|
陈蕾如, 马锐豪, 王 斐, 等. 城乡梯度下5种园林树种叶片与细根功能性状的变异特点. 生态学杂志, 2023, 42 (6): 1281- 1289.
|
|
Chen L R, Ma R H, Wang F, et al. Variations of leaf and fine-root functional traits of five garden tree species across an urban-rural gradient. Chinese Journal of Ecology, 2023, 42 (6): 1281- 1289.
|
|
刁浩宇, 王安志, 袁凤辉, 等. 长白山阔叶红松林演替序列植物-凋落物-土壤碳同位素特征. 应用生态学报, 2019, 30 (5): 1435- 1444.
|
|
Diao H Y, Wang A Z, Yuan F H, et al. Stable carbon isotopic characteristics of plant-litter-soil continuum along a successional gradient of broadleaved Korean pine forests in Changbai Mountain, China. Chinese Journal of Applied Ecology, 2019, 30 (5): 1435- 1444.
|
|
刘晓娟, 马克平. 植物功能性状研究进展. 中国科学(生命科学), 2015, 45 (4): 325- 339.
|
|
Liu X J, Ma K P. Plant functional traits—concepts, applications and future directions. Science in China(Series C), 2015, 45 (4): 325- 339.
|
|
王苗苗, 刘 勇, 李国雷, 等. 秋季施肥对毛白杨苗木质量、造林效果和养分回流的影响. 林业科学, 2021, 57 (7): 51- 60.
|
|
Wang M M, Liu Y, Li G L, et al. Effects of autum fertilization on quality, field performance and nutrient resorption of Populus tomentosa seedling. 林业科学, 2021, 57 (7): 51- 60.
|
|
韦柳端, 朱济友, 李夏榕, 等. 根系功能性状对干瘠立地适应的种间差异——以北京石质山地主要观赏树种为例. 生态学报, 2021, 41 (23): 9492- 9501.
|
|
Wei L D, Zhu J Y, Li X R, et al. Interspecific trait variation in the adaptation of root functional traits to dry-barren sites: a case study of the main ornamental tree species in stony mountainous region of Beijing. Acta Ecologica Sinica, 2021, 41 (23): 9492- 9501.
|
|
徐子怡, 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡. 植物生态学报, 2024, 48 (5): 612- 622.
doi: 10.17521/cjpe.2023.0328
|
|
Xu Z Y, Jin G Z. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaf-Korean pine forests. Chinese Journal of Plant Ecology, 2024, 48 (5): 612- 622.
doi: 10.17521/cjpe.2023.0328
|
|
于 淼, 张碧嘉, 王泽锦, 等. 功能性状和立地条件与树木根系NO3-吸收能力的关系. 北京林业大学学报, 2024, 46 (1): 35- 43.
doi: 10.12171/j.1000-1522.20220497
|
|
Yu M, Zhang B J, Wang Z J, et al. Relationship of functional traits and site conditions with NO3- uptake capacity of tree root. Journal of Beijing Forestry University, 2024, 46 (1): 35- 43.
doi: 10.12171/j.1000-1522.20220497
|
|
钟波元, 熊德成, 史顺增, 等. 隔离降水对杉木幼苗细根生物量和功能特征的影响. 应用生态学报, 2016, 27 (9): 2807- 2814.
|
|
Zhong B Y, Xiong D C, Shi S Z, et al. Effects of precipitation exclusion on fine-root biomass and functional traits of Cunninghamia lanceolata seedlings. Chinese Journal of Applied Ecology, 2016, 27 (9): 2807- 2814.
|
|
Anderegg W R L, Flint A, Huang C, et al. Tree mortality predicted from drought-induced vascular damage. Nature Geoscience, 2015, 8 (5): 367- 371.
doi: 10.1038/ngeo2400
|
|
Bartlett M K, Klein T, Jansen S, et al. 2016. The correlations and sequence of plant stomatal, hydraulic, and wilting responses to drought. Proceedings of the National Academy of Sciences of the United States of America, 113(46): 13098−13103.
|
|
Bergmann J, Weigelt A, van Der Plas F, et al. The fungal collaboration gradient dominates the root economics space in plants. Science Advances, 2020, 6 (27): eaba3756.
doi: 10.1126/sciadv.aba3756
|
|
Carmona C P, Bueno C G, Toussaint A, et al. Fine-root traits in the global spectrum of plant form and function. Nature, 2021, 597 (7878): 683- 687.
doi: 10.1038/s41586-021-03871-y
|
|
Chandregowda M H, Tjoelker M G, Pendall E, et al. Root trait shifts towards an avoidance strategy promote productivity and recovery in C 3 and C 4 pasture grasses under drought. Functional Ecology, 2022, 36 (7): 1754- 1771.
doi: 10.1111/1365-2435.14085
|
|
Chen T, van der Werf G R, de Jeu R A M, et al. A global analysis of the impact of drought on net primary productivity. Hydrology and Earth System Sciences, 2013, 17 (10): 3885- 3894.
doi: 10.5194/hess-17-3885-2013
|
|
Comas L H, Becker S R, Von Cruz M V, et al. Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 2013, 4, 442.
|
|
Cusack D F, Addo-Danso S D, Agee E A, et al. Tradeoffs and synergies in tropical forest root traits and dynamics for nutrient and water acquisition: field and modeling advances. Frontiers in Forests and Global Change, 2021, 4, 704469.
doi: 10.3389/ffgc.2021.704469
|
|
Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences, 2015, 72 (4): 673- 689.
doi: 10.1007/s00018-014-1767-0
|
|
Huang X, Lu Z, Li F, et al. Evolution history dominantly regulates fine root lifespan in tree species across the world. Forest Ecosystems, 2024, 11, 100211.
doi: 10.1016/j.fecs.2024.100211
|
|
Kong D, Ma C, Zhang Q, et al. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist, 2014, 203 (3): 863- 872.
doi: 10.1111/nph.12842
|
|
Li J, Chen X, Niklas K J, et al. A whole-plant economics spectrum including bark functional traits for 59 subtropical woody plant species. Journal of Ecology, 2022, 110 (1): 248- 261.
doi: 10.1111/1365-2745.13800
|
|
Li S, Lu S, Wang J, et al. Responses of physiological, morphological and anatomical traits to abiotic stress in woody plants. Forests, 2023, 14 (9): 1784.
doi: 10.3390/f14091784
|
|
Liang S, Guo H, McCormack M L, et al. Positioning absorptive root respiration in the root economics space across woody and herbaceous species. Journal of Ecology, 2023, 111 (12): 2710- 2720.
doi: 10.1111/1365-2745.14213
|
|
Liu M, Trugman A T, Penuelas J, et al. Climate-driven disturbances amplify forest drought sensitivity. Nature Climate Change, 2024, 14 (7): 746- 752.
doi: 10.1038/s41558-024-02022-1
|
|
Long Y, Kong D, Chen Z, et al. Variation of the linkage of root function with root branch order. PLoS ONE, 2013, 8 (2): e57153.
doi: 10.1371/journal.pone.0057153
|
|
Lozano Y M, Aguilar-Trigueros C A, Flaig I C, et al. Root trait responses to drought are more heterogeneous than leaf trait responses. Functional Ecology, 2020, 34 (11): 2224- 2235.
doi: 10.1111/1365-2435.13656
|
|
Lynch J P. Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 2013, 112 (2): 347- 357.
doi: 10.1093/aob/mcs293
|
|
Ma Z, Guo D, Xu X, et al. Evolutionary history resolves global organization of root functional traits. Nature, 2018, 555 (7694): 94- 97.
doi: 10.1038/nature25783
|
|
Martinez-Vilalta J, Anderegg W R L, Sapes G, et al. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytologist, 2019, 223 (1): 22- 32.
doi: 10.1111/nph.15644
|
|
McCormack M L, Dickie I A, Eissenstat D M, et al. Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 2015, 207 (3): 505- 518.
doi: 10.1111/nph.13363
|
|
Meier I C, Leuschner C. Belowground drought response of European beech: fine root biomass and carbon partitioning in 14 mature stands across a precipitation gradient. Global Change Biology, 2008, 14 (9): 2081- 2095.
doi: 10.1111/j.1365-2486.2008.01634.x
|
|
Mommer L, Weemstra M. The role of roots in the resource economics spectrum. New Phytologist, 2012, 195 (4): 725- 727.
doi: 10.1111/j.1469-8137.2012.04247.x
|
|
Poorter H, Niklas K J, Reich P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 2012, 193 (1): 30- 50.
doi: 10.1111/j.1469-8137.2011.03952.x
|
|
Puglielli G, Laanisto L, Poorter H, et al. Global patterns of biomass allocation in woody species with different tolerances of shade and drought: evidence for multiple strategies. New Phytologist, 2021, 229 (1): 308- 322.
doi: 10.1111/nph.16879
|
|
Rodriguez-Alarcon S, Tamme R, Carmona C P. Intraspecific trait changes in response to drought lead to trait convergence between-but not within-species. Functional Ecology, 2022, 36 (8): 1900- 1911.
doi: 10.1111/1365-2435.14099
|
|
Rossi R, Bochicchio R, Labella R, et al. Phenotyping seedling root biometry of two contrasting bread wheat cultivars under nutrient deficiency and drought stress. Agronomy-Basel, 2024, 14 (4): 775.
doi: 10.3390/agronomy14040775
|
|
Rowland L, Ramirez-Valiente J, Hartley I P, et al. How woody plants adjust above- and below-ground traits in response to sustained drought. New Phytologist, 2023, 239 (4): 1173- 1189.
doi: 10.1111/nph.19000
|
|
Sanaei A, van der Plas F, Chen H, et al. Tree growth is better explained by absorptive fine root traits than by transport fine root traits. Communications Biology, 2025, 8 (1): 313.
doi: 10.1038/s42003-025-07756-y
|
|
Sun Y, Wang C, Chen H Y H, et al. A global meta-analysis on the responses of C and N concentrations to warming in terrestrial ecosystems. Catena, 2022, 208, 105762.
doi: 10.1016/j.catena.2021.105762
|
|
Wahl S, Ryser P. Root tissue structure is linked to ecological strategies of grasses. The New Phytologist, 2000, 148 (3): 459- 471.
doi: 10.1046/j.1469-8137.2000.00775.x
|
|
Wang C, Sun Y, Chen H Y H, et al. Meta-analysis shows non-uniform responses of above- and belowground productivity to drought. Science of the Total Environment, 2021, 782, 146901.
doi: 10.1016/j.scitotenv.2021.146901
|
|
Zang U, Goisser M, Meyer N, et al. Chemical and morphological response of beech saplings (Fagus sylvatica L. ) to an experimental soil drought gradient. Forest Ecology and Management, 2021, 498, 119569.
doi: 10.1016/j.foreco.2021.119569
|
|
Zhang X, Xing Y, Yan G, et al. Effects of precipitation change on fine root morphology and dynamics at a global scale: a meta-analysis. Canadian Journal of Soil Science, 2019, 99 (1): 1- 11.
doi: 10.1139/cjss-2018-0114
|
|
Zhou G, Zhou X, Nie Y, et al. Drought-induced changes in root biomass largely result from altered root morphological traits: Evidence from a synthesis of global field trials. Plant Cell and Environment, 2018, 41 (11): 2589- 2599.
doi: 10.1111/pce.13356
|
|
Zhou M, Guo Y, Sheng J, et al. Using anatomical traits to understand root functions across root orders of herbaceous species in a temperate steppe. New Phytologist, 2022, 234 (2): 422- 434.
doi: 10.1111/nph.17978
|
|
Zhu L, Sun J, Yao X, et al. Fine root nutrient foraging ability in relation to carbon availability along a chronosequence of Chinese fir plantations. Forest Ecology and Management, 2022, 507, 120003.
doi: 10.1016/j.foreco.2021.120003
|