符利勇, 李永慈, 李春明, 等. 2011b. 基于两水平非线性混合模型对杉木林优势高生长量研究. 林业科学研究, 24(6): 720-726.
(Fu L Y, Li Y C, Li C M, et al. 2011b. Study of the dominant height for Chinese fir plantation using two-level nonlinear mixed effects model. Forest Research, 24(6): 720-726. [in Chinese] )
符利勇, 曾伟生, 唐守正. 2011a. 利用混合模型分析地域对国内马尾松生物量的影响. 生态学报, 31(19): 5797-5808.
(Fu L Y, Zeng W S, Tang S Z. 2011a. Analysis the effect of region impacting on the biomass of domestic Masson pine using mixed model. Acta Ecologica Sinica, 31(19): 5797-5808. [in Chinese] )
李海奎, 宁金魁. 2012.基于树木起源、立地分级和龄组的单木生物量模型. 生态学报, 32(3): 740-757.
(Li H K, Ning J K. 2012. Individual tree biomass model by tree origin,site classes and age groups. Acta Ecologica Sinica, 32(3): 740-757. [in Chinese] )
骆期邦, 曾伟生, 贺东北, 等. 1999.立木地上部分生物量模型的建立及其应用研究. 自然资源学报, 14(3): 271-277.
(Luo Q B, Zeng W S, He D B, et al. 1999. Establishment and application of compatible tree avove ground biomass models. Journal of Natural Resources, 14(3): 271-277. [in Chinese] )
唐守正, 郎奎建, 李海奎. 2008. 统计和生物数学模型计算(ForStat教程). 北京: 科学出版社.
唐守正, 张会儒, 胥辉. 2000. 相容性生物量模型的建立及其估计方法研究. 林业科学, 36(sp1): 19-27.
(Tang S Z, Zhang H R, Xu H. 2000. Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinicae, 36(sp1): 19-27. [in Chinese] )
曾伟生, 唐守正. 2010b. 利用度量误差模型方法建立相容性立木生物量方程系统.林业科学研究, 23(6): 797-802.
(Zeng W S, Tang S Z. 2010b. Using measurement error modeling method to establish compatible single-tree biomass equations system. Forest Research, 23(6): 797-802. [in Chinese] )
曾伟生, 唐守正.2010a. 利用混合模型方法建立全国和区域相容性立木生物量方程. 中南林业调查规划, 29(4): 1-6.
(Zeng W S, Tang S Z. 2010a. Using mixed-effects modeling method to establish compatible national and regional single-tree biomass equations. Central South Forest Inventory and Planning, 29(4): 1-6. [in Chinese] )
Basuki T M, van Laake P E, Skidmore A K, et al. 2009. Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests. For Ecol Manage, 257(8): 1684-1694.
Bi H, Turner J, Lambert M J. 2004. Additive biomass equations for native eucalypt forest trees of temperate Australia. Trees, 18(4): 467-479.
Fehrmann L, Lehtonen A, Kleinn C, et al. 2008. Comparison of linear and mixed-effect regression models and a k-nearest neighbor approach for estimation of single-tree biomass. Can J For Res, 38: 1-9.
Fu L Y, Zeng W S, Tang S Z, et al. 2012. Using linear mixed model and dummy variable model approaches to construct compatible single-tree biomass equations at different scales- a case study for masson pine in southern China. J For Sci, 58(3):101-115.
Jenkins J C, Chojnacky D C, Heath L S, et al. 2003. National-scale biomass estimators for United States tree species. For Sci, 49(1):12-35.
Kittredge J. 1944. Estimation of the amount of foliage of trees and stand. J For, 42(12):905-912.
Parresol B R. 2001. Additivity of nonlinear biomass equations. Can J For Res, 31(5): 865-878.
Tang S Z, Zhang H R, Xu H. 2000. Study on establish and estimate method of compatible biomass model. Scientia Silvae Sinicae, 36(supple.1): 19-27.
Vallet P, Dhte J F, Moguédec G L, et al. 2006. Development of total aboveground volume equations for seven important forest tree species in France. For Ecol Manage, 229(1/3): 98-110.
Waring R H, Running S W. 1998. Forest ecosystems: analysis at multiple scales. 2nd ed. Academic Press, San Diego, Calif.
Zeng W S, Tang S Z. 2010. Using measurement error modeling method to establish compatible single-tree biomass equations system. Forest Research, 23(6): 797-802.
Zeng W S, Tang S Z. 2012. Modeling compatible single-tree biomass equations of masson pine (Pinus massoniana) in southern China. J For Res, 23(4): 593-598.
Zeng W S, Zhang H R, Tang S Z. 2011. Using the dummy variable model approach to construct compatible single-tree biomass equations at different scales-a case study for masson pine (Pinus massoniana) in southern China. Can J For Res, 41(7): 1547-1554.
Zhang Y J, Borders B E. 2004. Using a system mixed-effects modeling method to estimate tree compartment biomass for intensively managed loblolly pines-an allometric approach. For Ecol Manage, 194(1/3): 145-157. |