Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (7): 146-156.doi: 10.11707/j.1001-7488.LYKX20250037
• Research papers • Previous Articles Next Articles
Shan Gao1,Qing Wang1,Lili Lu1,Jie Shen2,Jian Li3,*()
Received:
2025-01-20
Online:
2025-07-20
Published:
2025-08-19
Contact:
Jian Li
E-mail:nefulijian@163.com
CLC Number:
Shan Gao,Qing Wang,Lili Lu,Jie Shen,Jian Li. Pattern of Brittleness Transition in Impact Fracture of Wood at Subzero Temperature and the Relationship Models[J]. Scientia Silvae Sinicae, 2025, 61(7): 146-156.
Table 1
Results of univariate ANOVA of impact toughness and brittleness value of poplar and larch heartwood and sapwood at different temperatures and moisture content levels"
树 种 Species | 位置 Location | 变异来源 Variation source | 冲击韧性 Impact toughness (Aw)/(kJ·m–2) | 脆性值Brittleness value (B)(%) | |||
F | P | F | P | ||||
大青杨 Poplar | 边材 Sapwood | 温度Temperature(T) | 71.49 | 0.000** | 18.52 | 0.000** | |
含水率Moisture content(MC) | 3.51 | 0.038* | 128.46 | 0.000** | |||
温度和含水率交互作用 Temperature and moisture content interaction(T × MC) | 32.96 | 0.000** | 62.91 | 0.000** | |||
心材 Heartwood | 温度Temperature(T) | 0.000** | 7.28 | 0.000** | |||
含水率Moisture content(MC) | 0.000** | 211.90 | 0.000** | ||||
温度和含水率交互作用 Temperature and moisture content interaction(T × MC) | 293.31 | 0.000** | 8.74 | 0.000** | |||
落叶松 Larch | 边材 Sapwood | 温度Temperature(T) | 0.000** | 21.95 | 0.000** | ||
含水率Moisture content(MC) | 0.000** | 76.89 | 0.000** | ||||
温度和含水率交互作用 Temperature and moisture content interaction(T × MC) | 145.01 | 0.000** | 74.87 | 0.000** | |||
心材 Heartwood | 温度Temperature(T) | 0.000** | 24.10 | 0.000** | |||
含水率Moisture content(MC) | 0.005* | 60.97 | 0.000** | ||||
温度和含水率交互作用 Temperature and moisture content interaction(T × MC) | 0.000** | 43.93 | 0.000** |
Table 2
Regression model of brittleness value and impact toughness of poplar and larch wood under different moisture content levels and temperatures"
树种 Species | 含水率水平 Moisture content levels | 回归模型 Regression model Aw=f(B) | 决定系数 Coefficient of determination (R2) | 回归模型 Regression model Aw=f(lnB) | 决定系数 Coefficient of determination (R2) | ||
大青杨Poplar | 边材 Sapwood | 饱水材WSW | Aw = 116.36B–0.516 | 0.98 | Aw = –13.19lnB + 66.12 | 0.93 | |
纤维饱和点材FSW | Aw = 74.54B–0.430 | 0.92 | Aw = –10.29 lnB + 52.33 | 0.85 | |||
绝干材ODW | Aw = 130.27B–0.455 | 0.90 | Aw = –11.16 lnB + 66.21 | 0.84 | |||
心材 Heartwood | 饱水材WSW | Aw = 71.764B–0.383 | 0.90 | Aw = –8.32 lnB + 48.94 | 0.91 | ||
纤维饱和点材FSW | Aw = 85.217B–0.415 | 0.87 | Aw = –10.28 lnB + 56.15 | 0.90 | |||
绝干材ODW | Aw = 274.94B–0.738 | 0.95 | Aw = –13.88 lnB + 69.83 | 0.96 | |||
落叶松Larch | 边材 Sapwood | 饱水材WSW | Aw = 477.34B–0.733 | 0.81 | Aw = –34.85 lnB + 160.62 | 0.72 | |
纤维饱和点材FSW | Aw = 283.12B–0.789 | 0.92 | Aw = –28.17 lnB + 112.60 | 0.93 | |||
绝干材ODW | Aw = 185.25B–0.216 | 0.81 | Aw = –18.71 lnB + 152.76 | 0.79 | |||
心材 Heartwood | 饱水材WSW | Aw = 128.59B–0.368 | 0.88 | Aw = –13.78 lnB + 85.17 | 0.80 | ||
纤维饱和点材FSW | Aw = 681.95B–1.115 | 0.77 | Aw = –32.25 lnB + 124.46 | 0.99 | |||
绝干材ODW | Aw = 900.22B–0.973 | 0.87 | Aw = –21.41 lnB + 104.63 | 0.89 |
高 鑫, 周 凡, 庄寿增, 等. 纤维饱和点概念的演变、测试方法及其应用. 林业科学, 2019, 55 (3): 149- 159.
doi: 10.11707/j.1001-7488.20190317 |
|
Gao X, Zhou F, Zhuang S Z, et al. Concept evolution, test method and application of fiber saturation point. Scientia Silvae Sinicae, 2019, 55 (3): 149- 159.
doi: 10.11707/j.1001-7488.20190317 |
|
李凯夫. 温度对红松弯曲特性的影响. 东北林业大学学报, 1988, 16 (5): 49- 57. | |
Li K F. Effect of temperature on bending characteristic of Pinus koraiensis. Journal of Northeast Forestry University, 1988, 16 (5): 49- 57. | |
吕建雄, 林志远, 蒋佳荔, 等. 2006. 不同干燥方法对杉木人工林木材浸注性的影响. 林业科学, 42(10): 85–90. | |
Lü J X, Lin Z Y, Jiang J L, et. al. 2006. Effect of different drying methods on the liquid impregnation of Chinese fir plantation wood. Scientia Silvae Sinicae, 42(10): 85–90. [in Chinese] | |
舒兴平, 吴 亮, 卢倍嵘, 等. 不锈钢芯板结构芯管平压性能的研究分析. 工业建筑, 2020, 50 (2): 1- 9,23. | |
Shu X P, Wu L, Lu B R, et al. Research and analysis of compression properties of core tubes for structure of stainless steel sandwich panel. Industrial Construction, 2020, 50 (2): 1- 9,23. | |
汪佑宏, 江泽慧, 费本华, 等. 木材冲击韧性含水率修正模型的研究. 南京林业大学学报(自然科学版), 2009, 33 (3): 92- 94. | |
Wang Y H, Jiang Z H, Fei B H, et al. Study on revision model of the wood toughness with moisture content. Journal of Nanjing Forestry University (Natural Sciences Edition), 2009, 33 (3): 92- 94. | |
王立海, 王 洋, 高 珊, 等. 冻结状态下应力波在长白落叶松立木中传播速度的研究. 北京林业大学学报, 2009, 31 (3): 96- 99.
doi: 10.3321/j.issn:1000-1522.2009.03.017 |
|
Wang L H, Wang Y, Gao S, et al. Stress wave propagating velocity in Larix olgensis standing trees under a freezing condition. Journal of Beijing Forestry University, 2009, 31 (3): 96- 99.
doi: 10.3321/j.issn:1000-1522.2009.03.017 |
|
王 凌, 高 歌, 张 强, 等. 2008 年 1 月我国大范围低温雨雪冰冻灾害分析 Ⅰ. 气候特征与影响评估. 气象, 2008, 34 (4): 95- 100.
doi: 10.7519/j.issn.1000-0526.2008.04.012 |
|
Wang L, Gao G, Zhang Q, et al. Analysis of the severe cold surge, ice-snow and frozen disasters in south China during January 2008: I. climatic features and its impact. Meteorological Monthly, 2008, 34 (4): 95- 100.
doi: 10.7519/j.issn.1000-0526.2008.04.012 |
|
徐博瀚, 王亚勋, 赵艳华. 木材顺纹断裂韧度的研究进展. 力学与实践, 2016, 38 (5): 493- 500.
doi: 10.6052/1000-0879-15-069 |
|
Xu B H, Wang Y X, Zhao Y H. State-of-the-art of wood fracture toughness along the grain. Mechanics in Engineering, 2016, 38 (5): 493- 500.
doi: 10.6052/1000-0879-15-069 |
|
徐华东, 王立海. 冻结红松和大青杨湿木材内部水分存在状态及含量测定. 林业科学, 2012, 48 (2): 139- 143.
doi: 10.11707/j.1001-7488.20120221 |
|
Xu H D, Wang L H. Determining the states of water and its fraction in frozen Populus ussuriensis and Pinus koraiensis green timbers. Scientia Silvae Sinicae, 2012, 48 (2): 139- 143.
doi: 10.11707/j.1001-7488.20120221 |
|
杨戈尔, 张爱丽, 徐学敏, 等. 2007. 胞内冰晶形成(综述). 工程热物理学报, 28(S2): 55–57. | |
Yang G E, Zhang A L, Xu X M, et. al. 2007. Intracellular ice formation (review). Journal of Engineering Thermophysics, 28(S2): 55–57. [in Chinese] | |
赵广杰, 则元京, 张跃年. 1991. 相变过程中木材自由水的介电弛豫. 东北林业大学学报, 19(5): 95–100. | |
Zhao G J, Norimoto M, Zhang Y N. 1991. Dielectric relaxation of free water in wood during phase transition. Journal of Northeast Forestry University, 19(5): 95–100. [in Chinese] | |
Ai M Y, Gao G, Zhao Z W, et al. Experimental study on fracture failure characteristics evaluation of wooden pallets in humid-cold environment based on piezoelectric technology. Industrial Crops and Products, 2024, 222, 119627.
doi: 10.1016/j.indcrop.2024.119627 |
|
Ayrilmis N, Buyuksari U, As N. Bending strength and modulus of elasticity of wood-based panels at cold and moderate temperatures. Cold Regions Science and Technology, 2010, 63 (1/2): 40- 43. | |
Cudinov B S, Andreev M D, Stepanov V I, et al. The hygroscopicity of wood at temperatures below 0 deg C. I. Sorption and fiber saturation point. Holztechnologie, 1978, 19 (9): 91- 94. | |
Gao S, Tao X M, Wang X P, et al. Theoretical modeling of the effects of temperature and moisture content on the acoustic velocity of Pinus resinosa wood. Journal of Forestry Research, 2018, 29 (2): 541- 548.
doi: 10.1007/s11676-017-0440-5 |
|
Gao S, Wang X P, Wang L H, et al. Effect of temperature on acoustic evaluation of standing trees and logs: Part 2: field investigation. Wood Fiber Sci, 2013, 45 (1): 15- 25. | |
Gao S, Wang X P, Wang L H. Modeling temperature effect on dynamic modulus of elasticity of red pine (Pinus resinosa) in frozen and non-frozen states. Holzforschung, 2015, 69 (2): 233- 240.
doi: 10.1515/hf-2014-0048 |
|
Green D W, Evans J W, Logan J D, et al. Adjusting modulus of elasticity of lumber for changes in temperature. Forest Product Journal, 1999, 49 (10): 82- 94. | |
Hernández R E, Passarini L, Koubaa A. Effects of temperature and moisture content on selected wood mechanical properties involved in the chipping process. Wood Science and Technology, 2014, 48 (6): 1281- 1301.
doi: 10.1007/s00226-014-0673-9 |
|
Kim J H, Park D H, Lee C S, et al. Effects of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood. Cryogenics, 2015, 72, 90- 102. | |
Kim J H, Choi S W, Park D H, et al. Effects of cryogenic temperature on the mechanical and failure characteristics of melamine-urea-formaldehyde adhesive plywood. Cryogenics, 2018, 91, 36- 46.
doi: 10.1016/j.cryogenics.2018.02.001 |
|
Marini L J, Cavalheiro R S, Almeida De Araujo V, et al. Estimation of mechanical properties in Eucalyptus woods towards physical and anatomical parameters. Construction and Building Materials, 2022, 352, 128824.
doi: 10.1016/j.conbuildmat.2022.128824 |
|
Özkan O E. Effects of cryogenic temperature on some mechanical properties of beech (Fagus orientalis Lipsky) wood. European Journal of Wood and Wood Products, 2021, 79 (2): 417- 421.
doi: 10.1007/s00107-020-01639-1 |
|
Özkan O E. Effect of freezing temperature on impact bending strength and shore-D hardness of some wood species. BioResources, 2022, 17 (4): 6123- 6130.
doi: 10.15376/biores.17.4.6123-6130 |
|
Phuong L X, Shida S, Saito Y. Effects of heat treatment on brittleness of Styrax tonkinensis wood. Journal of Wood Science, 2007, 53 (3): 181- 186.
doi: 10.1007/s10086-006-0841-0 |
|
Ramage M H, Burridge H, Busse-Wicher M, et al. The wood from the trees: the use of timber in construction. Renewable and Sustainable Energy Reviews, 2017, 68, 333- 359.
doi: 10.1016/j.rser.2016.09.107 |
|
Schulson E M. The structure and mechanical behavior of ice. JOM, 1999, 51 (2): 21- 27.
doi: 10.1007/s11837-999-0206-4 |
|
Schulson E M. Brittle failure of ice. Engineering Fracture Mechanics, 2001, 68 (17/18): 1839- 1887. | |
Slimani Z, Trabelsi A, Virgone J, et al. Study of the hygrothermal behavior of wood fiber insulation subjected to non-isothermal loading. Applied Sciences, 2019, 9 (11): 2359.
doi: 10.3390/app9112359 |
|
Song X Y, Gao T, Ai M Y, et al. Experimental investigation of freeze injury temperatures in trees and their contributing factors based on electrical impedance spectroscopy. Frontiers in Plant Science, 2024, 15, 1326038.
doi: 10.3389/fpls.2024.1326038 |
|
Wang R S, Haller P. Enhancing wood efficiency through comprehensive wood flow analysis: Methodology and strategic insights. Forest Ecosystems, 2024, 11, 100179.
doi: 10.1016/j.fecs.2024.100179 |
|
Xiao S L, Chen C J, Xia Q Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374 (6566): 465- 471.
doi: 10.1126/science.abg9556 |
|
Yu Z L, Yang N, Zhou L C, et al. Bioinspired polymeric woods. Science Advances, 2018, 4 (8): eaat7223.
doi: 10.1126/sciadv.aat7223 |
|
Zhang L F, Xu B, Fang Z J, et al. Experimental study on the bending and shear behaviors of Chinese Paulownia wood at elevated temperatures. Polymers, 2022, 14 (24): 5545.
doi: 10.3390/polym14245545 |
|
Zhao L Y, Jiang J H, Lu J X, et al. Flexural property of wood in low temperature environment. Cold Regions Science and Technology, 2015, 116, 65- 69.
doi: 10.1016/j.coldregions.2015.04.001 |
|
Zhao L Y, Jiang J H, Lu J X. Effect of thermal expansion at low temperature on mechanical properties of Birch wood. Cold Regions Science and Technology, 2016, 126, 61- 65.
doi: 10.1016/j.coldregions.2016.03.008 |
[1] | Shiji Yang,Yanfang Wan,Yushi Bai,Dongmei Wang,Pengtao Yu,Yanhui Wang,Weiyue Wang,Yujia Chen. Transpiration of Larix gmelinii var. principis-rupprechtii Plantations on Different Slope Aspects in Liupan Mountains in Response of Environmental Factors [J]. Scientia Silvae Sinicae, 2025, 61(3): 108-120. |
[2] | Le Shen,Yanguang Chu,Weixi Zhang,Jing Zhang,Tengqian Zhang,Zhenghong Li,Changjun Ding,Xiaohua Su. Comparative Analysis of Volatile Compounds in the Wood of Populus koreana and Populus ussuriensis [J]. Scientia Silvae Sinicae, 2024, 60(1): 103-110. |
[3] | Zhang Xin, Zhang Qiuliang, Sun Shoujia, Wang Bing. CO2 Concentration and the δ13C Dynamics in Larix gmelinii Ecosystem in Response to Environmental Factors [J]. Scientia Silvae Sinicae, 2023, 59(9): 55-65. |
[4] | Lixuan Wang,Guang Yang,Jiaqi Gao,Xin Zheng,Zhaoguo Li,Yuetai Weng,Xueying Di,Hongzhou Yu. Changes in the Flammability of Post-Fire Aboveground Litter of Larix gmelinii [J]. Scientia Silvae Sinicae, 2022, 58(6): 110-121. |
[5] | Zixuan Wang,Ding Wang,Pengwu Zhao,Qiyue Zhang,Lei Yang,Mei Zhou. Effects of Management Methods of Burned Wood on Soil Respiration and Its Components in the Permafrost Region of Cold Temperate Zone [J]. Scientia Silvae Sinicae, 2021, 57(8): 13-23. |
[6] | Jibin Ning,Daotong Geng,Hongzhou Yu,Xueying Di,Guang Yang. Experiment on Spotting Ignition of Larix gmelinii Forest Based on Logistic Regression [J]. Scientia Silvae Sinicae, 2021, 57(7): 121-130. |
[7] | Lihong Wang,Hongkun Gao,Yusen Zhao,Qiang Fu,Chuanyuan He,Xin Sun,Jianxin Liang,Xiaopeng Zhang. Regulation Effects of Burned Areas Vegetation Restoration on Forest Microclimate Characteristics in the Growing Season [J]. Scientia Silvae Sinicae, 2021, 57(4): 14-23. |
[8] | Xuefeng Wang,Zhulin Chen,Qingjun Guan,Jiazheng Liu,Tian Wang,Ying Yuan. Estimation Method of Carbon Stock Per Unit Area Based on Forest Image [J]. Scientia Silvae Sinicae, 2021, 57(1): 105-112. |
[9] | Zhaohui Wang,Yangbo Lü,Beiqing Ge,Zhongli Zhang,Guannan Su,Zhaopeng Tian. Bearing Performance of Dowel Connection with Slotted-in Steel Plates in the Structural Component of Japanese Cedar under Load Perpendicular to Grain [J]. Scientia Silvae Sinicae, 2020, 56(7): 123-134. |
[10] | Yanyan Ma,Lichun Jiang. Stem Taper Function for Larix gmelinii Based on Nonlinear Quantile Regression [J]. Scientia Silvae Sinicae, 2019, 55(10): 68-75. |
[11] | Shahzad Muhammad, Khurra Han, Feifei Jiang. Effects of Different Sampling Methods on Predict Precision of Individual Tree Volume Equation for Dahurian Larch [J]. Scientia Silvae Sinicae, 2018, 54(8): 99-105. |
[12] | Ma Yanyan, Jiang Lichun. Error Structure and Variance Function of Allomatric Model [J]. Scientia Silvae Sinicae, 2018, 54(2): 90-97. |
[13] | Wang Lixiang, Liu Xiaobo, Ren Lili, Shi Juan, Luo Youqing. Variety of Endophytic Fungi Associated with Conifers in Mixed Conifer Forests Invaded by Sirex noctilio [J]. Scientia Silvae Sinicae, 2017, 53(9): 81-89. |
[14] | Ma Li, Mu Changcheng, Wang Biao, Zhang Yan, Li Na. Effects of Wetland Drainage for Forestation on Carbon Source or Sink of Temperate Marshes Wetlands in Xiaoxing'an Mountains of China [J]. Scientia Silvae Sinicae, 2017, 53(10): 1-12. |
[15] | Yang Liu, Sun Huizhen. Analysis of Water Management Strategy for Larix gmelinii [J]. Scientia Silvae Sinicae, 2016, 52(6): 149-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||