|
高 滢, 孙 虎, 徐崟尧, 等. 陕西省植被覆盖时空变化及其对极端气候的响应. 生态学报, 2022, 42 (3): 1- 12.
|
|
Gao Y, Sun H, Xu Y Y, et al. Temporal and spatial variation of vegetation cover and its response to extreme climate in Shaanxi Province. Acta Ecologica Sinica, 2022, 42 (3): 1- 12.
|
|
郝家田, 胡云云, 杜一尘, 等. 基于NDVI的2009—2018年黄河流域林草植被覆盖变化. 林业科学, 2022, 58 (3): 10- 19.
|
|
Hao J T, Hu Y Y, Du Y C, et al. NDVI-Based coverage changes of forest and grass vegetation in Yellow River basin during 2009 to 2018. Scientia Silvae Sinicae, 2022, 58 (3): 10- 19.
|
|
皇 彦, 宋海清, 胡 琦, 等. 2000-2020年内蒙古NDVI时空动态及其对水热条件的响应. 水土保持研究, 2024, 31 (4): 197- 204, 213.
|
|
Huang Y, Song H Q, Hu Q, et al. Temporal and spatial dynamics of NDVI in Inner Mongolia from 2000 to 2020 and its response to water-heat conditions. Soil and Water Conservation Research, 2024, 31 (4): 197- 204, 213.
|
|
江 靖, 迎 春, 宋桂英, 等. 内蒙古极端降水特征及预报. 气候变化研究快报, 2021, 10 (2): 197- 206.
|
|
Jiang J, Ying C, Song G Y, et al. Characteristics and forecast of extreme precipitation in Inner Mongolia. Climate Change Research Letters, 2021, 10 (2): 197- 206.
|
|
蒋 帅, 张 黎, 景元书, 等. 1981-2015年中国区域极端气候事件的时空分布特征. 水土保持研究, 2023, 30 (6): 295- 306.
|
|
Jiang S, Zhang L, Jing Y S, et al. Spatio-temporal distribution characteristics of extreme climate events in China from 1981 to 2015. Soil and Water Conservation Research, 2023, 30 (6): 295- 306.
|
|
李翠侠, 孙鹏森, 余 振, 等. 西南高山亚高山区植被活动增强对区域蒸散的影响. 林业科学, 2024, 60 (11): 1- 12.
|
|
Li C X, Sun P S, Yu Z, et al. Impacts ofeEnhanced vegetation activity on regional evapotranspiration in the alpine and subalpine area of southwestern China. Scientia Silvae Sinicae, 2024, 60 (11): 1- 12.
|
|
苏日罕, 郭恩亮, 王永芳, 等. 1982—2020年内蒙古地区极端气候变化及其对植被的影响. 生态学报, 2023, 43 (1): 419- 431.
|
|
Su R H, Guo E L, Wang Y F, et al. Extreme climate changes in Inner Mongolia and their impacts on vegetation dynamics during 1982—2020. Acta Ecologica Sinica, 2023, 43 (1): 419- 431.
|
|
王子昊, 王 冰, 张秋良, 等. 基于KNDVI的大兴安岭生态功能区植被覆盖变化时空特征及驱动力分析. 环境科学, 2025, 46 (5): 3021- 3032.
|
|
Wang Z H, Wang B, Zhang Q L, et al. Spatial and temporal characteristics and driving force analysis of vegetation cover change in Greater Khingan Mountains ecological functional area based on KNDVI. Environmental Science, 2025, 46 (5): 3021- 3032.
|
|
吴运力, 张 钰, 田佳榕. 气候变化和人类活动对内蒙古高原不同植被类型NDVI的影响. 中国农业气象, 2023, 44 (12): 1155- 1168.
|
|
Wu Y L, Zhang Y, Tian J R. Impacts by climate change and human activities on NDVI in different vegetation types across the Inner Mongolia plateau. Chinese Jourmal of Agrometeorology, 2023, 44 (12): 1155- 1168.
|
|
张 敏, 曹春香, 陈 伟. 基于MODIS NDVI数据的广西植被覆盖时空变化遥感诊断. 林业科学, 2019, 55 (10): 27- 37.
|
|
Zhang M, Cao C C, Chen W. Remotely sensed diagnosing temporal and spatial variation of vegetation coverage in Guangxi based on MODIS NDVI data. Scientia Silvae Sinicae, 2019, 55 (10): 27- 37.
|
|
Alexander L V, Zhang X, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research Atmospheres, 2006, 110 (5): 97- 109.
|
|
Boulton C A, Lenton T M, Boers N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nature Climate Change, 2022, 12, 271- 278.
|
|
Camps-Valls G, Campos-Taberner M, Moreno-Martínez Á, et al. A unified vegetation index for quantifying the terrestrial biosphere. Science Advances, 2021, 7 (9): 74- 87.
|
|
Dakos V, Carpenter S R, Brock W A, et al. Methods for detecting early warnings of critical transitions in time series illustrated using simulated ecological data. PLoS ONE, 2012, 7 (7): 41- 57.
|
|
Fan X, Hao X, Hao H, et al. Comprehensive assessment indicator of ecosystem resilience in Central Asia. Water, 2021, 13 (2): 124- 137.
|
|
Feng Y, Su H, Tang Z, et al. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Communications Earth & Environment, 2021, 2 (1): 87- 99.
|
|
Fischer J, Riechers M, Loos J, et al. Making the UN decade on ecosystem restoration a social-ecological endeavour. Trends in ecology & evolution, 2021, 36 (1): 20- 28.
|
|
Forzieri G, Dakos V, McDowell N G, et al. Emerging signals of declining forest resilience under climate change. Nature, 2022, 608, 534- 539.
|
|
Guo E, Wang Y, Wang C, et al. NDVI IndicateslLong-term dynamics of vegetation and its driving forces from climatic and anthropogenic factors in Mongolian plateau. Remote Sensing, 2021, 13 (4): 688- 714.
|
|
Hao L, Wang S, Cui X, et al. Spatiotemporal dynamics of vegetation net primary productivity and its response to climate change in inner Mongolia from 2002 to 2019. Sustainability, 2021, 13 (23): 133- 143.
|
|
He L, Guo J, Yang W, Jiang Q, et al. Multifaceted responses of vegetation to average and extreme climate change over global drylands. Science of the total environment, 2023, 858, 159- 172.
|
|
Holling C S. Resilience and stability of ecological systems. Environmental Science, 1973, 4, 1- 23.
|
|
Hossain M L, Li J. NDVI-based vegetation dynamics and its resistance and resilience to different intensities of climatic events. Global Ecology and Conservation, 2021, 30, 17- 38.
|
|
Kim Y, Kimball J S, Zhang K, et al. Satellite detection of increasing northern Hemisphere non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sensing of Environment, 2012, 121, 472- 487.
|
|
Li C, Wang J, Hu R, et al. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecological Indicators, 2018, 89, 101- 109.
|
|
Ma M, Wang Q, Liu R, et al. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and-accumulation effects. Science of The Total Environment, 2023, 860, 16- 27.
|
|
Peng S, Piao S, Ciais P, et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 2013, 501 (7465): 88- 92.
|
|
Piao Z, Li X, Xu H, et al. Threshold of climate extremes that impact vegetation productivity over the Tibetan Plateau. Science China Earth Sciences, 2024, 67 (6): 1967- 1977.
|
|
Smith T, Boers N. Global vegetation resilience linked to water availability and variability. Nature Communications, 2023, 14 (1): 498- 509.
|
|
Smith T, Traxl D, Boers N. Empirical evidence for recent global shifts in vegetation resilience. Nature Climate Change, 2022, 12, 477- 484.
|
|
Tedesco A M, López-Cubillos S, Chazdon R, et al. Beyond ecology: ecosystem restoration as a process for social-ecological transformation. Trends in Ecology & Evolution, 2023, 38 (7): 643- 653.
|
|
Wang J, Li X, Zhao Y. Geographical detector-based health risk assessment and its application to the HIV epidemic in China. International Journal of Geographical Information Science, 2016, 30 (8): 1725- 1743.
|
|
Wang L, Hu F, Miao Y, et al. Changes in vegetation dynamics and relations with extreme climate on multiple time scales in Guangxi, China. Remote Sensing, 2022, 14 (9): 13- 27.
|
|
Wang Z, Fu B, Wu X, et al. Vegetation resilience does not increase consistently with greening in China’s Loess Plateau. Communications Earth & Environment, 2023, 4 (1): 33- 46.
|
|
Way D A, Oren R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology, 2010, 30 (6): 669- 688.
|
|
Wei Y, Yu M, Wei J, et al. Impacts of extreme climates on vegetation at middle-to-high latitudes in Asia. Remote Sensing, 2023, 15 (5): 125- 138.
|
|
Yang H, Yao L, Wang Y, et al. Relative contribution of climate change and human activities to vegetation degradation and restoration in North Xinjiang, China. The Rangeland Journal, 2017, 39 (3): 289- 302.
|
|
Yin H, Pflugmacher D, Li A, et al. Land use and land cover change in Inner Mongolia-understanding the effects of China's re-vegetation programs. Remote Sensing of Environment, 2018, 204, 918- 930.
|
|
Zhao W, Liu, B. The response of vegetation to extreme precipitation events in arid and semi-arid regions. Environmental Research Letters, 2010, 5 (3): 34- 48.
|