林业科学 ›› 2025, Vol. 61 ›› Issue (8): 32-45.doi: 10.11707/j.1001-7488.LYKX20250132
江雨琦1,牛健植1,2,3,4,*(),王迪5,杨涛1,戴正宇1,郑佳玉1
收稿日期:
2025-03-07
出版日期:
2025-08-25
发布日期:
2025-09-02
通讯作者:
牛健植
E-mail:nexk@bjfu.edu.cn
基金资助:
Yuqi Jiang1,Jianzhi Niu1,2,3,4,*(),Di Wang5,Tao Yang1,Zhengyu Dai1,Jiayu Zheng1
Received:
2025-03-07
Online:
2025-08-25
Published:
2025-09-02
Contact:
Jianzhi Niu
E-mail:nexk@bjfu.edu.cn
摘要:
目的: 综合应用染色示踪和探地雷达技术,分析不同入渗水量下的土壤优先流时空变化特征,揭示雨量变化对土壤优先流发育的调控机制;同时,尝试建立探地雷达特征参数与优先流指标的关系,揭示探地雷达技术判定优先流的适用性和局限性,为土壤水文过程的无损监测提供参考。方法: 以辽宁老秃顶子国家级自然保护区的蒙古栎?色木槭?山杨天然次生林为对象,在大雨(35 mm)和暴雨(60 mm)2种入渗水量下进行染色示踪试验,挖取染色剖面后直观分析优先流发育特征,利用优先流指数综合评价优先流发育程度。分析探地雷达单道波形图的最大振幅(Amax)、最大振幅面积(Smax)、总振幅面积(ΣS)和最大时间间隔(Tmax)4个特征参数,结合土壤剖面染色面积比(DC),探究优先流特征随土层深度的变化。构建染色前后的Amax幅值变化三维图,探究探地雷达参数随染色时间(染色前和染色后30 min、1 h、24 h)的变化规律及水分运移过程。结果: 1) 研究区内土壤优先流以漏斗流和指流为主,具有一定的侧向流特征,水分入渗过程存在非均匀性,随土层加深DC整体呈非线性下降;随入渗水量增加,优先流综合评价指数下降(0.47→0.42),水分空间异质性降低(变异系数:0.66→0.28),分布范围扩大(DC:48.78%→74.36%);2) 染色面积比与探地雷达特征参数显著相关,其中与染色后的Amax、Smax、ΣS极显著正相关(P≤0.01),与染色后的Tmax显著负相关(P≤0.05),表明探地雷达特征参数能够有效反映土壤优先流发育程度;3) 染色后探地雷达Amax在土层深度10 cm处达到峰值,表明此处水分变化剧烈,优先流发育程度最高;随土层深度增加,振幅逐渐降低,优先流发育程度逐渐减弱;4) 入渗水量增加使得Amax在观测时段内的最大值从染色后1 h加速至30 min,说明入渗水量增加能够加速水分入渗,加快优先流发育。结论: 本研究揭示辽宁老秃顶子国家级自然保护区土壤优先流在不同入渗水量条件下的发育特征及其动态变化,入渗水量增加能够加速土壤优先流发育,使其在更短时间内达到高峰,但反而抑制优先流发育程度。探地雷达技术能够有效判定优先流的发生及发育程度,其相关特征参数与土壤优先流发育程度存在显著相关,可为染色示踪试验结果提供定量分析支持。
中图分类号:
江雨琦,牛健植,王迪,杨涛,戴正宇,郑佳玉. 基于染色示踪和探地雷达的辽宁老秃顶子天然次生林土壤优先流特征[J]. 林业科学, 2025, 61(8): 32-45.
Yuqi Jiang,Jianzhi Niu,Di Wang,Tao Yang,Zhengyu Dai,Jiayu Zheng. Characteristics of Soil Preferential Flow in the Natural Secondary Forest of Laotudingzi in Liaoning Province Based on Dye Tracing and Ground Penetrating Radar[J]. Scientia Silvae Sinicae, 2025, 61(8): 32-45.
表1
样地土壤物理性质特征"
土层 Soil layer/cm | 密度Density/ (g·cm?3) | 总孔隙度 Total porosity (%) | 毛管孔隙度 Capillary porosity (%) | 非毛管孔隙度 Non-capillary porosity (%) | 田间持水量 Field capacity (%) | 土壤机械组成 Soil texture composition (%) | ||
砂粒 Sand | 粉粒 Silt | 黏粒 Clay | ||||||
0~10 | 0.94±0.12 | 64.59±1.88 | 41.24±2.76 | 23.34±1.53 | 53.60±2.29 | 70.87±2.62 | 20.17±2.33 | 8.95±0.61 |
10~20 | 1.25±0.07 | 52.88±2.06 | 30.60±2.64 | 22.28±0.69 | 49.53±6.59 | |||
20~30 | 1.39±0.16 | 45.05±1.74 | 25.03±0.64 | 20.02±2.37 | 33.33±5.31 | |||
平均Average | 1.33±0.09 | 53.02±0.09 | 32.29±1.29 | 21.88±0.97 | 45.49±2.92 |
表3
不同入渗水量条件下优先流特征指标"
入渗水量 Infiltration water volume | 染色面积比 Dye coverage ratio (%) | 基质流深度 Matrix flow depth/cm | 优先流比 Preferential flow ratio (%) | 长度指数 Length index (%) | 变异系数 Coefficient of variation | 峰值 Peak value | 优先流综合 评价指数 Preferential flow evaluation index |
大雨Heavy rain (35 mm) | 48.78±29.52 | 6.7±4.9 | 52.01±11.21 | 581.83±156.84 | 0.66±0.56 | 11.89±7.49 | 0.47 |
暴雨Torrential rain (60 mm) | 74.36±23.43 | 9.1±6.4 | 58.82±11.68 | 378.66±67.89 | 0.28±0.28 | 5.22±3.19 | 0.42 |
图8
染色前后探地雷达最大振幅变化情况三维图 a:大雨(35 mm)入渗水量条件染色前Before staining under the condition of heavy rain (35 mm) infiltration water volume;b:大雨(35 mm)入渗水量条件染色后After staining under the condition of heavy rain (35 mm) infiltration water volume;c:暴雨(60 mm)入渗水量条件染色前Before staining under the condition of torrential rain (60 mm) infiltration water volume;d:暴雨(60 mm)入渗水量条件染色后 After staining under the condition of torrential rain (60 mm) infiltration water volume."
白荣芬, 王 品, 任如月, 等. 辽东山区天然次生林森林康养结构性分析. 林业科技通讯, 2023, (12): 106- 108. | |
Bai R F, Wang P, Ren R Y, et al. Structural analysis of forest health of natural secondary forest in mountainous area of eastern Liaoning Province. Practical Forestry Technology, 2023, (12): 106- 108. | |
杜 翠, 杨 峰, 彭 猛, 等. 雷达层析成像对复垦土壤分层结构的探测. 计算机仿真, 2013, 30 (9): 217- 220, 273.
doi: 10.3969/j.issn.1006-9348.2013.09.050 |
|
Du C, Yang F, Peng M, et al. Ground penetrating radar tomography detectionfor layer structure of mine reclamation soil. Computer Simulation, 2013, 30 (9): 217- 220, 273.
doi: 10.3969/j.issn.1006-9348.2013.09.050 |
|
冯琦雅, 陈超凡, 覃 林, 等. 不同经营模式对蒙古栎天然次生林林分结构和植物多样性的影响. 林业科学, 2018, 54 (1): 12- 21.
doi: 10.11707/j.1001-7488.20180102 |
|
Feng Q Y, Chen C F, Qin L, et al. Effects of different management models on stand structure and plant diversity of natural secondary forests of Quercus mongolica. Scientia Silvae Sinicae, 2018, 54 (1): 12- 21.
doi: 10.11707/j.1001-7488.20180102 |
|
官 琦, 徐则民, 田 林. 植被发育玄武岩斜坡土体大孔隙尺寸及其主要影响因素. 应用生态学报, 2013, 24 (10): 2888- 2896. | |
Guan Q, Xu Z M, Tian L. Sizes of soil macropores and related main affecting factors on a vegetated basalt slope. Chinese Journal of Applied Ecology, 2013, 24 (10): 2888- 2896. | |
侯 芳, 程金花, 王通簙. 基于探地雷达的滨河带藤本和次生乔木林土壤优先流特征. 生态学报, 2022, 42 (5): 1766- 1776. | |
Hou F, Cheng J H, Wang T B. Characteristics of preferential flow of liana and secondary arbor forests along riverside based on ground penetrating radar. Acta Ecologica Sinica, 2022, 42 (5): 1766- 1776. | |
李连强. 短时降雨对辽东半岛天然栎类林土壤剖面水分的动态影响. 东北林业大学学报, 2025, 53 (4): 108- 116.
doi: 10.3969/j.issn.1000-5382.2025.04.013 |
|
Li L Q. The dynamic impact of short-duration rainfall on soil profile moisture in natural Quercus forests on the Liaodong Peninsula. Journal of Northeast Forestry University, 2025, 53 (4): 108- 116.
doi: 10.3969/j.issn.1000-5382.2025.04.013 |
|
刘思佳. 2023. 不同入渗水量对广西蔗田土壤优先流运动变化的影响. 桂林: 桂林理工大学. | |
Liu S J. 2023. Effect of different infiltration water on soil preferential flow movement in sugarcane field of Guangxi. Guilin: Guilin University of Technology. [in Chinese] | |
刘思佳, 陈晓冰, 刘俊杰, 等. 雷达探测分析下的广西蔗田土壤优先流空间分布. 生态学杂志, 2023, 42 (5): 1273- 1280. | |
Liu S J, Chen X B, Liu J J, et al. Spatial distribution of preferential flow in sugarcane field in Guangxi under radar detection. Chinese Journal of Ecology, 2023, 42 (5): 1273- 1280. | |
卢华兴, 段 旭, 赵洋毅, 等. 滇中磨盘山典型林分土壤优先流特征及其归因分析. 西北农林科技大学学报(自然科学版), 2022, 50 (7): 48- 62. | |
Lu H X, Duan X, Zhao Y Y, et al. Characteristics and attribution analysis of soil preferential flow in typical stand of Mopan Mountain in central Yunnan. Journal of Northwest A & F University (Natural Science Edition), 2022, 50 (7): 48- 62. | |
马福建, 雷少刚, 杨 赛, 等. 土壤含水率与探地雷达信号属性的关系研究. 土壤通报, 2014, 45 (4): 809- 815. | |
Ma F J, Lei S G, Yang S, et al. Study on the relationship between soil water content and ground penetrating radar signal attributes. Chinese Journal of Soil Science, 2014, 45 (4): 809- 815. | |
倪艳萍, 祝业平, 王庆余, 等. 辽宁老秃顶子国家级自然保护区价值和开发原则的探讨. 黑龙江生态工程职业学院学报, 2008, 21 (6): 19- 20. | |
Ni Y P, Zhu Y P, Wang Q Y, et al. Discussion on the value and development principles of Liaoning Laotudingzi National Nature Reserve. Journal of Heilongjiang Vocational Institute of Ecological Engineering, 2008, 21 (6): 19- 20. | |
牛健植, 余新晓. 优先流问题研究及其科学意义. 中国水土保持科学, 2005, 3 (3): 110- 116, 126.
doi: 10.3969/j.issn.1672-3007.2005.03.022 |
|
Niu J Z, Yu X X. Preferential flow and its scientific significance. Science of Soil and Water Conservation, 2005, 3 (3): 110- 116, 126.
doi: 10.3969/j.issn.1672-3007.2005.03.022 |
|
师雪淇, 程金花, 管 凝, 等. 喀斯特地区典型植被根系对优先流的影响. 水土保持研究, 2024, 31 (5): 73- 83. | |
Shi X Q, Cheng J H, Guan N, et al. Influence of root system on preferential flow in a typical forest stand in karst region. Research of Soil and Water Conservation, 2024, 31 (5): 73- 83. | |
宋 文, 张 敏, 吴克宁, 等. 潮土区农田土体构型层次的探地雷达无损探测试验. 农业工程学报, 2018, 34 (16): 129- 138.
doi: 10.11975/j.issn.1002-6819.2018.16.017 |
|
Song W, Zhang M, Wu K N, et al. Test on nondestructive detection of farmland solum structure in fluvo-aquic soil area using ground penetrating radar. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (16): 129- 138.
doi: 10.11975/j.issn.1002-6819.2018.16.017 |
|
宋艺琳, 毕华兴, 赵丹阳, 等. 晋西黄土区不同入渗水量下刺槐林地优先流特征. 土壤, 2024, 56 (2): 448- 456. | |
Song Y L, Bi H X, Zhao D Y, et al. Characteristic of preferential flow in Robinia pseudoacacia forests in Loess Plateau in western Shanxi Province under different infiltration conditions. Soil, 2024, 56 (2): 448- 456. | |
孙玉龙, 郝振纯. TDR技术及其在土壤水分及土壤溶质测定方面的应用. 灌溉排水, 2000, 19 (1): 37- 41. | |
Sun Y L, Hao Z C. TDR technology and its application in soil moisture and solute determination. Journal of Irrigation and Drainage, 2000, 19 (1): 37- 41. | |
王 萍. 2010. 探地雷达检测土壤紧实性的试验研究和信号反演. 北京: 中国矿业大学. | |
Wang P. 2010. The experimental study and signal inversion of soil compactness detection using ground penetrating radar. Beijing: China University of Mining and Technology. [in Chinese] | |
夏银行, 黎 蕾, 邓少虹, 等. 基于探地雷达的喀斯特峰丛洼地土壤深度和分布探测. 水土保持通报, 2016, 36 (1): 129- 135. | |
Xia Y H, Li L, Deng S H, et al. Detection of soil depths and distribution using ground penetrating radar technology in karst peak-cluster depression area. Bulletin of Soil and Water Conservation, 2016, 36 (1): 129- 135. | |
肖夏阳, 文 剑, 肖中亮, 等. 基于雷达波的树木躯干内部缺陷探测识别. 林业科学, 2018, 54 (5): 127- 134.
doi: 10.11707/j.1001-7488.20180514 |
|
Xiao X Y, Wen J, Xiao Z L, et al. Detection and recognition of tree trunk internal structure based on radar. Scientia Silvae Sinicae, 2018, 54 (5): 127- 134.
doi: 10.11707/j.1001-7488.20180514 |
|
熊雨露, 周宇峰, 李平衡, 等. 毛竹林竹鞭生长特征和空间结构的探地雷达无损探测. 林业科学, 2020, 56 (12): 19- 27.
doi: 10.11707/j.1001-7488.20201203 |
|
Xiong Y L, Zhou Y F, Li P H, et al. Non-destructive detection by ground penetrating radar of growth characteristics and spatial structure of rhizomes in moso bamboo forest. Scientia Silvae Sinicae, 2020, 56 (12): 19- 27.
doi: 10.11707/j.1001-7488.20201203 |
|
杨 菲, 林毅雁, 陈立欣, 等. 晋西黄土区油松和刺槐2种人工林内乔灌优势种的土壤水分利用及水分生态位特征. 林业科学, 2022, 58 (6): 1- 12.
doi: 10.11707/j.1001-7488.20220601 |
|
Yang F, Lin Y Y, Chen L X, et al. Soil water use and niche characteristics of dominant tree species in arbor layer and shrub layer in two plantations of Pinus tabuliformis and Robinia pseudoacaciain Loess Region of Western Shanxi Province. Scientia Silvae Sinicae, 2022, 58 (6): 1- 12.
doi: 10.11707/j.1001-7488.20220601 |
|
杨鹏华, 胡广录, 李昊辰, 等. 荒漠-绿洲过渡带典型固沙植物根区土壤优先流特征. 干旱区研究, 2025, 42 (1): 127- 140. | |
Yang P H, Hu G L, Li H C, et al. Characteristics of the soil priority flow in the root zone of typical sand-fixing plants in the desert-oasis transition zone. Arid Zone Research, 2025, 42 (1): 127- 140. | |
尹 楠. 2014. 基于全极化雷达影像反演垄行结构土壤湿度. 长春: 吉林大学. | |
Yin N. 2014. Use of fully polarimetric SAR images to retrieve soil moisture with row structure. Changchun: Jilin University. [in Chinese] | |
张东旭, 张洪江, 程金花. 基于多指标评价和分形维数的坡耕地优先流定量分析. 农业机械学报, 2017, 48 (12): 214- 220, 277.
doi: 10.6041/j.issn.1000-1298.2017.12.025 |
|
Zhang D X, Zhang H J, Cheng J H. Quantitative analysis of preferential flow in slope farmland soils based on multi-index evaluation and fractional dimension. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (12): 214- 220, 277.
doi: 10.6041/j.issn.1000-1298.2017.12.025 |
|
张 旭, 卢玉东, 王 博, 等. 黄土高原南部黄土渗流特征的染色示踪研究. 水土保持学报, 2022, 36 (6): 110- 118. | |
Zhang X, Lu Y D, Wang B, et al. Study on the characteristics of Loess seepage in the southern Loess Plateau by dye tracing method. Journal of Soil and Water Conservation, 2022, 36 (6): 110- 118. | |
甄广韵. 辽东山区天然次生林修复技术与模式. 林业科技通讯, 2023, (10): 78- 81. | |
Zhen G Y. Restoration technology and model of natural secondary forest in mountainous areas of eastern Liaoning Province. Forest Science and Technology, 2023, (10): 78- 81. | |
Allroggen N, Schaik V M L N, Tronicke J. 4D ground-penetrating radar during a plot scale dye tracer experiment. Journal of Applied Geophysics, 2015, 118, 139- 144.
doi: 10.1016/j.jappgeo.2015.04.016 |
|
Blackwell P S. Management of water repellency in Australia, and risks associated with preferential flow, pesticide concentration and leaching. Journal of Hydrology, 2000, 231, 384- 395. | |
Cao Q, Song X, Wu H, et al. 2020. Mapping the response of volumetric soil water content to an intense rainfall event at the field scale using GPR. Journal of Hydrology, 583: 124605−124605. | |
Charlton M. Small-scale soil-moisture variability estimated using ground penetrating radar. King’s College London (United Kingdom), 2000, 4084, 798- 804. | |
Chen S, Franklin R E, Quisenberry V L, et al. The effect of preferential flow on the short and long-term spatial distribution of surface applied solutes in a structured soil. Geoderma, 1999, 90 (3/4): 229- 241. | |
Doolittle J. 2012. My thirty years with ground-penetrating radar. Soil Horizons, 53(4): 4−7. | |
Filipović V, Defterdarović J, Šimůnek J, et al. Estimation of vineyard soil structure and preferential flow using dye tracer, X-ray tomography, and numerical simulations. Geoderma, 2020, 380, 114699.
doi: 10.1016/j.geoderma.2020.114699 |
|
Flammer I, Blum A, Leiser A, et al. Acoustic assessment of flow patterns in unsaturated soil. Journal of Applied Geophysics, 2001, 46 (2): 115- 128.
doi: 10.1016/S0926-9851(01)00032-5 |
|
Gómez-Ortiz D, Martín-Crespo T, Rodríguez I, et al. The internal structure of modern barchan dunes of the Ebro River Delta (Spain) from ground penetrating radar. Journal of Applied Geophysics, 2009, 68 (2): 159- 170.
doi: 10.1016/j.jappgeo.2008.11.007 |
|
Guo L, Mount J G, Hudson S, et al. Pairing geophysical techniques improves understanding of the near-surface critical zone: visualization of preferential routing of stemflow along coarse roots. Geoderma, 2020, 357, 113953.
doi: 10.1016/j.geoderma.2019.113953 |
|
Halihan T, Acharya B S, Hager J P, et al. Preferential flow velocity mapping of alluvial soil using temporal electrical resistivity imaging. Discover Water, 2023,
doi: 10.1007/s43832-022-00025-7 |
|
Hou F, Cheng J, Guan N. 2023. Influence of rock fragments on preferential flow in stony soils of karst graben basin, southwest China. Catena, 220: 106684. | |
Klotzsche A, Jonard F, Looms M C, et al. Measuring soil water content with ground penetrating radar: a decade of progress. Vadose Zone Journal, 2018, 17 (1): 1- 9. | |
Lissy A S, Sammartino S, Ruy S. Can structure data obtained from CT images substitute for parameters of a preferential flow model?. Geoderma, 2020, 380, 114643.
doi: 10.1016/j.geoderma.2020.114643 |
|
Lufunyo L, Aida B, Aloyce C M, et al. Excessive livestock grazing overrides the positive effects of trees on infiltration capacity and modifies preferential flow in dry miombo woodlands. Land Degradation & Development, 2022, 33 (4): 581- 595. | |
Mishra U, Mohapatra A K, Mandal A, et al. Identification of potential artificial groundwater recharge sites in an alluvial setting: a coupled electrical resistivity tomography and sediment characterization study. Groundwater for Sustainable Development, 2023, 20, 100875.
doi: 10.1016/j.gsd.2022.100875 |
|
Moore E H, Comas X, Briggs A M, et al. Indications of preferential groundwater seepage feeding northern peatland pools. Journal of Hydrology, 2024, 638, 131479.
doi: 10.1016/j.jhydrol.2024.131479 |
|
Morris C, Mooney S J. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers. Geoderma, 2004, 118 (1/2): 133- 143. | |
Prima D S, Winiarski T, Angulo-Jaramillo R, et al. Detecting infiltrated water and preferential flow pathways through time-lapse ground-penetrating radar surveys. Science of the Total Environment, 2020, 726, 138511. | |
Schmalz B, Lennartz B. 2002. Analyses of soil water content variations and GPR attribute distributions. Journal of Hydrology, 267(3/4): 217−226. | |
Shao W, Bogaard T, Bakker M, et al. The influence of preferential flow on pressure propagation and landslide triggering of the Rocca Pitigliana landslide. Journal of Hydrology, 2016, 543, 360- 372.
doi: 10.1016/j.jhydrol.2016.10.015 |
|
Tang Z, Zhang W, Chen J, et al. Soil quality assessment and its response to water flow connectivity in different vegetation restoration types, eastern China. Catena, 2024, 247, 108477.
doi: 10.1016/j.catena.2024.108477 |
|
Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour, 1980, 16, 574- 582.
doi: 10.1029/WR016i003p00574 |
|
Truss S, Grasmueck M, Vega S, et al. Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar. Water Resources Research, 2007, 43 (3): W03405.1- W03405.15. | |
Wang D, Niu J, Dai Z, et al. 2024. Forest restoration effects on soil preferential flow in the paleo-periglacial eastern liaoning mountainous regions, China. Journal of Cleaner Production, 467: 142974. | |
Wei H, Yang Y, Wang J, et al. A comparison of preferential flow characteristics and influencing factors between two soils developed in the karst region of southwest China. Soil & Tillage Research, 2024, 241, 106132. | |
Wu X L, Dang X H, MengZ J, et al. 2021. Mechanisms of grazing management impact on preferential water flow and infiltration patterns in a semi-arid grassland in northern China. The Science of the Total Environment, 813: 152082. | |
Zhang J, Lin H, Doolittle J. Soil layering and preferential flow impacts on seasonal changes of GPR signals in two contrasting soils. Geoderma, 2014, 213, 560- 569.
doi: 10.1016/j.geoderma.2013.08.035 |
|
Zhang J, Sun Q, Wen N, et al. Quantifying preferential flows on two farmlands in the north China plain using dual infiltration and dye tracer methods. Geoderma, 2022, 428, 116205.
doi: 10.1016/j.geoderma.2022.116205 |
|
Zhao M, Huang Y, Lei T, et al. Changes of preferential flow in short-rotation eucalyptus plantations: field experiments and modeling. Journal of Hydrology, 2023, 622, 129663.
doi: 10.1016/j.jhydrol.2023.129663 |
|
Zhou H, Lu Q, Dong Z, et al. Mapping agricultural soil water content using multi-feature ensemble learning of GPR data. Journal of Applied Geophysics, 2024, 227, 105433.
doi: 10.1016/j.jappgeo.2024.105433 |
[1] | 管凝,程金花,侯芳,曾合州,沈子雅,赵梦圆,秦建淼. 西南喀斯特地区2种森林的土壤优先流特征[J]. 林业科学, 2023, 59(12): 61-70. |
[2] | 熊雨露,周宇峰,李平衡,童亮,周国模,施拥军,杜华强. 毛竹林竹鞭生长特征和空间结构的探地雷达无损探测[J]. 林业科学, 2020, 56(12): 19-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||