Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 74-84.doi: 10.11707/j.1001-7488.LYKX20240543
• Research papers • Previous Articles Next Articles
Xiao He1,Guangcheng Luo1,2,Wenqiang Gao1,Haikui Li1,Weisheng Zeng3,Fujun Duan4,Xiangdong Lei1,*()
Received:
2024-09-19
Online:
2025-05-20
Published:
2025-05-24
Contact:
Xiangdong Lei
E-mail:xdlei@ifrit.ac.cn
CLC Number:
Xiao He,Guangcheng Luo,Wenqiang Gao,Haikui Li,Weisheng Zeng,Fujun Duan,Xiangdong Lei. Carbon Sequestration Potentiality of Pinus tabuliformis Pure Forest in Zhongtiaoshan Forestry Bureau of Shanxi Province[J]. Scientia Silvae Sinicae, 2025, 61(5): 74-84.
Table 1
Summary statistics of stand factors for permanent sample plots"
变量Variables | 平均值 Mean | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation, CV (%) |
林龄 Stand age /a | 43 | 12 | 91 | 40.46 |
林分密度Stand density (N) / (trees·hm?2) | 300 | 54.37 | ||
林分密度指数Stand density index (SDI) | 628 | 56 | 1970 | 49.46 |
林分断面积Stand basal area (BA) / (m2?hm?2) | 16.65 | 0.97 | 55.49 | 56.27 |
林分平均胸径Stand mean DBH (Dg) / cm | 14.1 | 5.8 | 30.8 | 32.63 |
林分蓄积Stand volume (V) / ( m3?hm?2) | 63.77 | 2.62 | 285.83 | 67.50 |
林分碳储量Stand carbon storage (C) / (t?hm?2) | 40.93 | 1.39 | 200.33 | 72.30 |
平均单株断面积Mean individual tree basal area (MBA) /cm2 | 171.67 | 26.70 | 747.51 | 68.14 |
平均单株碳储量Mean individual tree carbon storage Cm/ kg | 43.98 | 3.79 | 255.85 | 90.80 |
Table 2
Summary statistics of stand factors for sub-compartment survey"
起源 Origin | 小班数 Number of sub-compartment | 变量Variables | 平均值 Mean | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation, CV (%) |
天然 Natural | 688 | 林龄 Stand age /a | 37 | 5 | 82 | 36.33 |
林分密度Stand density (N) / (trees·hm?2) | 602 | 105 | 82.73 | |||
林分密度指数Stand density index (SDI) | 288 | 12 | 81.00 | |||
林分断面积Stand basal area (BA) / (m2?hm?2) | 7.20 | 0.17 | 32.96 | 86.73 | ||
林分平均胸径Stand mean DBH (Dg) /cm | 12.0 | 3.6 | 23.9 | 25.87 | ||
林分蓄积Stand volume (V) / (m3?hm?2) | 52.90 | 2.31 | 220.33 | 58.77 | ||
平均单株断面积Mean individual tree basal area (MBA) /cm2 | 119.67 | 10.18 | 448.63 | 51.81 | ||
人工 Plantation | 林龄 Stand age /a | 33 | 7 | 60 | 25.59 | |
林分密度Stand density (N) / (trees·hm?2) | 716 | 100 | 96.32 | |||
林分密度指数Stand density index (SDI) | 320 | 11 | 98.27 | |||
林分断面积Stand basal area (BA) / (m2?hm?2) | 7.78 | 0.14 | 81.14 | 101.81 | ||
林分平均胸径Stand mean DBH (Dg) /cm | 11.3 | 2.5 | 27.6 | 27.82 | ||
林分蓄积Stand volume (V) / (m3?hm?2) | 48.42 | 0.60 | 258.00 | 56.21 | ||
平均单株断面积Mean individual tree basal area (MBA) /cm2 | 109.26 | 4.91 | 598.28 | 56.37 |
Table 3
Evaluation indices of carbon storage graded growth model system"
模型 Model | 模型表达式 Model expression | 评价指标 Evaluation indices | ||
确定系数 Coefficient of determination (R2) | 均方根误差 Root mean square error (RMSE) | 相对均方根误差 Relative root mean square error (rRMSE) (%) | ||
平均单株碳储量分级生长模型 Carbon storage graded growth model of mean individual tree | 0.920 | 11.319 kg | 25.74 | |
平均单株断面积分级生长模型 Basal area graded growth model of mean individual tree | 0.903 | 36.667 cm2 | 21.36 | |
林分碳储量分级生长模型 Stand carbon storage graded growth model | 0.966 | 5.463 t?hm?2 | 13.35 | |
林分断面积分级生长模型 Stand basal area graded growth model | 0.985 | 1.162 m2?hm?2 | 6.98 |
Table 4
Summary statistics of realized and potential carbon productivity increment, carbon productivity gap, and relative carbon productivity gap at sub-compartment level"
尺度 Scale | 项目 Item | 固碳等级 Carbon sequestration class | 总体 Total | ||
l = 1 (n=507) | l = 2 (n=1 141) | l = 3 (n=2 828) | |||
单位面积 Unit area | 年现实碳汇量Realized carbon productivity increment (RCI) /(t·hm?2a?1) | 2.32±1.81 | 1.42±1.23 | 0.63±0.65 | 1.02±1.16 |
年碳汇潜力 Potential carbon productivity increment (PCI) /(t·hm?2a?1) | 3.79±1.17 | 2.49±0.53 | 0.84±0.20 | 1.59±1.16 | |
碳汇提升空间Carbon productivity gap (CPG) / (t·hm?2a?1) | 1.47±1.90 | 1.07±1.32 | 0.21±0.67 | 0.57±1.17 | |
相对碳汇提升空间 Relative carbon productivity gap (RCPG) (%) | 37.19±51.6 | 41.22±53.87 | 22.73±81.75 | 29.08±73.04 | |
森林经营单位 Forest management unit | 年总现实碳汇量 Total realized carbon productivity increment (RCI) / (t·a?1) | 11 143 | 18 302 | 19 474 | 48 919 |
年总碳汇潜力Total potential carbon productivity increment (PCI) / (t·a?1) | 20 087 | 33 767 | 25 072 | 78 925 | |
碳汇提升空间Carbon productivity gap (CPG) / (t·a?1) | 8 944 | 15 465 | 5 598 | 30 006 | |
相对碳汇提升空间Relative carbon productivity gap (RCPG) (%) | 44.53 | 45.80 | 22.33 | 38.02 |
Table 5
Summary statistics of relative carbon productivity gap (RCPG) in different origin and age group at sub-compartment level %"
项目 Item | 分组 Group | 单位面积 Unit area | 森林经营单位 Forest management unit |
起源 Origin | 天然林Natural forests | 46.599±55.322 | 49.893 |
人工林Plantations | 25.891±75.382 | 35.858 | |
龄组 Age group | 幼龄林Young forests | 44.687±59.423 | 43.350 |
中龄林Middle-aged forests | 20.340±79.411 | 31.539 | |
近熟林Near-mature forests | 49.041±46.564 | 57.465 | |
成熟林Mature forests | 61.272±25.492 | 62.712 | |
过熟林Over-mature forests | 85.805 | 85.805 |
曹 磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型. 林业科学研究, 2020, 33 (5): 61- 67. | |
Cao L, Liu X T, Li H K, et al. Biomass growth models for evergreen broad-leaved forests in Guangdong. Forest Research, 2020, 33 (5): 61- 67. | |
陈治中, 昝 梅, 杨雪峰, 等. 新疆森林植被碳储量预测研究. 生态环境学报, 2023, 32 (2): 226- 234. | |
Chen Z Z, Zan M, Yang X F, et al. Prediction of forest vegetation carbon storage in Xinjiang. Ecology and Environment Sciences, 2023, 32 (2): 226- 234. | |
付 晓, 张煜星, 王雪军. 2060年前我国森林生物量碳库及碳汇潜力预测. 林业科学, 2022, 58 (2): 32- 41. | |
Fu X, Zhang Y X, Wang X J. Prediction of forest biomass carbon pool and carbon sink potential in China before 2060. Scientia Silvae Sinicae, 2022, 58 (2): 32- 41. | |
孟京辉. 自然稀疏方程不同拟合方法的对比研究. 北京林业大学学报, 2019, 41 (12): 58- 68.
doi: 10.12171/j.1000-1522.20190434 |
|
Meng Jinghui. A comparison of different methods for fitting the self-thinning equation. Journal of Beijing Forestry University, 2019, 41 (12): 58- 68.
doi: 10.12171/j.1000-1522.20190434 |
|
国家林业局. 2014. 立木生物量模型及碳计量参数——油松(LY/T 2260−2014). 北京: 中国标准出版社. | |
State Forestry Administration. 2014. Tree biomass models and related parameters to carbon accounting for Pinus tabuliformis (LY/T 2260−2014). Beijing: China Standard Press. [in Chinese] | |
国家林业和草原局. 2020. 森林资源连续清查技术规程(GB/T 38590-2020). 北京: 中国标准出版社. | |
National Forestry and Grassland Administration. 2020. Technical regulations for continuous forest inventory (GB/T 38590-2020). Beijing: China Standard Press. [in Chinese] | |
国家林业和草原局. 2023. 造林技术规程(GB/T 15776-2023). 北京: 中国标准出版社. | |
National Forestry and Grassland Administration. 2023. Technical regulation for forestation (GB/T 15776−2023). Beijing: China Standard Press. [in Chinese] | |
何 潇, 雷相东, 段光爽, 等. 气候变化对落叶松人工林生物量生长的影响模拟. 南京林业大学学报(自然科学版), 2023a, 47 (3): 120- 128. | |
He X, Lei X D, Duan G S, et al. Modelling the effects of climate change on stand biomass growth of larch plantations. Journal of Nanjing Forestry University(Natural Science Edition), 2023a, 47 (3): 120- 128. | |
何 潇, 李海奎, 张逸如, 等. 天然次生林碳储量生长模型与固碳能力驱动力研究. 北京林业大学学报, 2023b, 45 (1): 1- 10. | |
He X, Li H K, Zhang Y R, et al. Growth model of carbon storage and driving force of carbon sequestration capacity of natural secondary forests. Journal of Beijing Forestry University, 2023b, 45 (1): 1- 10. | |
何 潇, 徐奇刚, 雷相东. 气候敏感的落叶松人工林林分生物量模型研究. 林业科学研究, 2021a, 34 (6): 20- 27. | |
He X, Xu Q G, Lei X D. Climate-sensitive stand biomass model for Larix spp. plantation. Forest Research, 2021a, 34 (6): 20- 27. | |
何 潇, 周超凡, 雷相东, 等. 长白落叶松人工林林分碳储量生长模型系研究. 北京林业大学学报, 2021b, 43 (11): 1- 10. | |
He X, Zhou C F, Lei X D, et al. Stand carbon stock growth model system for Larix olgensis plantation. Journal of Beijing Forestry University, 2021b, 43 (11): 1- 10. | |
黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响. 水土保持学报, 2015, 29 (6): 184- 190. | |
Huang X Q, Xin Z B, Zhao Y J, et al. Effects of stand ages and site conditions on carbon stock of Pinus tabuliformis plantations in Beijing mountainous area. Journal of Soil and Water Conservation, 2015, 29 (6): 184- 190. | |
简尊吉, 朱建华, 王小艺, 等. 我国陆地生态系统碳汇的研究进展和提升挑战与路径. 林业科学, 2023, 59 (3): 12- 20.
doi: 10.11707/j.1001-7488.LYKX20220666 |
|
Jian Z J, Zhu J H, Wang X Y, et al. Research progress and the enhancement challenges and pathways of carbon sinks in China’s terrestrial ecosystems. Scientia Silvae Sinicae, 2023, 59 (3): 12- 20.
doi: 10.11707/j.1001-7488.LYKX20220666 |
|
雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用. 林业科学, 2018, 54 (12): 116- 126.
doi: 10.11707/j.1001-7488.20181213 |
|
Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment. Scientia Silvae Sinicae, 2018, 54 (12): 116- 126.
doi: 10.11707/j.1001-7488.20181213 |
|
李海奎. 碳中和愿景下森林碳汇评估方法和固碳潜力预估研究进展. 中国地质调查, 2021, 8 (4): 79- 86. | |
Li H K. Research advance of forest carbon sink assessment methods and carbon sequestration potential estimation under carbon neutral vision. Geological Survey of China, 2021, 8 (4): 79- 86. | |
李海奎, 法 蕾. 基于分级的全国主要树种树高-胸径曲线模型. 林业科学, 2011, 47 (10): 83- 90.
doi: 10.11707/j.1001-7488.20111013 |
|
Li H K, Fa L. Height-diameter model for major tree species in China using the classified height method. Scientia Silvae Sinicae, 2011, 47 (10): 83- 90.
doi: 10.11707/j.1001-7488.20111013 |
|
唐守正, 郎奎建, 李海奎. 2009. 统计和生物数学模型计算(ForStat教程). 北京: 科学出版社. | |
Tang S Z, Lang K J, Li H K. 2009. Statistics and computation of biomathematical models (ForStat textbook). Beijing: Science Press. [in Chinese] | |
王柏昌, 韩媛媛, 孙洪刚, 等. 2024. 杉阔混交林自疏边界线研究. 林业科学研究, 37(5): 1−12. | |
Wang B C, Han Y Y, Sun H G, et al. 2024. Self-thinning line of mixed forests of Cunninghamia lanceolata and broad-leaved tree species. Forest Research, 37(5): 1−12. [in Chinese] | |
肖文发, 朱建华, 曾立雄, 等. 森林碳汇助力碳中和的几点认识. 林业科学, 2023, 59 (3): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220681 |
|
Xiao W F, Zhu J H, Zeng L X, et al. Several perspectives on forest carbon sink for promoting carbon neutrality. Scientia Silvae Sinicae, 2023, 59 (3): 1- 11.
doi: 10.11707/j.1001-7488.LYKX20220681 |
|
徐 冰, 郭兆迪, 朴世龙, 等. 2000~2050年中国森林生物量碳库: 基于生物量密度与林龄关系的预测. 中国科学: 生命科学, 2010, 40 (7): 587- 594.
doi: 10.1360/zc2010-40-7-587 |
|
Xu B, Guo Z D, Piao S L, et al. Biomass carbon stocks in China’s forests between 2000 and 2050: a prediction based on forest biomass-age relationships. Scientia Sinica Vitae, 2010, 40 (7): 587- 594.
doi: 10.1360/zc2010-40-7-587 |
|
于贵瑞, 朱剑兴, 徐 丽, 等. 中国生态系统碳汇功能提升的技术途径: 基于自然解决方案. 中国科学院院刊, 2022, 37 (4): 490- 501. | |
Yu G R, Zhu J X, Xu L, et al. Technological approaches to enhance ecosystem carbon sink in China: nature-based solutions. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 490- 501. | |
朱光玉, 胡 松, 符利勇. 基于哑变量的湖南栎类天然林林分断面积生长模型. 南京林业大学学报(自然科学版), 2018, 42 (2): 155- 162. | |
Zhu G Y, Hu S, Fu L Y. Basal area growth model for Oak natural forest in Hunan Province based on dummy variable. Journal of Nanjing Forestry University(Natural Science Edition), 2018, 42 (2): 155- 162. | |
朱建华, 田 宇, 李 奇, 等. 中国森林生态系统碳汇现状与潜力. 生态学报, 2023, 43 (9): 3442- 3457. | |
Zhu J H, Tian Y, Li Q, et al. The current and potential carbon sink in forest ecosystem in China. Acta Ecologica Sinica, 2023, 43 (9): 3442- 3457. | |
Bukoski J J, Cook-Patton S C, Melikov C, et al. Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests. Nature Communications, 2022, 13 (1): 4206.
doi: 10.1038/s41467-022-31380-7 |
|
Cheng F S, Tian J X, He J Y, et al. The spatial and temporal distribution of Chinaʼs forest carbon. Frontiers in Ecology and Evolution, 2023, 11, 1110594.
doi: 10.3389/fevo.2023.1110594 |
|
Cheng Y Y, Huang M Y, Lawrence D M, et al. Future bioenergy expansion could alter carbon sequestration potential and exacerbate water stress in the United States. Science Advances, 2022, 8 (18): eabm8237.
doi: 10.1126/sciadv.abm8237 |
|
Crockett E T H, Atkins J W, Guo Q F, et al. Structural and species diversity explain aboveground carbon storage in forests across the United States: evidence from gedi and forest inventory data. Remote Sensing of Environment, 2023, 295, 113703.
doi: 10.1016/j.rse.2023.113703 |
|
Fotis A T, Murphy S J, Ricart R D, et al. Above-ground biomass is driven by mass-ratio effects and stand structural attributes in a temperate deciduous forest. The Journal of Ecology, 2018, 106 (2): 561- 570.
doi: 10.1111/1365-2745.12847 |
|
Fu L, Sharma R, Zhu G, et al. A basal area increment-based approach of site productivity evaluation for multi-aged and mixed forests. Forests, 2017, 8 (4): 119.
doi: 10.3390/f8040119 |
|
He N P, Wen D, Zhu J X, et al. Vegetation carbon sequestration in Chinese forests from 2010 to 2050. Global Change Biology, 2017, 23 (4): 1575- 1584.
doi: 10.1111/gcb.13479 |
|
Hennigar C, Weiskittel A, Allen H L, et al. Development and evaluation of a biomass increment based index for site productivity. Canadian Journal of Forest Research, 2017, 47 (3): 400- 410.
doi: 10.1139/cjfr-2016-0330 |
|
Lei X D, Yu L, Hong L X. Climate-sensitive integrated stand growth model (CS-ISGM) of Changbai larch (Larix Olgensis) plantations. Forest Ecology and Management, 2016, 376, 265- 275.
doi: 10.1016/j.foreco.2016.06.024 |
|
Li H K, Zhao P X. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional Scale. Forest Ecology and Management, 2013, 289, 153- 163.
doi: 10.1016/j.foreco.2012.10.002 |
|
Liu L, Zeng F P, Song T Q, et al. Stand structure and abiotic factors modulate Karst forest biomass in Southwest China. Forests, 2020, 11 (4): 443.
doi: 10.3390/f11040443 |
|
Liu X Z, Duan G S, Chhin S, et al. Evaluation of potential versus realized site productivity of Larix principis-rupprechtii plantations across Northern China. Forest Ecology and Management, 2021, 479, 118608.
doi: 10.1016/j.foreco.2020.118608 |
|
Peng B, Zhou Z Y, Cai W X, et al. Maximum potential of vegetation carbon sink in Chinese forests. Science of the Total Environment, 2023, 905, 167325.
doi: 10.1016/j.scitotenv.2023.167325 |
|
Reineke L H. Perfecting a stand−density index for even−aged forest. Journal of Agricultural Research, 1933, 46 (7): 627- 638. | |
Reich P B, Luo Y, Bradford J B, et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proceedings of the National Academy of Sciences, 2014, 111 (38): 13721- 13726.
doi: 10.1073/pnas.1216053111 |
|
Roxburgh S H, Wood S W, Mackey B G, et al. Assessing the carbon sequestration potential of managed forests: a case study from temperate Australia. Journal of Applied Ecology, 2006, 43 (6): 1149- 1159.
doi: 10.1111/j.1365-2664.2006.01221.x |
|
Tian H L, Zhu J H, He X, et al. Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale forest inventory data in China. Forest Ecosystems, 2022, 9, 100037.
doi: 10.1016/j.fecs.2022.100037 |
|
Yu Z, Ciais P, Piao S, et al. Forest expansion dominates China’s land carbon sink since 1980. Nature Communications, 2022, 13 (1): 5374.
doi: 10.1038/s41467-022-32961-2 |
|
Zhang X Q, Xu D Y. Potential carbon sequestration in Chinaʼs forests. Environmental Science & Policy, 2003, 6 (5): 421- 432. |
[1] | Mengyan Lü,Jun Ren,Limin Zhang,Siyu Chen,Jiali Zhao,Jiale Lu,Chen Kong,Wei Dai,Guixiang Jin. Evaluation Model for Root Growth and Development of Corylus heterophylla × C. avellana Cuttings Based on Photosynthetic Indexes [J]. Scientia Silvae Sinicae, 2025, 61(3): 100-107. |
[2] | Weisheng Zeng,Ying Pu,Xueyun Yang,Shanjun Yi. Growth Models and Its Climate-Driven Analysis of Carbon Storage in Tree Layers of Five Major Plantation Types in China [J]. Scientia Silvae Sinicae, 2023, 59(3): 21-30. |
[3] | Yalin Xie,Xiangdong Lei,Weisheng Zeng. Compilation of Growth and Yield Table for Larch Plantations Based on 3-PGmix Model [J]. Scientia Silvae Sinicae, 2023, 59(12): 87-104. |
[4] | Houben Zhao,Guangyi Zhou,Zhaojia Li,Zhijun Qiu,Zhongmin Wu,Xu Wang. Biomass Allocation and Allometric Growth Models of Four Common Tree Species in Southern Subtropical Evergreen Broad-Leaved Forest [J]. Scientia Silvae Sinicae, 2022, 58(2): 23-31. |
[5] | Huiru Zhang,Xiangdong Lei,Fengri Li. Research Progress and Prospects of Forest Management Science in China [J]. Scientia Silvae Sinicae, 2020, 56(9): 130-142. |
[6] | Song Hu,Guangyu Zhu,Zhenxiong Chen,Kan Lu,Lang Huang,Zhuo Liu. Basal Area Growth Model for Oaks Natural Secondary Forest in Hunan Province Based on Storey Identification [J]. Scientia Silvae Sinicae, 2020, 56(9): 184-192. |
[7] | Yingkai Zhang,Pengju Liu,Changchun Liu,Yi Ren. Prediction Method of Cunninghamia lanceolata Growth Based on Spatial Clustering [J]. Scientia Silvae Sinicae, 2019, 55(11): 137-144. |
[8] | Zu Xiaofeng, Ni Chengcai, Gorden Nigh, Qin Xianlin. Based on Mixed-Effects Model and Empirical Best Linear Unbiased Predictor to Predict Growth Profile of Dominant Height [J]. Scientia Silvae Sinicae, 2015, 51(3): 25-33. |
[9] | Zheng Conghui;Jia Liming;Duan Jie;Wei Songpo;Sun Caowen;Jia Zhenhu;Lu Fushun;Wang Zhiyong;Cui Xiangdong. Establishment of Site Index Table for Quercus variabilis Natural Secondary Forest in North China [J]. , 2013, 49(2): 79-85. |
[10] | Xiang Wei;Lei Xiangdong;Hong Lingxia;Sun Jianjun;Wang Peizhen. Matrix Growth Model and Harvest Scenario Simulation for Multiple Uses of Larch-Spruce-Fir Forests [J]. Scientia Silvae Sinicae, 2011, 47(6): 77-87. |
[11] | Duan Jie;Ma Lüyi;Jia Liming;Hou Yaqin;Gong Ningning. Establishment and Application of Site Index Table for Pinus tabulaeformis Plantation in the Low Elevation Area of Beijing [J]. Scientia Silvae Sinicae, 2009, 12(3): 7-12. |
[12] | Lei Xiangdong;Chang Min;Lu Yuanchang;Zhao Tianzhong. A Review on Growth Modelling and Visualization for Virtual Trees [J]. Scientia Silvae Sinicae, 2006, 42(11): 123-131. |
[13] | Du Jishan;Tang Shouzheng;Wang Hongliang. APPLICATION OF NATURAL STAND GROWTH MODELS IN SUBCOMPARTMENT DATA UPDATE [J]. Scientia Silvae Sinicae, 2000, 36(3): 52-58. |
[14] | Du Jishan;Tang Shouzheng;Wang Hongliang. UPDATE MODELS OF FOREST RESOURCE DATA FOR SUBCOMPARTMENTS IN NATURAL FOREST [J]. Scientia Silvae Sinicae, 2000, 36(2): 26-32. |
[15] | Shouzheng Tang,Jishan Du. DETERMINING BASAL AREA GROWTH PROCESS OF THINNINED EVEN-AGED STANDS BY CROWN COMPETITION FACTOR [J]. Scientia Silvae Sinicae, 1999, 35(6): 35-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||