安红燕, 徐海量, 叶茂, 等. 2011a. 塔里木河下游胡杨径向生长与地下水的关系. 生态学报, 31(8):2053-2059. (An H Y, Xu H L, Ye M, et al. 2011a. The relationship between Populus euphratica's radial increment and groundwater level at the lower reach of Tarim River. Acta Ecologica Sinica, 31(8):2053-2059.[in Chinese]) 安红燕, 叶茂, 徐海量, 等. 2011b. 塔里木河下游胡杨径向生长量对生态输水的响应. 中国沙漠, 31(4):957-962. (An H Y, Ye M, Xu H L, et al. 2011b. Response of radial increment of Populus euphratica to ecological water conveyance in Lower Reaches of the Tarim River. Journal of Desert Research, 31(4):957-962.[in Chinese]) 樊自立, 艾力西尔·库尔班, 徐海量, 等. 2009. 塔里木河的变迁与罗布泊的演化. 第四纪研究, 29(2):232-240. (Fan Z L, Kurban A, Xu H L, et al. 2009. Changes of Tarim River and evolution of Lop Nur. Quaternary Sciences, 29(2):232-240.[in Chinese]) 樊自立. 1979. 历史时期塔里木河流域水系变迁的初步研究. 新疆地理, 7(2):20-36. (Fan Z L. 1979. A preliminary study on the change of water system in Tarin River Basin. Arid Land Geography, 7(2):20-36.[in Chinese]) 刘海兰. 2015. 塔里木河不同断面胡杨径向生长对水分响应的研究. 乌鲁木齐:新疆师范大学硕士学位论文. (Liu H L. 2015. The impact of moisture on radial growth of Populus euphratica in the Tarim River. Urumqi:MS thsis of Xinjiang Normal University.[in Chinese]) 刘敏, 毛子军, 厉悦, 等. 2016. 不同纬度阔叶红松林红松径向生长对气候因子的响应. 应用生态学报, 27(5):1341-1352. (Liu M, Mao Z J, Li Y, et al. 2016. Response of radial growth of Pinus koraiensis in broad-leaved Korean pine forests with different latitudes to climatical factors. Chinese Journal of Applied Ecology, 27(5):1341-1352.[in Chinese]) 刘普幸, 勾晓华, 张齐兵, 等. 2004. 国际树轮水文学研究进展. 冰川冻土, 26(6):720-728. (Liu P X, Gou X H, Zhang Q B, et al. 2004. Advances in dendrohydrology around the world. Journal of Glaciology and Geocryology, 26(6):720-728.[in Chinese]) 彭小梅, 肖生春, 程国栋, 等. 2016. 胡杨(Populus euphratica)树轮记录的20世纪40年代前后黑河下游水分过程及其生态影响. 中国沙漠, 36(1):206-215. (Peng X M, Xiao S C, Cheng G D, et al. 2016. The water allocation history and its ecological impacts recorded in Populus euphratica tree ring in the Lower Reaches of the Heihe River around the 1940s. Jounal of Desert Research, 36(1):206-215.[in Chinese]) 孙从军, 韩振波, 赵振, 等. 2013. 地下水数值模拟的研究与应用进展. 环境工程, 31(5):9-13. (Sun C J, Han Z B, Zhao Z, et al. 2013. Advances in research and application of groundwater numerical simulation. Environmental Engineering, 31(5):9-13.[in Chinese]) 王婷, 李聪, 张弘, 等. 2016. 宝天曼自然保护区不同针叶树径向生长对气候的响应. 生态学报, 36(17):1-9. (Wang T, Li C, Zhang H, et al. 2016. Response of conifer trees radial growth to climate change in Baotianman National Nature Reserve, central China. Acta Ecologica Sinica, 36(17):1-9.[in Chinese]) 王振锡, 潘存德, 石鑫鑫. 2010. 胡杨年轮记录的塔里木河下游54年来区域水环境历史变迁. 生态环境学报, 19(3):637-645. (Wang Z X, Pan C D, Shi X X. 2010. Change of regional water environment of the lower reaches of Tarim River recorded in Populus euphratica tree ring width in the past 54 years. Ecology and Environmental Sciences, 19(3):637-645.[in Chinese]) 杨鹏年, 邓铭江, 李霞, 等. 2008. 塔里木河下游间歇输水下地下水响应宽度——以塔里木河下游英苏断面为例. 干旱区研究, 25(3):331-335. (Yang P N, Deng M J, Li X, et al. 2008. Respond width of groundwater level after conveying stream water to the Lower Reaches of the Tarim River, Xinjiang-a case study along the Yengisu section in the Lower Reaches of Tarim River. Arid Zone Research, 25(3):331-335.[in Chinese]) 叶茂, 徐海量, 龚君君, 等. 2011. 不同胸径胡杨径向生长的合理生态水位研究. 地理科学, 31(2):172-177. (Ye M, Xu H L, Gong J J, et al. 2011. Rational ecological groundwater level of Populus euphratica with different diameter in Lower Reaches of Tarim River. Scientia Geographica Sinica, 31(2):172-177.[in Chinese]) Bogino M S, Jobbágy G E. 2011. Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the Pampas (Argentina). Forest Ecology and Management, 262(9):1766-1774. Creutzfeldt B, Heinrich I, Merz B. 2015. Total water storage dynamics derived from tree-ring records and terrestrial gravity observations. Journal of Hydrology, 529(2):640-649. Dogrul C E, Kadir N T, Brush F C, et al. 2016. Linking groundwater simulation and reservoir system analysis models:the case for California's Central Valley. Environmental Modelling & Software, 77(C):168-182. Farrer E C, Ashton I W, Knape J, et al. 2014. Separating direct and indirect effects of global change:a population dynamic modeling approach using readily available field data. Global Change Biology, 20(4):1238-1250. Farrer E C, Ashton I W, Spasojevic M J, et al. 2015. Indirect effects of global change accumulate to alter plant diversity but not ecosysytem function in alpine tundra. Journal of Ecology, 103(2):351-360. Hans W L, Mats N, Tina M. 2004. Summer moisture variability in east central sweden since the mid-eighteenth century recorded in tree rings. Geografiska Annaler, 86(3):277-287. Herrmann F, Baghdadi N, Blaschek M. 2016. Simulation of future groundwater recharge using a climate model ensemble and SAR-image based soil parameter distributions-a case study in an intensively-used Mediterranean catchment. Science of the Total Environment, 543(B):889-905. Jackson C R, Wang L, Pachocka M, et al. 2016. Reconstruction of multi-decadal groundwater level time-series using a lumped conceptual model. Hydrological Processes, 30(18):3107-3125. Perez-Valdivia C, Sauchyn D. 2011. Tree-ring reconstruction of groundwater levels in Alberta, Canada:long term hydroclimatic variability. Dendrochronologia, 29(1):41-47. Schilling O S, Doherty J, Kinzelbach W, et al. 2014. Using tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model simulating groundwater-surface water-vegetation interactions. Journal of Hydrology, 519(part B):2258-2271. Singh L G, Eldho T I, Kumar A V. 2016. Coupled groundwater flow and contaminant transport simulation in a confined aquifer using meshfree radial point collocation method (RPCM). Engineering Analysis with Boundary Elements, 66:20-33. Tapoglou E, Karatzas P G, Trichakis C I, et al. 2014. A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation. Journal of Hydrology, 519(part D):3193-3203. Zhang Z. 2015. Tree-rings, a key ecological indicator of environment and clomate change. Ecological Indicators, 51:107-116. |