陈凤婷, 曾汉民. 2004. 几种植物基活性炭材料的孔结构与吸附性能比较——(I)孔结构表征. 离子交换与吸附,20(2): 104-112.
陈水挟,陆 耘,曾汉民. 1998. 剑麻基活性炭纤维的制备及其碳化活化动力学. 合成纤维工业,21(5): 12-14.
陈水挟,陆 耘,曾汉民. 2000. 染料在剑麻基活性碳纤维上吸附速度的研究. 离子交换与吸附,16(3): 267-270.
符若文,刘 玲,陆 耘. 1998a. 活性碳纤维吸附的研究I——不同工艺制备的活性碳纤维的性能比较. 离子交换与吸附,14(5): 411-418.
符若文,曾汉民,陆 耘,等. 1998b. 用FTIR和XPS研究ACF的表面结构. 离子交换与吸附,14(5): 419-427.
符若文,曾汉民. 1990. X射线光电子能谱研究活性碳纤维表面结构. 合成纤维工业,13(5): 19-27.
符若文,张永成. 2001. 磷酸活化粘胶基活性碳纤维的碳化活化机理. 离子交换与吸附,17(3): 199-208.
贺 福. 2004. 碳纤维及其应用技术. 1版. 北京: 化学工业出版社,160-188.
揭淑俊,张求慧,赵广杰. 2005. 木材溶剂液化技术及其在制备高分子材料中的应用. 林产化工通讯,39(6): 43-49.
刘凤丹,王成扬,杜 嬛,等. 2009. 苎麻基活性炭纤维超级电容器材料的制备. 电源技术,33(12): 1086-1089.
梁英娟,罗湘南. 2007. 粘胶基活性炭纤维及其应用研究现状. 江苏化工,35(4): 6-8.
马晓军,赵广杰,刘辛燕,等. 2011. 炭化温度对木材液化物碳纤维吸附特性及孔结构的影响. 功能材料,10(42): 1746-1749.
马晓军,赵广杰. 2007. 木材苯酚液化产物制备碳纤维的初步探讨. 林产化学与工业,27(2): 29-32.
马晓军,赵广杰. 2008. 新型生物质碳材料的研究进展. 林业科学,44(3): 147-150.
钱明娟,潘 鼎. 2004. 大孔活性碳纤维的初探. 化工新型材料,32(6): 32-36.
沈曾民,张文辉,张学军,等. 2008. 活性炭材料的制备与应用. 1版. 北京: 化学工业出版社,278-308.
吴明铂,李中树,冯永训,等. 2008. 粘胶基活性炭纤维的孔结构调控. 炭素技术,27(6): 13-17.
王元庆,周美华. 2009. 木棉基活性炭纤维的结构与吸附性能. 合成纤维工业,32(3): 11-14.
岳中仁,陆 耘,符若文,等. 1996a. 不同原料基活性碳纤维的结构及吸附特征研究. 合成纤维工业,19(6): 11-14.
岳中仁,陆 耘,曾汉民. 1996b. KOH活化制备活性碳纤维的研究. 功能材料,27(4): 372-376.
曾汉民,陆 耘,朱世平. 1991. 活性炭纤维SACF的制备和对金属离子的吸附性能. 材料科学进展,5(1): 75-78.
邹田春,赵乃勤,师春生,等. 2010. 制备工艺对活性碳纤维微观结构和吸波性能的影响. 材料导报: 研究篇,24(2): 86-89.
张引枝,樊彦贞,贺 福,等. 1997. 添加剂种类对活性炭纤维中孔结构的影响. 炭素技术,(4): 11-14.
张志海,吴琪琳,蔡则田,等. 2009. 碱金属盐对黏胶基活性炭纤维表面大孔形成的影响. 新型炭材料,24(3): 265-269.
Abbott W F. 1962. Method for carbonizing fibres.US,3053775.
Alcaniz-monge J,Illan-gomez M J. 2008. Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption,14(1): 93-100.
Asakura R,Morita M,Maruyama K,et al. 2004. Preparation of fibrous activated carbons from wood fiber. Journal of Materials Science,39(1): 201-206.
Chen S X,Liu J R,Zeng H M. 2005. Structure and antibacterial activity of silver-supporting activated carbon fibers. Journal of Materials Science,40(23): 6223-6231.
Chen S X,Xu R M,Huang H X,et al. 2007. Reduction-adsorption behavior of platinum ions on activated carbon fibers. Journal of Materials Science,42(23): 9572-9581.
Chen S X,Zeng H M. 2003. Improvement of the reduction capacity of activated carbon fiber. Carbon,41(6): 1265-1271.
Fu R W,Liu L,Huang W Q,et al. 2003. Studies on the structure of activated carbon fibers activated by phosphoric acid. Journal of Applied Polymer Science,87(14): 2253-2261.
Huanga Z H,Kanga F,Yanga J B,et al. 2002. Adsorption of volatile organic compounds on activated carbon fiber prepared by carbon dioxide. Molecular Crystals and Liquid Crystals,388(1): 23-28.
Jarapala R N,Mekala B,Rohitashaw K S,et al. 2011. Preparation, surface functionalization, and characterization of carbon micro fibers for adsorption applications. Environmental Engineering Science,28(10): 725-733.
Kadla J F,Kubo S. 2004. Lignin-based polymer blends analysis of intermolecular interactions in lignin-synthetic polymer blends. Composites: Part A,35(3): 395-400.
Kang H U,Kim W G,Kim S H. 2008. Pore size control through benzene vapor deposition on activated carbon. Chemical Engineering Journal,144(2): 167-174.
Katsuya I,Yoshinobu O. 2011a. Control of mesoporous and crystalline structures in turbostratic carbon derived from Fe-or Ni-doped phenolic resin. Journal of Materials Science,46(7): 2194-2200.
Katsuya I,Yoshinobu O. 2011b. Formation and development of micropores in carbon prepared via catalytic carbonization of phenolic resin containing Fe or Ni compounds. Microporous and Mesoporous Materials,143(1): 60-65.
Kubo S,Kadla J F. 2005. Lignin-based carbon fibers effect of synthetic polymer blending on fiber properties. Journal of Polymers and the Environment,13(2): 97-105.
Kubo S,Uraki Y,Sano Y. 1998. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon,36(7/8): 1119-1124.
Kubo S,Yoshida T,Kadla J F. 2007. Surface Porosity of lignin PP blend carbon fibers. Journal of Wood Chemistry and Technology,27(3/4): 257-271.
Nguyen C,Do D D. 1995. Preparation of carbon molecular sieves from macadamia nut shells. Carbon,13(12): 1717-1725.
Okabe K,Yao T,Shiraishi N,et al. 2005. Preparation of thin carbon fibers from waste wood-derived phenolic resin. Journal of Materials Science,40(14): 3847-3848.
Oya A,Kasahara N,Horigome R. 2001. Structure of porous carbon fiber derived from phenolic polymer containing polystyrene microbeads. Journal of Materials Science Letters,20(5): 409-411.
Oya A,Yoshida S,Alcaniz-monge J,et al. 1995. Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon,33(8): 1085-1090.
Ozaki J,Endo N,Ohizumi W,et al. 1997. Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon,35(7): 1031-1033.
Patel N,Okabe K,Oya A. 2002. Designing carbon materials with unique shapes using polymer blendingand coating techniques. Carbon,40(3): 315-320.
Prauchner M J,Pasa V M D,Molhallem N D S. 2005a. Structural evolution of eucalyptus tar pitch-based carbons during carbonization. Biomass and Bioenergy,28(1): 53-61.
Prauchner M J,Pasa V M D,Otani S,et al. 2005b. Biopitch-based general purpose carbon fibers processing and properties. Carbon,43(3): 591-597.
Prauchner M J,Pasa V M D,Otani C,et al. 2004. Eucalyptus tar pitch pretreatment for carbon material processing. Journal of Applied Polymer Science,91(3): 1604-1611.
Qiao W M,Huda M,Song Y,et al. 2005. Carbon fibers and films based on biomass resins. Energy&Fuels,19(6): 2576-2582.
Rosas J M,Bedia J,Rodriguez-miraso J,et al. 2009. HEMP-derived activated carbon fibers by chemical activation with phosphoric acid. Fuel,88(1): 19-26.
Ruiz-rosas R,Bedia J,Lallave M,et al. 2010. The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon,48(3): 696-705.
Su C I,Wang C L. 2007a. Optimum manufacturing conditions of activated carbon fiber absorbents.Ⅰ.Effect of flame retardant reagent concentration. Fibers and Polymers,8(5): 477-481.
Su C I,Wang C L. 2007b. Optimum manufacturing conditions of activated carbon fiber absorbents.Ⅱ.Effect of carbonization and activation conditions. Fibers and Polymers,8(5): 482-486.
Su C I,Zeng Z L,Peng C C,et al. 2012. Effect of temperature and activators on the characteristics of activated carbon fibers prepared from viscose-rayon knitted fabrics. Fibers and Polymers,13(1): 21-27.
Tan W C,Othman R,Matsumoto A,et al. 2012. The effect of carbonisation temperatures on nanoporous characteristics of activated carbon fibre(ACF) derived from oil palm empty fruit bunch(EFB)fibre. Journal of Thermal Analysis and Calorimetry,8(3): 1025-1031.
Uraki Y,Kubo S,Kurakami H,et al. 1997. Activated carbon fibers from acetic acid lignin. Holzforschung,51(2): 188-192.
Yoshida C,Okabe K,Yao T,et al. 2005. Preparation of carbon fibers from biomass-based phenol-formaldehyde resin. Journal of Materials Science,40(2): 335-339.
Zhang Y Z,Wang M Z,He F,et al. 1997. Mesopore development in PAN-ACF resulting from non-metal additives. Journal of Materials Science,32(22): 6009-6013. |