 (1): 11- 18.
doi: 10.1051/forest:2002069 |
|
|
Bueis T, Bravo F, Pando V, et al. Relationship between environmental parameters and Pinus sylvestris L. site index in forest plantations in northern Spain acidic plateau. IForest - Biogeosciences and Forestry, 2016, 9 (3): 394- 401.
doi: 10.3832/ifor1600-008 |
|
| Burkhart H E, Tomé M. 2012. Modeling forest stand development. Dordrecht: Springer Netherlands, 233–244. | |
| Carmean W H. 1975. Forest site quality evaluation in the United States. Advances in Agronomy, 27: 209–269. | |
|
Cieszewski C J, Bailey R L. Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. Forest Science, 2000, 46 (1): 116- 126.
doi: 10.1093/forestscience/46.1.116 |
|
|
Diéguez-Aranda U, González J G Á, Anta M B, et al. Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Annals of Forest Science, 2005, 62 (2): 143- 152.
doi: 10.1051/forest:2005006 |
|
|
González J G Á, González A D R, Soalleiro R R, et al. Ecoregional site index models for Pinus pinaster in Galicia (northwestern Spain). Annals of Forest Science, 2005, 62 (2): 115- 127.
doi: 10.1051/forest:2005003 |
|
|
Hanewinkel M, Cullmann D A, Schelhaas M-J, et al. Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 2013, 3 (3): 203- 207.
doi: 10.1038/nclimate1687 |
|
|
Kuuluvainen T. Forest management and biodiversity conservation based on natural ecosystem dynamics in northern Europe: the complexity challenge. Ambio, 2009, 38 (6): 309- 315.
doi: 10.1579/08-A-490.1 |
|
|
Larson A J, Lutz J A, Gersonde R F, et al. Potential site productivity influences the rate of forest structural development. Ecological Applications, 2008, 18 (4): 899- 910.
doi: 10.1890/07-1191.1 |
|
|
Liang J J, Crowther T W, Picard N, et al. Positive biodiversity-productivity relationship predominant in global forests. Science, 2016, 354 (6309): aaf8957.
doi: 10.1126/science.aaf8957 |
|
|
Mohamed A, Reich R M, Khosla R, et al. Influence of climatic conditions, topography and soil attributes on the spatial distribution of site productivity index of the species rich forests of Jalisco, Mexico. Journal of Forestry Research, 2014, 25 (1): 87- 95.
doi: 10.1007/s11676-014-0434-5 |
|
| Monserud R A, Sterba H 1996. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria. Forest Ecology and Management, 80(1/2/3): 57–80. | |
|
Moreno-Fernández D, Álvarez-González J G, Rodríguez-Soalleiro R, et al. National-scale assessment of forest site productivity in Spain. Forest Ecology and Management, 2018, 417, 197- 207.
doi: 10.1016/j.foreco.2018.03.016 |
|
| Rose J, Vavra M, Perry D A, et al. Maintaining the long-term productivity of Pacific northwest forest ecosystems. Journal of Range Management, 1991, 44 (5): 525. | |
|
Skovsgaard J P, Vanclay J K. Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry, 2008, 81 (1): 13- 31.
doi: 10.1093/forestry/cpm041 |
|
|
Stone R. A threatened nature reserve breaks down Asian borders. Science, 2006, 313 (5792): 1379- 1380.
doi: 10.1126/science.313.5792.1379 |
|
|
Swamy S L, Puri S, Singh A K. Growth, biomass, carbon storage and nutrient distribution in Gmelina arborea Roxb. stands on red lateritic soils in central India. Bioresource Technology, 2003, 90 (2): 109- 126.
doi: 10.1016/S0960-8524(03)00120-2 |
|
| Vanclay J K, Henry N B. Assessing site productivity of indigenous cypress pine forest in southern Queensland. Commonwealth Forestry Review, 1988, 67 (1): 53- 64. | |
| Wang Z, Zhang X Q, Chhin S, et al. 2021. Disentangling the effects of stand and climatic variables on forest productivity of Chinese fir plantations in subtropical China using a random forest algorithm. Agricultural and Forest Meteorology, 304/305: 108412. | |
|
Watt M S, Palmer D J, Kimberley M O, et al. Development of models to predict Pinus radiata productivity throughout New Zealand. Canadian Journal of Forest Research, 2010, 40 (3): 488- 499.
doi: 10.1139/X09-207 |
|
| Wei X H, Kimmins J P, Zhou G Y. Disturbances and the sustainability of long-term site productivity in lodgepole pine forests in the central interior of British Columbia: an ecosystem modeling approach. Ecological Modelling, 2003, 164 (2/3): 239- 256. | |
| Weiskittel A R, Hann D W, Kershaw Jr J A, et al. 2011. Forest growth and yield modeling. Chichester: Wiley & Sons. | |
|
Wu R Y, Dong C, Zhang C W, et al. Classification model of site quality for mixed forests based on the TWINSPAN method and site form in southwestern Zhejiang. Forests, 2024, 15 (12): 2247.
doi: 10.3390/f15122247 |
| [1] | 吴璧芸,雷相东,何潇,李玉堂. 长白山天然针阔混交林优势高估计方法及立地质量评价[J]. 林业科学, 2025, 61(2): 85-92. |
| [2] | 张聪,刘琪,李海奎,刘鹏举,詹思颖. 我国尺度兼容和树种分类的材积源森林碳储量模型[J]. 林业科学, 2025, 61(1): 57-69. |
| [3] | 罗光成,何潇,雷相东,吴璧芸,向玮. 长白落叶松人工林优势高广义代数差分生长模型[J]. 林业科学, 2024, 60(12): 1-12. |
| [4] | 何静,李新建,朱晋梅,朱光玉. 基于最粗优势木胸径生长的湖南栎类天然林立地质量评价模型[J]. 林业科学, 2022, 58(8): 89-98. |
| [5] | 段光爽,郑亚丽,洪亮,宋新宇,符利勇. 基于潜在生产力的华北落叶松纯林和白桦山杨混交林立地质量评价[J]. 林业科学, 2022, 58(10): 1-9. |
| [6] | 张晓文,于青军,罗桂生,贾茜,吴丹妮,贾忠奎. 平泉油松建筑材林立地类型划分及立地质量评价[J]. 林业科学, 2021, 57(9): 1-12. |
| [7] | 曾伟生,孙乡楠,王六如,王威,蒲莹. 基于机载激光雷达数据的森林蓄积量模型研建[J]. 林业科学, 2021, 57(2): 31-38. |
| [8] | 王雪峰,陈珠琳,管青军,刘嘉政,王甜,袁莹. 基于林内图像的单位面积碳储量估计方法[J]. 林业科学, 2021, 57(1): 105-112. |
| [9] | 曾伟生, 贺东北, 蒲莹, 肖前辉. 含地域和起源因子的马尾松立木生物量与材积方程系统[J]. 林业科学, 2019, 55(2): 75-86. |
| [10] | 薛春泉, 徐期瑚, 林丽平, 何潇, 罗勇, 赵菡, 曹磊, 雷渊才. 广东主要乡土阔叶树种含年龄和胸径的单木生物量模型[J]. 林业科学, 2019, 55(2): 97-108. |
| [11] | 曾伟生,陈新云,杨学云. 我国人工杨树生物量建模和生产力分析[J]. 林业科学, 2019, 55(11): 1-8. |
| [12] | 王冬至, 张冬燕, 李永宁, 张志东, 李大勇, 黄选瑞. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型[J]. 林业科学, 2019, 55(11): 85-94. |
| [13] | 李晖, 曾伟生. 不同区域落叶松二元立木材积表的检验及差异分析[J]. 林业科学, 2016, 52(6): 157-162. |
| [14] | 姜立春, 马英莉, 李耀翔. 大兴安岭不同区域兴安落叶松可变指数削度方程[J]. 林业科学, 2016, 52(2): 17-25. |
| [15] | 吴恒, 党坤良, 田相林, 孙帅超, 陈书军, 赵鹏祥, 曹田健. 秦岭林区天然次生林与人工林立地质量评价[J]. 林业科学, 2015, 51(4): 78-88. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||