Scientia Silvae Sinicae ›› 2025, Vol. 61 ›› Issue (5): 85-97.doi: 10.11707/j.1001-7488.LYKX20230619
• Research papers • Previous Articles Next Articles
Yafei Wang(),Yang Liu,Kai Wang,Xiaofei Ding,Kexin Xu,Liming Jia*(
),Benye Xi
Received:
2023-12-15
Online:
2025-05-20
Published:
2025-05-24
Contact:
Liming Jia
E-mail:mrw1996@bjfu.edu.cn;jlm@bjfu.edu.cn
CLC Number:
Yafei Wang,Yang Liu,Kai Wang,Xiaofei Ding,Kexin Xu,Liming Jia,Benye Xi. Effects of Water-nitrogen Coupling Treatment on Growth of Populus tomentosa Pulp Forest and the Soil Moisture-nutrient Characteristics[J]. Scientia Silvae Sinicae, 2025, 61(5): 85-97.
Table 1
Tree growth and productivity of Populus tomentosa under different water and nitrogen treatments at the end of the 2020 growing season"
试验处理 Treatment | 平均胸径 Average diameter at breast height (DBH)/cm | 平均树高 Average tree height (H)/m | 单株材积Single tree volume | 林地蓄积量 Forest stand volume/(m3·hm?2) | 林地生产力 Annual forest productivity/ (m3·hm?2a?1) |
Va /(m3·tree?1) | |||||
W20NL | 12.80±0.32 | 14.47±0.35 | 0.075±0.003 | 124.21±5.39 | 24.84±1.08 |
W20NM | 12.82±0.53 | 15.09±0.48 | 0.079±0.009 | 132.50±15.83 | 26.50±3.17 |
W20NH | 12.39±0.56 | 14.04±0.70 | 0.070±0.011 | 116.02±18.44 | 23.20±3.69 |
W20N0 | 12.75±0.24 | 14.54±0.21 | 0.075±0.002 | 125.22±3.46 | 25.04±0.69 |
W33NL | 11.94±0.20 | 14.18±0.61 | 0.065±0.003 | 107.53±5.63 | 21.51±1.13 |
W33NM | 11.80±0.55 | 13.99±0.56 | 0.065±0.010 | 108.03±16.66 | 21.61±3.33 |
W33NH | 12.39±0.48 | 14.04±0.64 | 0.069±0.007 | 114.43±12.25 | 22.89±2.45 |
W33N0 | 12.66±0.20 | 14.52±0.45 | 0.076±0.004 | 126.79±7.01 | 25.36±1.40 |
W45NL | 12.30±0.29 | 14.52±0.31 | 0.072±0.006 | 120.23±9.20 | 24.05±1.84 |
W45NM | 11.77±0.68 | 13.94±0.99 | 0.062±0.011 | 104.16±17.95 | 20.83±3.59 |
W45NH | 11.99±0.38 | 13.96±0.60 | 0.066±0.008 | 110.79±12.74 | 22.16±2.55 |
W45N0 | 12.20±0.71 | 13.78±0.59 | 0.062±0.006 | 103.56±9.95 | 20.71±1.99 |
CK | 12.35±0.44 | 14.85±0.23 | 0.071±0.005 | 119.06±8.50 | 23.81±1.70 |
Table 2
ANOVA of leaf area index of P. tomentosa forest under different water and nitrogen treatments during the 2020 growing season"
变异来源 Source of variation | 自由度 df | P值(P-value) | ||||||||||
05?15 | 05?30 | 06?15 | 06?30 | 07?15 | 07?30 | 08?15 | 08?30 | 09?15 | 09?30 | 10?15 | ||
WN vs.CK | 12 | 0.773 | 0.132 | 0.185 | 0.569 | 0.378 | 0.975 | 0.189 | 0.092 | 0.126 | 0.713 | 0.856 |
W | 2 | 0.136 | 0.340 | 0.796 | 0.451 | 0.634 | 0.777 | 0.206 | 0.060 | 0.019 | 0.153 | 0.475 |
N | 3 | 0.823 | 0.249 | 0.361 | 0.679 | 0.990 | 0.864 | 0.066 | 0.361 | 0.860 | 0.844 | 0.543 |
W×N | 6 | 0.829 | 0.249 | 0.166 | 0.606 | 0.097 | 0.915 | 0.637 | 0.226 | 0.234 | 0.758 | 0.833 |
Table 3
ANOVA of soil volumetric water content under four irrigation gradients in 2020"
变异来源 Source of variation | 自由度 df | P值(P-value) | ||||
05?30 | 06?30 | 07?30 | 08?30 | 10?15 | ||
W | 2 | <0.001 | <0.001 | <0.001 | 0.001 | 0.005 |
D | 9 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
F | 2 | 0.047 | 0.162 | 0.113 | 0.327 | 0.586 |
W×D | 18 | 0.002 | <0.001 | <0.001 | <0.001 | <0.001 |
W×F | 4 | <0.001 | 0.440 | 0.555 | 0.609 | 0.557 |
D×F | 18 | 0.662 | 0.771 | 0.138 | 0.885 | 0.937 |
W×D×F | 36 | 0.907 | 0.999 | 0.983 | 0.964 | 0.978 |
M | 4 | <0.001 | ||||
W | 2 | <0.001 | ||||
W×M | 8 | 0.159 |
Table 5
Soil nutrients at 0?80 cm under different water and nitrogen treatments"
灌溉处理 Irrigation treatment | 施肥处理 Fertilization treatment | 有机质含量 SOM /(g·kg?1) | 全氮含量 TN /(g·kg?1) | 速效磷含量 AP /(mg·kg?1) |
W20 | NL | 26.89±4.00 | 1.31±0.08 | 3.13±0.03bc |
NM | 24.59±5.44 | 1.24±0.22 | 2.66±0.02c | |
NH | 23.78±4.95 | 1.18±0.21 | 2.77±0.11bc | |
N0 | 26.20±2.27 | 1.29±0.16 | 2.81±0.07bc | |
W33 | NL | 22.26±3.01 | 1.48±0.12 | 3.00±0.20bc |
NM | 23.57±7.48 | 1.19±0.04 | 3.01±0.04bc | |
NH | 25.04±6.46 | 0.94±0.09 | 2.63±0.04c | |
N0 | 21.21±5.80 | 1.24±0.01 | 2.75±0.14bc | |
W45 | NL | 26.10±5.36 | 1.15±0.07 | 3.22±0.13b |
NM | 29.03±6.07 | 1.38±0.17 | 3.10±0.33bc | |
NH | 26.70±5.94 | 1.36±0.13 | 4.08±0.18a | |
N0 | 23.49±4.51 | 1.02±0.11 | 3.12±0.22bc | |
CK | 10.91±1.23 | 1.09±0.10 | 2.82±0.0bc |
Fig.5
Total nitrogen and available phosphorus content of each soil layer under different water and nitrogen treatments Different capital letters indicate significant differences between different soil layers of the same treatment (P<0.05), and different lowercase letters indicate significant differences between different treatments of the same soil layer (P<0.05)."
鲍士旦. 2000. 土壤农化分析. 第3版. 北京: 中国农业出版社. | |
Bao S D. 2000. Soil and agricultural chemistry analysis. 3rd ed. Beijing: China Agriculture Press. [in Chinese] | |
陈章水. 杨树二元立木材积表的编制. 林业科学研究, 1989, 2 (1): 78- 83. | |
Chen Z S. Compilation of poplar two-dimensional standing wood volume table. Forestry Research, 1989, 2 (1): 78- 83. | |
戴腾飞, 席本野, 闫小莉, 等. 2015. 施肥方式和施氮量对欧美108杨人工林土壤氮素垂向运移的影响. 应用生态学报, 26(6): 1641−1648. | |
Dai T F, Xi B Y, Yan X L, et al. 2015. Effects of fertilization methods and nitrogen application on soil nitrogen vertical transport in European and American 108 poplar plantations. Chinese Journal of Applied Ecology, 26(6): 1641−1648. [in Chinese] | |
董雯怡, 赵 燕, 张志毅, 等. 水肥耦合效应对毛白杨苗木生物量的影响. 应用生态学报, 2010, 21 (9): 2194- 2200. | |
Dong W Y, Zhao Y, Zhang Z Y, et al. Effects of coupling effect of water and fertilizer on the biomass of Populus tomentosa seedlings. Chinese Journal of Applied Ecology, 2010, 21 (9): 2194- 2200. | |
方升佐. 中国杨树人工林培育技术研究进展. 应用生态学报, 2008, 19 (10): 2308- 2316. | |
Fang S Z. Silviculture of poplar plantation in China: a review. Chinese Journal of Applied Ecology, 2008, 19 (10): 2308- 2316. | |
方升佐, 徐锡增, 吕士行, 等. 中短轮伐期杨树纸浆林 LAI 及生物生产力的研究. 应用生态学报, 1998, 9 (3): 225- 230.
doi: 10.3321/j.issn:1001-9332.1998.03.001 |
|
Fang S Z, Xu X Z, Lu S X. Leaf area index and biomass productivity of mid-and short rotation poplar plantations for pulp timber. Chinese Journal of Applied Ecology, 1998, 9 (3): 225- 230.
doi: 10.3321/j.issn:1001-9332.1998.03.001 |
|
傅建平, 兰再平, 孙尚伟, 等. 滴灌条件下杨树人工林土壤水分变化规律研究. 北京林业大学学报, 2013, 35 (6): 61- 66. | |
Fu J P, Lan Z P, Sun S W, et al. Dynamics of soil water content in poplar plantation cultivated with drip irrigation system. Journal of Beijing Forestry University, 2013, 35 (6): 61- 66. | |
贺曰林, 李广德, 席本野, 等. 2年生毛白杨细根生长、分布及形态特征对滴灌水氮耦合的响应. 北京林业大学学报, 2022, 44 (4): 1- 11.
doi: 10.12171/j.1000-1522.20200413 |
|
He Y L, Li G D, Xi B Y, et al. Coupling effects of drip irrigation and nitrogen fertigation on fine root growth, distribution and morphological characters of 2-year-old Populus tomentosa plantations. Journal of Beijing Forestry University, 2022, 44 (4): 1- 11.
doi: 10.12171/j.1000-1522.20200413 |
|
贺曰林, 王 烨, 张宏锦, 等. 地表滴灌水氮耦合对毛白杨幼林生长及土壤水氮分布的影响. 农业工程学报, 2018, 34 (20): 90- 98. | |
He Y L, Wang Y, Zhang H J, et al. Coupling effects of water and nitrogen on tree growth and soil water-nitrogen distribution in young Populus tomentosa plantations under surface drip irrigation. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (20): 90- 98. | |
贾黎明, 邢长山, 韦艳葵, 等. 地下滴灌条件下杨树速生丰产林生长与光合特性. 林业科学, 2004, 40 (2): 61- 67.
doi: 10.3321/j.issn:1001-7488.2004.02.011 |
|
Jia L M, Xing C S, Wei Y K, et al. Growth and photosynthetic characteristics of poplar fast-growing and productive forests under subsurface drip irrigation. Scientia Silvae Sinicae, 2004, 40 (2): 61- 67.
doi: 10.3321/j.issn:1001-7488.2004.02.011 |
|
刘 峰, 席本野, 戴腾飞, 等. 2020. 水肥耦合对毛白杨林分土壤氮、细根分布及生物量的影响. 北京林业大学学报, 42(1): 75−83. | |
Liu F, Xi B Y, Dai T F, et al. 2020. Effect of water-fertilizer coupling on soil nitrogen, fine root distribution and biomass in Populus tomentosa stands. Journal of Beijing Forestry University, 42(1): 75−83. [in Chinese] | |
万长园, 王明玉, 王慧芳, 等. 华北平原典型剖面地下水三氮污染时空分布特征. 地球与环境, 2014, 42 (4): 472- 479. | |
Wan C Y, Wang M Y, Wang H F, et al. Spatial and temporal distribution characteristics of groundwater trinitrogen pollution in a typical section of the North China Plain. Earth and Environment, 2014, 42 (4): 472- 479. | |
王亚飞, 贺曰林, 杨红青, 等. 灌溉施肥对杨树人工林林木及地力效应研究进展. 世界林业研究, 2023, 36 (5): 63- 69. | |
Wang Y F, He Y L, Yang H Q, et al. Research progress on the effects of irrigation and fertilization on trees and soil fertility in poplar plantations. World Forestry Research, 2023, 36 (5): 63- 69. | |
王 烨. 2015. 毛白杨速生纸浆林地下滴灌施肥效应研究. 北京: 北京林业大学. | |
Wang Y. 2015. Study on the effect of fertilization by subsurface drip irrigation in a fast-growing pulpwood forest of hairy poplar. Beijing: Beijing Forestry University. [in Chinese] | |
王 烨, 李广德, 刘国彬, 等. 毛白杨人工林物候特征和生长对施肥的可塑性响应. 林业科学, 2023, 59 (5): 32- 40.
doi: 10.11707/j.1001-7488.LYKX20220649 |
|
Wang Y, Li G D, Liu G B, et al. Plasticity responses of phenological characteristics and tree growth of Populus tomentosa plantation to fertilization. Scientia Silvae Sinicae, 2023, 59 (5): 32- 40.
doi: 10.11707/j.1001-7488.LYKX20220649 |
|
席本野. 杨树根系形态、分布、动态特征及其吸水特性. 北京林业大学学报, 2019, 41 (12): 37- 49.
doi: 10.12171/j.1000-1522.20190400 |
|
Xi Benye. Morphology, distribution and dynamic characteristics of poplar root system and its water absorption characteristics. Journal of Beijing Forestry University, 2019, 41 (12): 37- 49.
doi: 10.12171/j.1000-1522.20190400 |
|
席本野, 邸 楠, 曹治国, 等. 2018. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示. 植物生态学报, 42(9): 885−905. | |
Xi B Y, Di N, Cao Z G, et al. 2018. Characteristics and mechanisms of deep soil water uptake and utilization by trees: Implications for plantation forest cultivation. Chinese Journal of Plant Ecology, 42(9): 885−905. [in Chinese] | |
席本野, 王 烨, 邸 楠, 等. 地下滴灌下土壤水势对毛白杨纸浆林生长及生理特性的影响. 生态学报, 2012, 32 (17): 5318- 5329. | |
Xi B Y, Wang Y, Di N et al. Influence of soil water potential on growth and physiological characteristics of Populus tomentosa pulpwood forest under subsurface drip irrigation. Acta Ecologica Sinica, 2012, 32 (17): 5318- 5329. | |
闫小莉, 戴腾飞, 邢长山, 等. 水肥耦合对欧美108杨幼林表土层细根形态及分布的影响. 生态学报, 2015, 35 (11): 3692- 3701. | |
Yan X L, Dai T F, Xing C S, et al. Coupling effect of water and nitrogen on the morphology and distribution of fine root in surface soil layer of young Populus × euramericana plantation. Acta Ecologica Sinica, 2015, 35 (11): 3692- 3701. | |
杨红青, 王亚飞, 贾黎明, 2023. 短轮伐期毛白杨S86纸浆林生长对沟灌水肥耦合的响应. 北京林业大学学报, 45(3): 68−78. | |
Yang H Q, Wang Y F, Jia L M. 2023. Response of pulp plantation growth of Populus tomentosa S86 in short rotation period to coupling of water and fertilizer in furrow irrigation. Journal of Beijing Forestry University, 45(3): 68−78. [in Chinese] | |
叶 灵, 巨晓棠, 刘 楠, 等. 华北平原不同农田类型土壤硝态氮累积及其对地下水的影响. 水土保持学报, 2010, 24 (2): 165- 168,178. | |
Ye L, Ju X T, Liu N, et al. Characteristics of nitrate accumulation and its effects on groundwater under typical cropping systems in North China Plain. Journal of Soil and Water Conservation, 2010, 24 (2): 165- 168,178. | |
于景麟, 刘 峰, 贺曰林, 等. 沟灌水氮耦合对毛白杨林木生长及水氮吸收利用的影响. 应用生态学报, 2020, 31 (7): 2314- 2322. | |
Yu J L, Liu F, He Y L, et al. Effects of water and nitrogen coupling under furrow irrigation on tree growth, absorption and utilization of water and nitrogen of Populus tomentosa. Chinese Journal of Applied Ecology, 2020, 31 (7): 2314- 2322. | |
张润哲, 朱嘉磊, 王 江, 等. 长期施氮与灌溉对毛白杨人工林土壤硝态氮分布与积累的影响. 林业科学研究, 2019, 32 (6): 7- 13. | |
Zhang R Z, Zhu J L, Wang J, et al. Effects of long-term nitrogen application and irrigation on the distribution and accumulation of nitrate nitrogen in soil of poplar plantation. Forestry Research, 2019, 32 (6): 7- 13. | |
赵广帅, 李发东, 李运生, 等. 长期施肥对土壤有机质积累的影响. 生态环境学报, 2012, 21 (5): 840- 847.
doi: 10.3969/j.issn.1674-5906.2012.05.010 |
|
Zhao G S, Li F D, Li Y S, et al. Effects of long-term fertilization on soil organic matter accumulation. Ecology and Environmental Sciences, 2012, 21 (5): 840- 847.
doi: 10.3969/j.issn.1674-5906.2012.05.010 |
|
朱嘉磊, 薄慧娟, 李 璇, 等. 不同毛白杨无性系林分蓄积量的长期水氮耦合效应. 林业科学, 2019, 55 (5): 27- 35. | |
Zhu J L, Bo H J, Li X, et al. Long-term water and nitrogen coupling effects on stand accumulation of different hairy poplar asexual lines. Scientia Silvae Sinicae, 2019, 55 (5): 27- 35. | |
朱之悌. 我国造纸国情的若干特点及其解决的对策. 北京林业大学学报, 2002, 24 (Z1): 288- 291.
doi: 10.3321/j.issn:1000-1522.2002.05.054 |
|
Zhu Z T. Some characteristics of China's paper-making situation and its countermeasures. Journal of Beijing Forestry University, 2002, 24 (Z1): 288- 291.
doi: 10.3321/j.issn:1000-1522.2002.05.054 |
|
Bobbink R, Hicks K, Galloway J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 2010, 20 (1): 30- 59.
doi: 10.1890/08-1140.1 |
|
Du E Z, Terrer C, Pellegrini A F A, et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 2020, 13 (3): 221- 226.
doi: 10.1038/s41561-019-0530-4 |
|
Braun S, Schindler C, Rihm B. Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate. Science of the Total Environment, 2017, 599-600, 637- 646.
doi: 10.1016/j.scitotenv.2017.04.230 |
|
Chen D M, Li J J, Lan Z C, et al. Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 2016, 30 (4): 658- 669.
doi: 10.1111/1365-2435.12525 |
|
Di N, Liu Y, Mead D J, et al. Root-system characteristics of plantation-grown Populus tomentosa, adapted to seasonal fluctuation in the groundwater table. Trees, 2018, 32 (1): 137- 149.
doi: 10.1007/s00468-017-1619-2 |
|
Elser J J, Dobberfuhl D R, MacKay N A, et al. Organism size, life history, and N: P stoichiometry: toward a unified view of cellular and ecosystem processes. BioScience, 1996, 46 (9): 674- 684.
doi: 10.2307/1312897 |
|
Forrester D I, Collopy J J, Beadle C L, et al. Interactive effects of simultaneously applied thinning, pruning and fertiliser application treatments on growth, biomass production and crown architecture in a young Eucalyptus nitens plantation. Forest Ecology Management, 2012, 267, 104- 116.
doi: 10.1016/j.foreco.2011.11.039 |
|
Forrester D I, Collopy J J, Beadle L C et al. Baker. Effect of thinning, pruning and nitrogen fertiliser application on light interception and light-use efficiency in a young Eucalyptus nitens plantation. Forest Ecology and Management, 2013, 288, 21- 30.
doi: 10.1016/j.foreco.2011.11.024 |
|
Forrester D I. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: a review of their production ecology and interactions. Forest Ecology and Management, 2013, 310, 336- 347.
doi: 10.1016/j.foreco.2013.08.047 |
|
Forrester D I, Albrecht A T. Light absorption and light-use efficiency in mixtures of Abies alba and Picea abies along a productivity gradient. Forest Ecology and Management, 2014, 328, 94- 102.
doi: 10.1016/j.foreco.2014.05.026 |
|
Gu B , Ying G , Chang S X , et al. Nitrate in groundwater of China: Sources and driving forces. Global Environmental Change, 2013, 23 (5): 1112- 1121. | |
He Y L, Xi B Y, Bloomberg M, et al. Effects of drip irrigation and nitrogen fertigation on stand growth and biomass allocation in young triploid Populus tomentosa plantations. Forest ecology and management, 2020, 461, 117937.
doi: 10.1016/j.foreco.2020.117937 |
|
He Y L, Xi B Y, Li G D, et al. Influence of drip irrigation, nitrogen fertigation, and precipitation on soil water and nitrogen distribution, tree seasonal growth and nitrogen uptake in young triploid poplar (Populus tomentosa) plantations. Agricultural Water Management, 2021, 243, 106460.
doi: 10.1016/j.agwat.2020.106460 |
|
Henriksson, N, Lim H, Marshall J, et al. Tree water uptake enhances nitrogen acquisition in a fertilized boreal forest-but not under nitrogen-poor conditions. New Phytologist, 2021, 232 (1): 113- 122. | |
Jiang L, Tian D, Ma S H, et al. The response of tree growth to nitrogen and phosphorus additions in a tropical montane rainforest. Science of the Total Environment, 2018, 618, 1064- 1070. | |
Koerselman W, Meuleman A F M. 1996. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. Journal of applied Ecology, 1441−1450. | |
Liu J Q, Li D D, Fernández J E, et al. Variations in water-balance components and carbon stocks in poplar plantations with differing water inputs over a whole rotation: implications for sustainable forest management under climate change. Agricultural and Forest Meteorology, 2022, 320, 108958.
doi: 10.1016/j.agrformet.2022.108958 |
|
Lu X K, Mo J M, Gilliam F S, et al. Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 2010, 16 (10): 2688- 2700.
doi: 10.1111/j.1365-2486.2010.02174.x |
|
Lu X K, Vitousek P M, Mao Q G, et al. Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115 (20): 5187- 5192. | |
Norby R J, Kauwe M G, Domingues T F, et al. Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytologist, 2016, 209 (1): 17- 28.
doi: 10.1111/nph.13593 |
|
O'Hara K L, York R A. Leaf area development and crown architecture in a giant Sequoia Spacing study. Forest Science, 2014, 60 (4): 776- 783.
doi: 10.5849/forsci.13-063 |
|
Ottinger S L, Miniat C F, Wurzburger N. Nitrogen and light regulate symbiotic nitrogen fixation by a temperate forest tree. Oecologia, 2023, 201, 565- 574.
doi: 10.1007/s00442-023-05313-0 |
|
Pinheiro R C, Bouillet J P, Pivello V R, et al. Roots take up labeled nitrogen from a depth of 9 m in a wooded savanna in Brazil. Soil Biology and Biochemistry, 2021, 160, 108282.
doi: 10.1016/j.soilbio.2021.108282 |
|
Taylor B N, Menge D N. Light regulates tropical symbiotic nitrogen fixation more strongly than soil nitrogen. Nature Plants, 2018, 4, 655- 661.
doi: 10.1038/s41477-018-0231-9 |
|
Tian D S, Niu S L. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters, 2015, 10 (2): 024019.
doi: 10.1088/1748-9326/10/2/024019 |
|
Tian D, Li P, Fang W J, et al. Growth responses of trees and understory plants to nitrogen fertilization in a subtropical forest in China. Biogeosciences, 2017, 14, 3461- 3469.
doi: 10.5194/bg-14-3461-2017 |
|
Wang S Q, Song M H, Wang C M et al. Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. Science of the Total Environment, 2023, 904, 166403.
doi: 10.1016/j.scitotenv.2023.166403 |
|
Wang Z, Zhang X Y, Liu L, et al. Spatial and seasonal patterns of atmospheric nitrogen deposition in North China. Atmospheric and Oceanic Science Letters, 2020, 13 (3): 188- 194.
doi: 10.1080/16742834.2019.1701385 |
|
Wilske B, Lu N, Wei L, et al. Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. Journal of Environmental Management, 2009, 90 (8): 2762- 2770.
doi: 10.1016/j.jenvman.2009.03.004 |
|
Xi B Y, Bloomberg M, Watt M S, et al. Modeling growth response to soil water availability simulated by HYDRUS for a mature triploid Populus tomentosa plantation located on the North China Plain. Agricultural Water Management, 2016, 176, 243- 254.
doi: 10.1016/j.agwat.2016.06.017 |
|
Zhu W, Wu X C, Jia L M, et al. Effects of key forest management practices and climatic factors on the growth of Populus tomentosa plantations in the North China Plain. Forest Ecology and Management, 2022, 521, 120444.
doi: 10.1016/j.foreco.2022.120444 |
[1] | Meihong Liu,Qiming Yan,Longbo Zi,Yafang Lei,Li Yan. Physical and Mechanical Properties of Furfuryl Alcohol-Epoxidized Vegetable Oils Composite Modified Poplar Wood [J]. Scientia Silvae Sinicae, 2024, 60(11): 149-159. |
[2] | Huang Mengyao, Zhang Runzhe, Shi Ce, Yang Hao, Wei Yifan, Zhang Zhaode, Zhu Lin, Song Lianjun, Nie Lishui, Wang Dengzhi. Dynamics of Soil Mineral Nitrogen in Populus tomentosa Stand under Different Nitrogen and Water Application Levels [J]. Scientia Silvae Sinicae, 2023, 59(9): 45-54. |
[3] | Lingya Li,Nan Di,Jinqiang Liu,Xiaoning Zhao,Songyan Zou,Haiman Fu,Benye Xi. Water Consumption Pattern and Crop Coefficient Curve Construction of Short-rotation Populus tomentosa Plantations [J]. Scientia Silvae Sinicae, 2023, 59(10): 76-88. |
[4] | Yaxiong Zhang,Ye Wang,Guangde Li,Doudou Li,Yuelin He,Benye Xi,Lijuan Sun. Response of Branching Pattern of Triploid Populus tomentosa to Variation Soil Water Regime [J]. Scientia Silvae Sinicae, 2021, 57(3): 145-151. |
[5] | Minghui Sun,Yong Liu,Changwei Wang,Guolei Li,Miaomiao Wang,Xiehai Song,Xiaochao Chang,Fangfang Wan,Huaishan Song. Effects of Density and Row Spacing on the Quality of Populus tomentosa Seedling [J]. Scientia Silvae Sinicae, 2021, 57(3): 152-160. |
[6] | Dong Qiao,Yong Liu,Shuyong Tian,Feng Zhang,Yajing Wang,Xiaoli Li,Xuejin Feng,Yanan Zhang. Effects of Water Management during Lignification on Morphology, Physiology and Afforestation Performance of Populus tomentosa Seedlings [J]. Scientia Silvae Sinicae, 2021, 57(11): 169-178. |
[7] | Xu Ma,Zhiguo Cao,Chen Yue,Chuhan Jin,Jun Liu,Yang Liu,Guifang Xiu,Benye Xi. Changes of Particulate Matter Retention Characteristics and the Response of Physiological Characteristics of Poplar Leaves Under the Influence of Rainfall and Irrigation [J]. Scientia Silvae Sinicae, 2020, 56(8): 181-190. |
[8] | Zhu Jialei, Bo Huijuan, Li Xuan, Wen Chunyan, Wang Jiang, Nie Lishui, Tian Ju, Song Lianjun. Long Term Water-Nitrogen Coupling Effect on Stand Volume of Different Clones of Populus tomentosa [J]. Scientia Silvae Sinicae, 2019, 55(5): 27-35. |
[9] | An Shengnan, Ma Xiaojun, Zhu Lizhi. Preparation and Characterization of the P34HB Composite Reinforced by Wood Flour [J]. Scientia Silvae Sinicae, 2019, 55(3): 125-133. |
[10] | Songyan Zou,Doudou Li,Jinsong Wang,Nan Di,Jinqiang Liu,Ye Wang,Guangde Li,Jie Duan,Liming Jia,Benye Xi. Response of Fine Roots to Soil Moisture of Different Gradients in Young Populus tomentosa Plantation [J]. Scientia Silvae Sinicae, 2019, 55(10): 124-137. |
[11] | Li Jianbo, Jia Huixia, Zhang Jin, Liu Bobin, Hu Jianjun, Wang Lijuan, Lu Mengzhu. Effect of Overexpression of Populus tomentosa WUSCHEL-related homeobox 4 (PtoWOX4a) on the Secondary Growth of Poplar [J]. Scientia Silvae Sinicae, 2018, 54(2): 52-59. |
[12] | Li Doudou, Xi Benye, Tang Lianfeng, Feng Chao, He Yuelin, Zhang Yaxiong, Liu Longlong, Liu Jinqiang, Jia Liming. Patterns of Soil Water Movement in Drip-Irrigated Young Populus tomentosa Plantations on Sandy Loam Soil and Their Simulation [J]. Scientia Silvae Sinicae, 2018, 54(12): 157-168. |
[13] | Xi Benye, Wang Ye, Jia Liming. Effects of Nitrogen Application Rate and Frequency on Biomass Accumulation and Nitrogen Uptake of Populus tomentosa under Drip Fertigation [J]. Scientia Silvae Sinicae, 2017, 53(5): 63-73. |
[14] | Yang Chengdong;Jiao Ruzhen;Sun Qiwu;Xia Liangfang;Janet Dutch. CORRELATIVITY BETWEEN GROWTH AND NUTRIENT CONTENTS IN FOLIAGE OF YOUNG CHINESE FIR PLANTATION [J]. Scientia Silvae Sinicae, 2002, 38(6): 24-29. |
[15] | Xiaoguang Liu,Kexiang Gao,Jiancai Gu,Jianling Du,Xiuguang Tang. TESTINGON THE ANTAGONISMOF THE DOMINANT OF ENDOPHYTIC FUNGI FROM POPULUS TOMENTOSA, CHAETOMIUM ND35 IN THE LABORATORY [J]. Scientia Silvae Sinicae, 1999, 35(5): 57-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||