顾广华, 韩晰瑛, 陈春霞, 等. 2016. 图像场景语义分类研究进展综述. 系统工程与电子技术, 38(4): 936-948. (Gu G H, Han X Y, Chen C X, et al. 2016. Survey on semantic scene classification research. System Engineering and Electronics, 38(4): 936-948. \[in Chinese]) 黄凯奇, 任伟强, 谭铁牛. 2014. 图像物体分类与检测算法综述. 计算机学报, 37(6): 1225-1240. (Huang K Q, Ren W Q, Tan T N. 2014. A review on image object classification and detection. Chinese Journal of Computers, 37(6): 1225-1240. \[in Chinese]) 金泰松, 李玲玲, 李翠华. 2013. 基于全局优化策略的场景分类算法. 模式识别与人工智能, 26(5): 440-446. (Jin T S, Li L L, Li C H. 2013. Scene classification based on global optimized framework. Pattern Recognition and Artifical Intelligence, 26(5): 440-446. \[in Chinese]) 刘子豪, 祁亨年, 张广群, 等. 2013. 基于横切面微观构造图像的木材识别方法. 林业科学, 49 (11): 116-121. (Liu Z H, Qi H N, Zhang G Q, et al. 2013. Wood identification method based on microstructure images in cross-section. Scientia Silvae Sinicae, 49 (11): 116-121. \[in Chinese]) 亓晓振, 王庆. 2012. 一种基于稀疏编码的多核学习图像分类方法. 电子学报, 40(4): 773-779. (Qi X Z, Wang Q. 2012. An image classification approach based on sparse coding and multiple kernel learning. Acta Electronica Sinia, 40(4): 773-779. \[in Chinese]) 王雪峰, 李晓冬, 平藤雅之. 2013. 基于彩色图像的柑橘糖度无损分析. 林业科学, 49 (10): 88-92. (Wang X F, Li X D, Hirafuji M. 2013. Orange brix's nondestructive analysis based on color image. Scientia Silvae Sinicae, 49 (10): 88-92. \[in Chinese]) 幸泽峰, 李颖, 邓荣鑫, 等. 2016. 基于ZY-3影像的农田防护林自动提取. 林业科学, 52 (4): 11-20. (Xing Z F, Li Y, Deng R X, et al. 2016. Extracting farmland shelterbelt automatically based on ZY-3 remote sensing images. Scientia Silvae Sinicae, 52 (4): 11-20. \[in Chinese]) 杨帆,曾维忠,张维康,等. 2016.林农森林碳汇项目持续参与意愿及其影响因素.林业科学, 52(7):138-147. (Yang F, Zeng W Z, Zhang W K, et al.2016. Foresters’ constant participation willingness and affecting factors in forest carbon Ssequestration project. Scientia Silvae Sinicae,52(7):138-147. \[in Chinese]) 张罡.2018.大连市护林员队伍体系建设措施及建议. 现代农业科技, 2 (1):144-145. (Zhang G.2018. Measures and suggestions on the construction of the forest guard team in Dalian.Modern Agricultural Science and Technology, 2(1):144-145. \[in Chinese]) 张广群, 李英杰, 汪杭军. 2017.基于词袋模型的林业业务图像分类. 浙江农林大学学报, 34(5):791-797. (Zhang G Q, Li Y J, Wang H J. 2017.Classification of forestry images based on the BoW model. 2017. Journal of Zhejiang A & F University, 34(5):791-797. \[in Chinese]) Chen F C, Jahanshahi M R. 2018. NB-CNN: deep learning-based crack detection using convolutional neural network and naive bayes data fusion. IEEE Transactions on Industrial Electronics, 65(5): 4392-4400. Girshick R, Donahue J, Darrell T, et al. 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 580-587. Girshick R. 2015. Fast R-CNN. IEEE International Conference on Computer Vision(ICCV),1440-1448. Krizhevsky A, Sutskever I, Hinton G. 2012. Imagenet classification with deep convolutional neural networks. International Conference on Neural Information Processing Systems (NIPS), 1097-1105. LeCun Y, Bengio Y, Hinton G. 2015.Deep learning.Nature,521:436-444. Lin T, Chowdhury A R, Maji S. 2016. Bilinear CNN models for fine-grained visual recognition. IEEE International Conference on Computer Vision(ICCV), 1449-1457. Najibi M, Rastegari M, Davis L S. 2016. G-CNN: an iterative grid based object detector. Computer Vision and Pattern Recognition(CVPR), 2369-2377. Ng A, Ngiam J, Yu C F, et al. 2016. Unsupervised feature learning and deep learning. http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial. Zhang N, Paluri M. 2014. PANDA: pose aligned networks for deep attribute modeling. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 1637-1644. Zhou B, Lapedriza A, Xiao J, et al. 2014. Learning deep features for scene recognition using places database. International Conference on Neural Information Processing Systems (NIPS),487-495. |