林业科学 ›› 2021, Vol. 57 ›› Issue (10): 49-58.doi: 10.11707/j.1001-7488.20211005
何潇,雷相东*
收稿日期:
2020-09-18
出版日期:
2021-10-25
发布日期:
2021-12-11
通讯作者:
雷相东
基金资助:
Xiao He,Xiangdong Lei*
Received:
2020-09-18
Online:
2021-10-25
Published:
2021-12-11
Contact:
Xiangdong Lei
摘要:
目的: 基于东北地区落叶松人工林森林资源连续清查固定样地数据,探讨生物量转换与扩展因子(BCEF)的最优模型形式,建立落叶松人工林BCEF空间自回归模型,为生物量精准估算提供模型支撑和依据。方法: 选择多种模型形式建立BCEF普通回归模型,从中选择拟合效果最好的模型,运用空间误差模型(SEM)和空间滞后模型(SLM)2种空间自回归方法重新拟合模型,采用决定系数(R2)、均方根误差(RMSE)和相对均方根误差(rRMSE)对模型进行评价,使用莫兰指数(MI)检验各变量和BCEF模型残差的空间自相关性。结果: 1)BCEF存在明显的空间自相关性,空间距离较小时,同一省内的落叶松人工林BCEF属性相似,随着空间距离增大,各省之间的BCEF属性差异逐渐体现出来,最终趋向随机分布;2)在普通回归模型中,异速生长模型、对数模型和双曲线模型拟合效果较好,不同自变量对应的最优模型形式不同;林分平方平均直径(Dg)是解释能力最高的变量,以Dg为自变量的有效模型的R2在0.945~0.958之间;其次是林分平均高和蓄积量,其有效模型的R2在0.60以上;林分平均年龄的解释能力略低,其有效模型的R2仅0.50左右;林分断面积(BA)和密度(N)对BCEF的解释能力较差,R2均不超过0.50;以Dg为自变量的普通回归模型的残差存在明显空间自相关性;3)以Dg为自变量的双曲线空间自回归模型最优,且SEM优于SLM,与对应普通回归模型相比,SEM的R2提高3%,RMSE和rRMSE分别降低33%和35%,模型残差的MI不超过0.02,可较好消除空间自相关性。结论: 双曲线是BCEF最稳定的模型形式,Dg是解释BCEF的最优变量,建议采用以Dg为预测变量的双曲线函数空间误差模型估算BCEF。
中图分类号:
何潇,雷相东. 东北地区落叶松人工林生物量转换与扩展因子空间自回归模型[J]. 林业科学, 2021, 57(10): 49-58.
Xiao He,Xiangdong Lei. Spatial Autoregressive Biomass Conversion and Expansion Factor Models for Larch Plantations in Northeast China[J]. Scientia Silvae Sinicae, 2021, 57(10): 49-58.
表1
样地基本因子统计量"
变量Variables | 平均值Mean | 最大值Max. | 最小值Min. | 变异系数CV(%) |
生物量转换与扩展因子Biomass conversion and expansion factors(BCEF)/(mg·m-3) | 0.77 | 0.81 | 0.74 | 1.70 |
林分蓄积Volume(V)/(m3·hm-2) | 85.22 | 299.32 | 4.23 | 63.75 |
林分平方平均直径Quadratic mean diameter(Dg)/cm | 12.40 | 26.40 | 5.70 | 33.66 |
林分断面积Basal area(BA)/(m2·hm-2) | 11.65 | 34.60 | 0.81 | 55.48 |
林分平均高Mean height(H)/m | 11.90 | 24.00 | 3.50 | 35.16 |
林分密度Density(N)/(tree·hm-2) | 1 020.00 | 3 600.00 | 250.00 | 56.00 |
林分平均年龄Mean age(Age)/a | 25.00 | 52.00 | 8.00 | 38.26 |
表3
基于最小二乘法的模型参数估计值与模型评价指标①"
模型形式 Model function | 序号 Number | 自变量 Independent variable | 参数Parameters | R2 | RMSE/(mg·m-3) | rRMSE(%) | |
a | b | ||||||
异速生长模型 Allometric model: lnBCEF= a+b×ln X+ε | 1 | V | -0.188*** | -0.016*** | 0.603 | 0.008 | 1.07 |
2 | Dg | -0.133*** | -0.050*** | 0.958 | 0.003 | 0.35 | |
3 | BA | -0.219*** | -0.017*** | 0.473 | 0.010 | 1.23 | |
4 | H | -0.165*** | -0.038*** | 0.710 | 0.007 | 0.91 | |
5 | N | -0.326*** | 0.010*** | 0.103 | 0.012 | 1.61 | |
6 | Age | -0.158*** | -0.032*** | 0.543 | 0.009 | 1.15 | |
指数模型 Exponential model: lnBCEF= a+b×X+ε | 7 | V | -0.237*** | -2.324E-4*** | 0.555 | 0.009 | 1.13 |
8 | Dg | -0.209*** | -3.872E-3*** | 0.907 | 0.004 | 0.52 | |
9 | BA | -0.237*** | -1.686E-3*** | 0.415 | 0.010 | 1.30 | |
10 | H | -0.216*** | -3.456E-3*** | 0.719 | 0.007 | 0.90 | |
11 | N | -0.267*** | 9.749E-6*** | 0.106 | 0.012 | 1.61 | |
12 | Age | -0.224*** | -1.303E-3*** | 0.524 | 0.009 | 1.17 | |
对数模型 Logarithmic model: BCEF= a+b×ln X+ε | 13 | V | 0.827*** | -0.013*** | 0.604 | 0.008 | 1.07 |
14 | Dg | 0.869*** | -0.039*** | 0.957 | 0.003 | 0.35 | |
15 | BA | 0.803*** | -0.013*** | 0.474 | 0.010 | 1.23 | |
16 | H | 0.844*** | -0.029*** | 0.712 | 0.007 | 0.91 | |
17 | N | 0.721*** | 0.008*** | 0.100 | 0.012 | 1.61 | |
18 | Age | 0.850*** | -0.024*** | 0.543 | 0.009 | 1.15 | |
双曲线模型 Hyperbolic model: BCEF= a+b/X+ε | 19 | V | 0.767*** | 0.298*** | 0.397 | 0.010 | 1.32 |
20 | Dg | 0.735*** | 0.431*** | 0.945 | 0.003 | 0.40 | |
21 | BA | 0.766*** | 0.056*** | 0.364 | 0.010 | 1.36 | |
22 | H | 0.749*** | 0.258*** | 0.632 | 0.008 | 1.03 | |
23 | N | 0.781*** | -5.360*** | 0.079 | 0.013 | 1.63 | |
24 | Age | 0.751*** | 0.474*** | 0.511 | 0.009 | 1.19 | |
S形曲线模型 S-shaped model: 1/BCEF= a+b×exp(- X) +ε | 25 | V | 1.293*** | -5.972*** | 0.031 | 0.013 | 1.67 |
26 | Dg | 1.298*** | -31.389*** | 0.414 | 0.010 | 1.30 | |
27 | BA | 1.296*** | -0.200*** | 0.204 | 0.012 | 1.52 | |
28 | H | 1.295*** | -3.274*** | 0.152 | 0.012 | 1.56 | |
29 | N | 1.293*** | -1.517E+7 | 0.004 | 0.013 | 1.69 | |
30 | Age | 1.294*** | -204.884* | 0.069 | 0.013 | 1.64 |
表4
以Dg为自变量的SAR模型参数估计值与模型评价指标"
模型形式 Model function | 序号 Number | SAR模型 SAR model | 参数Parameters | 滞后参数 Lag parameter | R2 | RMSE/(mg·m-3) | rRMSE(%) | |
a | b | |||||||
异速生长模型 Allometric model | 31 | ESM | -0.133*** | -0.050*** | λ= -142.780*** | 0.980 | 0.002 | 0.24 |
32 | LSM | -0.204 | -0.050*** | ρ= -0.277 | 0.958 | 0.003 | 0.35 | |
对数模型 Logarithmic model | 33 | ESM | 0.870*** | -0.039*** | λ= -142.070*** | 0.980 | 0.002 | 0.24 |
34 | LSM | 1.097*** | -0.039*** | ρ= -0.293 | 0.957 | 0.003 | 0.35 | |
双曲线模型 Hyperbolic model | 35 | ESM | 0.737*** | 0.413*** | λ= -150.940*** | 0.976 | 0.002 | 0.26 |
36 | LSM | 1.199*** | 0.433*** | ρ= -0.599*** | 0.945 | 0.003 | 0.40 |
表5
以Dg、H和Age为自变量的多元SAR模型参数估计值与模型评价指标"
模型 Model | 序号 Number | SAR模型 SAR model | 参数Parameters | 滞后参数 Lag parameter | R2 | RMSE/(mg·m-3) | rRMSE(%) | |||
a | b | c | d | |||||||
BCEF= a+b/Dg+ c/H | 37 | SEM | 0.736*** | -0.436*** | -0.019*** | — | λ= -151.280*** | 0.978 | 0.002 | 0.26 |
38 | SLM | 1.220*** | 0.456*** | -0.020*** | — | ρ= -0.628** | 0.947 | 0.003 | 0.39 | |
BCEF= a+b/Dg + c/Age | 39 | SEM | 0.737*** | -0.419*** | -0.012 | — | λ= -150.620*** | 0.976 | 0.002 | 0.26 |
40 | SLM | 1.194*** | 0.438*** | -0.001 | — | ρ= -0.593 | 0.946 | 0.003 | 0.40 | |
BCEF= a+b/H+c/Age | 41 | SEM | 0.748*** | 0.112*** | 0.308*** | — | λ= -182.050*** | 0.907 | 0.004 | 0.52 |
42 | SLM | 0.342 | 0.187*** | 0.205*** | — | ρ= -0.523 | 0.682 | 0.007 | 0.96 | |
BCEF= a+b/Dg +c/ H+d/Age | 43 | SEM | 0.736*** | 0.437*** | -0.019*** | -0.004 | λ= -150.230*** | 0.977 | 0.002 | 0.26 |
44 | SLM | 1.219*** | 0.457*** | -0.020*** | -0.002 | ρ= -0.626** | 0.947 | 0.003 | 0.39 |
陈传国, 朱俊凤. 东北主要林木生物量手册. 北京: 中国林业出版社, 1989. | |
Chen C G , Zhu J F . Biomass tables for main tree species in northeast China. Beijing: China Forestry Publishing House, 1989. | |
董文福, 管东生. 森林生态系统在碳循环中的作用. 重庆环境科学, 2002, 24 (3): 25- 27, 31.
doi: 10.3969/j.issn.1674-2842.2002.03.010 |
|
Dong W F , Guan D S . Effect of forest ecosystems on carbon cycling. Chongqing Environmental Science, 2002, 24 (3): 25- 27, 31.
doi: 10.3969/j.issn.1674-2842.2002.03.010 |
|
方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量. 生态学报, 1996, 16 (5): 497- 508. | |
Fang J Y , Liu G H , Xu S L . Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 1996, 16 (5): 497- 508. | |
国家林业局. 立木生物量模型及碳计量参数——落叶松. 北京: 中国林业出版社, 2016. | |
State Forestry Administration . Tree biomass models and related parameters to carbon accounting for Larix. Beijing: China Forestry Publishing House, 2016. | |
李海奎, 赵鹏祥, 雷渊才, 等. 基于森林清查资料的乔木林生物量估算方法的比较. 林业科学, 2012, 48 (5): 44- 52. | |
Li H K , Zhao P X , Lei Y C , et al. Comparison on estimation of wood biomass using forest inventory data. Scientia Silvae Sinicae, 2012, 48 (5): 44- 52. | |
李海奎, 欧强新, 赵嘉诚, 等. 模型和林分因子对区域尺度碳计量参数的影响——以杉木为例. 林业科学, 2017, 53 (9): 55- 62. | |
Li H K , Ou Q X , Zhao J C , et al. Effects of model and stand factors on the parameters to carbon accounting at the regional scale—a case study for Cunninghamia lanceolata. Scientia Silvae Sinicae, 2017, 53 (9): 55- 62. | |
娄明华, 张会儒, 雷相东, 等. 天然云冷杉针阔混交林单木胸径树高空间自回归模型研究. 北京林业大学学报, 2016, 38 (8): 1- 9. | |
Lou M H , Zhang H R , Lei X D , et al. An individual height-diameter model constructed using spatial autoregressive models within natural spruce-fir and broadleaf mixed stands. Journal of Beijing Forestry University, 2016, 38 (8): 1- 9. | |
罗云建, 王效科, 张小全, 等. 华北落叶松人工林的生物量估算参数. 林业科学, 2010, 46 (2): 6- 11. | |
Luo Y J , Wang X K , Zhang X Q , et al. Biomass estimation factors of Larix principis-rupprechtii plantations in northern China. Scientia Silvae Sinicae, 2010, 46 (2): 6- 11. | |
罗云建, 张小全, 侯振宏, 等. 我国落叶松林生物量碳计量参数的初步研究. 植物生态学报, 2007, 31 (6): 1111- 1118. | |
Luo Y J , Zhang X Q , Hou Z H , et al. Biomass carbon accounting factors of Larix forests in China based on literature data. Journal of Plant Ecology, 2007, 31 (6): 1111- 1118. | |
罗云建, 张小全, 王效科, 等. 森林生物量的估算方法及其研究进展. 林业科学, 2009, 12 (8): 129- 134.
doi: 10.3321/j.issn:1001-7488.2009.08.023 |
|
Luo Y J , Zhang X Q , Wang X K , et al. Forest biomass estimation methods and their prospects. Scientia Silvae Sinicae, 2009, 12 (8): 129- 134.
doi: 10.3321/j.issn:1001-7488.2009.08.023 |
|
张茂震, 王广兴, 刘安兴. 基于森林资源连续清查资料估算的浙江省森林生物量及生产力. 林业科学, 2009, 45 (9): 13- 17.
doi: 10.3321/j.issn:1001-7488.2009.09.003 |
|
Zhang M Z , Wang G X , Liu A X . Estimation of forest biomass and net primary production for Zhejiang Province based on continuous forest resources inventory. Scientia Silvae Sinicae, 2009, 45 (9): 13- 17.
doi: 10.3321/j.issn:1001-7488.2009.09.003 |
|
竹万宽, 许宇星, 王志超, 等. 中国桉树人工林生物量估算系数及影响要素. 林业科学, 2020, 56 (5): 1- 11. | |
Zhu W K , Xu Y X , Wang Z C , et al. Biomass estimation coefficient and its impacting factors for Eucalyptus plantation in China. Scientia Silvae Sinicae, 2020, 56 (5): 1- 11. | |
左舒翟, 任引, 王效科, 等. 中国杉木林生物量估算参数及其影响因素. 林业科学, 2014, 50 (11): 1- 12. | |
Zuo S D , Ren Y , Wang X K , et al. Biomass estimation factors and their determinants of Cunninghamia lanceolata forests in China. Scientia Silvae Sinicae, 2014, 50 (11): 1- 12. | |
Anselin L . Spatial econometrics: methods and models. Dordrecht: Kluwer Academic Publishers, 1988. | |
Brown S . Measuring carbon in forests: current status and future challenges. Environment Pollution, 2002, 116, 363- 372.
doi: 10.1016/S0269-7491(01)00212-3 |
|
Canadell J G , Raupach M R . Managing forests for climate change mitigation. Science, 2008, 320 (5882): 1456- 1457.
doi: 10.1126/science.1155458 |
|
Fang J Y , Chen A P , Peng C H , et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001, 292 (5525): 2320- 2322.
doi: 10.1126/science.1058629 |
|
Gregorie T G . Generalized error structure for forestry yield models. Forest Science, 1987, 33 (2): 423- 444. | |
IPCC. 2003. Good practice guidance for land use, Land-Use change and forestry. IPCC/IGES, ISBN, Hayama, Japan, 4-88788-032-0. | |
IPCC. 2006. IPCC guidelines for national greenhouse gas inventory. IPCC/IGES, ISBN, Hayama, Japan, 4-88788-032-4. | |
Jagodziński A M , Dyderski M K , Gęsikiewicz K , et al. Tree and stand level estimations of Abies alba Mill. aboveground biomass. Annals of Forest Science, 2019, 76 (2): 1- 14.
doi: 10.1007/s13595-019-0842-y?shared-article-renderer |
|
Jalkanen A , Mäkipää R , Ståhl G , et al. Estimation of the biomass stock of trees in Sweden: comparison of biomass equations and age-dependent biomass expansion factors. Annals of Forest Science, 2005, 62 (8): 845- 851.
doi: 10.1051/forest:2005075 |
|
Joosten R , Schumacher J , Wirth C , et al. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management, 2004, 189 (1/3): 87- 96. | |
Kissling W D , Carl G . Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 2008, 17, 59- 71. | |
Lehtonen A , Cienciala E , Tatarinov F , et al. Uncertainty estimation of biomass expansion factors for Norway spruce in the Czech Republic. Annals of Forest Science, 2007, 64 (2): 133- 140.
doi: 10.1051/forest:2006097 |
|
Lehtonen A , Mäkipää R , Heikkinen J , et al. Biomass expansion factors (BEFs) for Scots pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management, 2004, 188 (1/3): 211- 224. | |
Levy P E , Hale S E , Nicoll B C . Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain. Forestry: An International Journal of Fonest Research, 2004, 77 (5): 421- 430.
doi: 10.1093/forestry/77.5.421 |
|
Liski J , Lehtonen A , Palosuo T , et al. Carbon accumulation in Finland's forests 1922—2004-an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Annals of Forest Science, 2006, 63 (7): 687- 697.
doi: 10.1051/forest:2006049 |
|
Lu J F , Zhang L J . Modeling and prediction of tree height-diameter relationships using spatial autoregressive models. Forest Science, 2011, 57 (3): 252- 264.
doi: 10.1093/forestscience/57.3.252 |
|
Mateu J , Uso J , Montes F . The spatial pattern of a forest ecosystem. Ecological Modelling, 1998, 108 (1): 163- 174. | |
Meng Q , Cieszewski C J , Strub M R , et al. Spatial regression modeling of tree height-diameter relationships. Canadian Journal of Forest Research, 2009, 39 (12): 2283- 2293.
doi: 10.1139/X09-136 |
|
Pan Y , Birdsey R A , Fang J , et al. A large and persistent carbon sink in the world's forests. Science, 2011, 333 (6045): 988- 993.
doi: 10.1126/science.1201609 |
|
Paradis E. 2009. Moran's autocorrelation coefficient in comparative methods. R Foundation for Statistical Computing, Vienna. | |
Peichl M , Arain M A . Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 2007, 253 (1/3): 68- 80. | |
Shvidenko A , Nilsson S . Dynamics of Russian forests and the carbon budget in 1961—1998: an assessment based on long-term forest inventory data. Climatic Change, 2002, 55 (1/2): 5- 37.
doi: 10.1023/A:1020243304744 |
|
Soares P , Tomé M . Biomass expansion factors for Eucalyptus globulus stands in Portugal. Forest Systems, 2012, 21 (1): 141- 152.
doi: 10.5424/fs/2112211-12086 |
|
Wang C . Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management, 2006, 222 (1/3): 9- 16. | |
West P W , Ratkowsky D A , Davis A W . Problems of hypothesis testing of regressions with multiple measurements from individual sampling units. Forest Ecology and Management, 1984, 7 (3): 207- 224.
doi: 10.1016/0378-1127(84)90068-9 |
[1] | 韩新生, 王彦辉, 李振华, 王艳兵, 于澎涛, 熊伟. 六盘山半干旱区华北落叶松人工林林下日蒸散特征及其影响因子[J]. 林业科学, 2019, 55(9): 11-21. |
[2] | 陈东升, 李凤日, 孙晓梅, 张守攻. 基于节子分析技术构建落叶松人工林树冠基部高动态模型[J]. 林业科学, 2019, 55(9): 103-110. |
[3] | 扈梦梅,田龙,吴亚楠,杨晋宇,吕小翠,黄选瑞. 塞罕坝华北落叶松人工林间伐和混交改造对大型土壤动物群落结构的影响[J]. 林业科学, 2019, 55(11): 153-162. |
[4] | 顾伟, 马玲, 孙虎, 王利东, 张子龙. 不同土壤环境下落叶松人工林昆虫群落结构及动态的差异[J]. 林业科学, 2017, 53(5): 97-106. |
[5] | 高敏, 马香丽, 杨晋宇, 黄选瑞, 吴亚楠. 冀北山地华北落叶松人工林与白桦混交改造模式对土壤动物群落的影响[J]. 林业科学, 2017, 53(1): 70-81. |
[6] | 刘伟玮, 刘某承, 李文华, 曾凡顺, 曲艺. 落叶松-人参复合系统的植物多样性和碳储量特征[J]. 林业科学, 2016, 52(9): 124-132. |
[7] | 殷鸣放;周立君;殷炜达. 长白落叶松人工林带状间伐方式对土壤有机碳含量的影响[J]. 林业科学, 2012, 48(7): 170-173. |
[8] | 陈东升;李凤日;孙晓梅;贾炜玮. 基于线性混合模型的落叶松人工林节子大小预测模型[J]. 林业科学, 2011, 47(11): 121-128. |
[9] | 罗云建;王效科 张小全;朱建华 张治军 侯振宏. 华北落叶松人工林的生物量估算参数[J]. 林业科学, 2010, 46(2): 6-11. |
[10] | 董希斌 王立海. 落叶松人工林采集作业模式的优选[J]. 林业科学, 2007, 43(9): 48-52. |
[11] | 陈立新 杨承栋. 落叶松人工林土壤腐殖物质组分及其对酸度的影响[J]. 林业科学, 2007, 43(2): 8-14. |
[12] | 陈立新 杨承栋. 落叶松人工林土壤磷形态、磷酸酶活性演变与林木生长关系的研究[J]. 林业科学, 2004, 40(3): 12-18. |
[13] | 郑小贤. 信州落叶松人工林生长模型及其系统收获表的研究[J]. 林业科学, 1997, 33(1): 42-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||