Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (9): 138-145.doi: 10.11707/j.1001-7488.LYKX20250123
• Research papers • Previous Articles
Yanting Chang1,2,*(),Tao Hu1,2,Xue Zhang1,Zehui Jiang1,Yanjun Ma1,2,Yayun Deng1,2,Wenbo Zhang1,2
Received:
2025-03-05
Online:
2025-09-25
Published:
2025-10-10
Contact:
Yanting Chang
E-mail:wenbozhang@icbr.ac.cn
CLC Number:
Yanting Chang,Tao Hu,Xue Zhang,Zehui Jiang,Yanjun Ma,Yayun Deng,Wenbo Zhang. Cloning and Function of PoLEC1 Gene in Paeonia ostii[J]. Scientia Silvae Sinicae, 2025, 61(9): 138-145.
Table 1
Primers for PoLEC1 PCR"
引物名称 Primer name | 引物序列 Primers sequence | 用途 Application |
PoLEC1-F | ATGGCGGAGTCAGACGACG | CDS 扩增引物 CDS amplification primers |
PoLEC1-R | CTACCTGGGCCTTCCAGTGG | |
PHG-PoLEC1-F | TCTCTCTCTCAAGCTTATGGCGGAGTCAGACGACG | 表达载体引物 Expression vector primers |
PHG-PoLEC1-R | CGGGTCATGAGCTCCTGCAGCCTGGGCCTTCCAGTGG | |
Q-PoLEC1-F | GCGAACGGCGAGTTGTCACA | 实时荧光定量引物 qRT-PCR primers |
Q-PoLEC1-R | ACGCACTCCTGTACGGTCTCTT |
Table 2
Basic physicochemical properties of PoLEC1 gene"
基本理化性质 Physical and chemical properties | PoLEC1基因 PoLEC1 gene |
开放阅读框Open reading frame/bp | 579 |
蛋白长度Protein Length/aa | 193 |
相对分子质量Molecular weight MWs/Da | 20 583.61 |
理论等电点Isoelectric point PI | 5.98 |
不稳定系数II Instability coefficient | 29.10 |
脂肪系数Aliphatic index | 50.05 |
总平均亲水性GRAVY | –0.865 |
亚细胞定位预测Prediction of subcellular localization | 细胞核Nucleus |
Fig.2
Secondary structure, transmembrane structural domains and signal peptide prediction A: the predicted secondary structures of PoLEC1 protein, c, random coil;h, alpha helix;B: the predicted transmembrane structural domains of PoLEC1 protein;C: the predicted signal peptides of PoLEC1 proteins."
Fig.5
Expression of PoLEC1 gene in peony B1–B10: 0, 5, 10, 15, 20, 30 days cotyledon growth;40 days somatic embryo formation;60 days secondary embryo germination;70 days secondary embryo growth;and 80 days somatic embryo maturation, respectively. A: Using B1 as the control group. B: Using the expression of peony root tissue as the control. Asterisks indicate significant differences between the 10 periods and controls(ns, P>0.05;*, P<0.05;**, P<0.01;***, P<0.001;****, P<0.000 1)."
Fig.6
Phenotypes of wild-type and PoLEC1 transgenic Arabidopsis thaliana A: Plant in 20 days after planting;B: Plant in 28 days after planting;C: Number of leaves counted at 20 days of planting;D: Plant height counted at 40 days of planting;E: Plant in 40 days of planting;F: Seedling in 15 days a of spotting;G: Seedling in 25 days a of spotting; In figure D, ns refers to P>0.05, and * refers to P<0.05."
郭海滨, 郝立冬. 玉米AINTEGUMENTA-LIKE 1 (AIL1)基因的克隆和表达模式分析. 分子植物育种, 2021, 22 (21): 6980- 6985. | |
Guo H B, Hao L D. Cloning and expression pattern analysis of maize AINTEGUMENTA-LIKE 1(AIL1) gene. Molecular Plant Breeding, 2021, 22 (21): 6980- 6985. | |
何桂梅, 成仿云, 李 萍. 两种牡丹胚珠与幼胚离体培养的初步研究. 园艺学报, 2006, 33 (1): 185.
doi: 10.3321/j.issn:0513-353X.2006.01.047 |
|
He G M, Cheng F Y, Li P. Preliminary studies on culturein vitro of ovule and immature embryo of two tree-peony cultivars. Acta Horticulturae Sinica, 2006, 33 (1): 185.
doi: 10.3321/j.issn:0513-353X.2006.01.047 |
|
刘 豪, 王艳丽, 孟晓丹, 等. 小麦TaLEC1基因的克隆及其表达特性分析. 西北植物学报, 2019, 39 (5): 904- 910.
doi: 10.7606/j.issn.1000-4025.2019.05.0904 |
|
Liu H, Wang Y L, Meng X D, et al. Cloning and expression analysis of TaLEC1 gene from wheat. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39 (5): 904- 910.
doi: 10.7606/j.issn.1000-4025.2019.05.0904 |
|
文书生, 何绒绒, 郑佳康, 等. 牡丹组织培养技术研究进展. 林业科学, 2018, 54 (10): 143- 155.
doi: 10.11707/j.1001-7488.20181017 |
|
Wen S S, He R R, Zheng J K, et al. Research advances in tissue culture of tree peony. Scientia Silvae scincae, 2018, 54 (10): 143- 155.
doi: 10.11707/j.1001-7488.20181017 |
|
周秀梅. 2008. 牡丹体细胞胚胎发生研究. 北京: 北京林业大学. | |
Zhou X M. 2008. Studies on somatic embryogenesis of tree peony. Beijing: Beijing Forestry University. [in Chinese] | |
Aregawi K, Shen J Q, Pierroz G, et al. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnology Journal, 2022, 20 (4): 748- 760.
doi: 10.1111/pbi.13754 |
|
Boulard C, Thévenin J, Tranquet O, et al. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed. Biochimica et Biophysica Acta (BBA)–Gene Regulatory Mechanisms, 2018, 1861 (5): 443- 450.
doi: 10.1016/j.bbagrm.2018.03.005 |
|
Braybrook S A, Stone S L, Park S, et al. Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (9): 3468- 3473. | |
Gao J, Xue J Q, Xue Y Q, et al. Transcriptome sequencing and identification of key callus browning-related genes from petiole callus of tree peony (Paeonia suffruticosa cv. Kao) cultured on media with three browning inhibitors. Plant Physiology and Biochemistry, 2020, 149, 36- 49.
doi: 10.1016/j.plaphy.2020.01.029 |
|
Hesami M, Pepe M, de Ronne M, et al. Transcriptomic profiling of embryogenic and non-embryogenic callus provides new insight into the nature of recalcitrance in Cannabis. International Journal of Molecular Sciences, 2023, 24 (19): 14625.
doi: 10.3390/ijms241914625 |
|
Hofmann F, Schon M A, Nodine M D. The embryonic transcriptome of Arabidopsis thaliana. Plant Reproduction, 2019, 32 (1): 77- 91.
doi: 10.1007/s00497-018-00357-2 |
|
Ikeuchi M, Favero D S, Sakamoto Y, et al. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology, 2019, 70, 377- 406.
doi: 10.1146/annurev-arplant-050718-100434 |
|
Lotan T, Ohto M A, Yee K M, et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93 (7): 1195- 1205.
doi: 10.1016/S0092-8674(00)81463-4 |
|
Lowe K, La Rota M, Hoerster G, et al. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular & Developmental Biology–Plant, 2018, 54 (3): 240- 252. | |
Lv S Z, Cheng S, Wang Z Y, et al. Draft genome of the famous ornamental plant Paeonia suffruticosa. Ecology and Evolution, 2020, 10 (11): 4518- 4530.
doi: 10.1002/ece3.5965 |
|
Ochoa-Alejo N. 2016. The uses of somatic embryogenesis for genetic transformation//Loyola-Vargas V M, Ochoa-Alejo N. eds. Somatic embryogenesis: fundamental aspects and applications. Cham: Springer, 415-434. | |
Quiroz-Figueroa F R, Rojas-Herrera R, Galaz-Avalos R M, et al. 2006. Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell, Tissue and Organ Culture, 86(3): 285-301. | |
Ramakrishnan M, Zhou M B, Ceasar S A, et al. Epigenetic modifications and miRNAs determine the transition of somatic cells into somatic embryos. Plant Cell Reports, 2023, 42 (12): 1845- 1873.
doi: 10.1007/s00299-023-03071-0 |
|
Stone S L, Braybrook S A, Paula S L, et al. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105 (8): 3151- 3156. | |
Xie L H, Niu L X, Zhang Y L, et al. Pollen sources influence the traits of seed and seed oil in Paeonia ostii ‘Feng Dan’. HortScience, 2017, 52 (5): 700- 705.
doi: 10.21273/HORTSCI11803-17 |
|
Yazawa K, Takahata K, Kamada H. Isolation of the gene encoding carrot leafy cotyledon1 and expression analysis during somatic and zygotic embryogenesis. Plant Physiology and Biochemistry, 2004, 42 (3): 215- 223.
doi: 10.1016/j.plaphy.2003.12.003 |
|
Yuan H Y, Kagale S, Ferrie A M R. Multifaceted roles of transcription factors during plant embryogenesis. Frontiers in Plant Science, 2024, 14, 1322728.
doi: 10.3389/fpls.2023.1322728 |
|
Yuan J H, Jiang S J, Jian J B, et al. Genomic basis of the giga-chromosomes and giga-genome of tree peony Paeonia ostii. Nature Communications, 2022, 13 (1): 7328.
doi: 10.1038/s41467-022-35063-1 |
|
Zhang X X, Liu X, Zhou M H, et al. PacBio full-length sequencing integrated with RNA-seq reveals the molecular mechanism of waterlogging and its recovery in Paeonia ostii. Frontiers in Plant Science, 2022, 13, 1030584.
doi: 10.3389/fpls.2022.1030584 |
[1] | Xingqiao Liu,Xiaolei Ma,Huili Ma,Nannan Zhang,Shuo Wei,Chengwei Song,Di Yang,Xiaogai Hou. Effects of Nitrogen Spraying Time on the Biomass Allocation and Nutrient Utilization of Paeonia ostii ‘Fengdan’ Twigs [J]. Scientia Silvae Sinicae, 2024, 60(12): 47-57. |
[2] | Xiaoxue Wu,Aijing Zhang,Ying Gai,Xiangning Jiang. Effects of Exogenous Hormones on Different Stages of Somatic Embryogenesis of Larix kaempferi [J]. Scientia Silvae Sinicae, 2021, 57(1): 30-39. |
[3] | Wu Lifang, Wei Xiaomei, Lu Weidong. Embryonic Callus Induction and Somatic Embryogenesis of Sophora davidii [J]. Scientia Silvae Sinicae, 2019, 55(7): 170-177. |
[4] | Chen Tingting, Wang Pengkai, Zhang Jiaji, Shi Jisen, Cheng Tielong, Chen Jinhui. Effects of Combined ABA and ZT Treatment on Somatic Embryogenesis and Development of Liriodendron sino-americanum [J]. Scientia Silvae Sinicae, 2019, 55(3): 64-71. |
[5] | Zhang Jiaqi, Hu Hengkang, Xu Chuanmei, Hu Yuanyuan, Huang Youjun, Xia Guohua, Huang Jianqin, Chang Yingying, Ye Lei, Lou Heqiang, Zhang Qixiang. Cloning, Subcellular Localization and Function Verification of Gibberellin 2-Oxidase Gene in Walnut (Juglans regia) [J]. Scientia Silvae Sinicae, 2019, 55(2): 50-60. |
[6] | Chengzhong Wang,Xueyan Ni,Wei Zhu,Hanze Ma,Jianlin Qian,Ji Yang,Yonghong Hu,Zhiping Song. Seasonal Changes of Carbon, Nitrogen, Phosphorus and Soluble Sugar Concentrations in Plant of 'Fengdan' (Paeonia ostii) Chronosequence [J]. Scientia Silvae Sinicae, 2019, 55(12): 50-60. |
[7] | Song Yue, Li Shujuan, Zhang Hanguo, Bai Xiaoming, Bi Xianyu, Dong Shiwei, Dong Hao. Establishment and Optimization of Embryogenic Callus Suspension Culture System of Larix [J]. Scientia Silvae Sinicae, 2018, 54(7): 146-154. |
[8] | Gu Zhanying, Yang Ruonan, Chen Hao. The Establishment of Isolation and Transient Transformation Methods of Protoplasts of Vernicia fordii Mesophyll Cells [J]. Scientia Silvae Sinicae, 2018, 54(1): 46-53. |
[9] | Xu Jianxiu, Wu Xiaoqin, Ye Jianren, Zhu Lihua, Wu Jing. Development, Maturation and Germination of Somatic Embryo of Nematode-Resistant Pinus densiflora [J]. Scientia Silvae Sinicae, 2017, 53(12): 41-49. |
[10] | Guo Lili, Yin Weilun, Guo Dalong, Hou Xiaogai. Variations of Bacterial Biodiversity in Rhizosphere Soils of Oil Tree Peony Cropping Continuously for Different Years [J]. Scientia Silvae Sinicae, 2017, 53(11): 131-141. |
[11] | Song Yue, Zhen Cheng, Zhang Hanguo, Li Shujuan. Embryogenic Callus Induction and Somatic Embryogenesis from Immature Zygotic Embryos of Larix olgensis [J]. Scientia Silvae Sinicae, 2016, 52(10): 45-54. |
[12] | Zhang Jianwei, Wang Junhui, Li Qingfen, Ma Jianwei. Somatic Embryogenesis of Picea asperata Induced from Immature Embryos [J]. Scientia Silvae Sinicae, 2014, 50(4): 39-46. |
[13] | Chen Jinhui;Zhang Yanjuan;Wu Yayun;Wang Pengkai;Wang Guangping;Shi Jisen. Effects of Phytosulfokine on the Somatic Embryogenesis of Liriodendron hybrids(L. chinense×L. tulipifera) [J]. , 2013, 49(2): 33-38. |
[14] | Zeng Yanling, Tan Xiaofeng, Jiang Yao, Liu Min, Wang Jianyong, Zhou Junqin. Molecular Characterization and Expression Analysis of Fructose-1, 6-Diphosphate Aldolase Gene (CoFBA4) from Camellia oleifera [J]. Scientia Silvae Sinicae, 2013, 49(11): 164-170. |
[15] | Liang Yan;Shen Hailong;Li Yuhua;Yang Ling;Yang Xiaojie. Role of Ethylene and Polyamines in Plant Somatic Embryogenesis [J]. Scientia Silvae Sinicae, 2012, 48(9): 145-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||